Spartina Eradication Plan

Total Page:16

File Type:pdf, Size:1020Kb

Spartina Eradication Plan H. T. HARVEY & ASSOCIATES ECOLOGICAL CONSULTANTS Humboldt Bay Regional Spartina Eradication Plan Final Report Project # 3192-01 Prepared for: Joel Gerwein, Project Manager California State Coastal Conservancy 1330 Broadway, 13th Floor Oakland, CA 94612-2530 Prepared by: H. T. Harvey & Associates 5 April 2013 1125 16th Street, Suite 209 Arcata, CA 95521 Ph: 707.822.4141 F: 707.822.4848 Executive Summary This Draft Humboldt Bay Regional Spartina Eradication Plan (Regional Plan) describes an approach for eradicating invasive cordgrass (genus Spartina) at a regional scale. In their non-native ranges, invasive Spartina species displace native plant species, reduce biodiversity, disrupt natural ecological function, and alter habitats for fish and wildlife species. Spartina eradication in the Humboldt Bay region is needed to restore sensitive coastal wetland habitats and to eliminate the threat of spread that untreated Spartina poses to other estuaries on the West Coast. This Regional Plan presents a toolbox of control methods to address infested wetlands at different stages of treatment with varying site characteristics. The control methods presented are based on demonstrated effectiveness and ongoing research. We embrace an adaptive management approach, which will allow us to make plan changes in response to new information, treatment successes and failures, funding opportunities, logistical constraints, and other unforeseeable factors. The region covered in this plan is called the Management Area, and includes Humboldt Bay and the Eel and Mad River Estuaries, on the northern California coast. Regional Spartina eradication is part of a larger West Coast collaborative eradication extending from British Columbia, Canada to California. In 2010, the coast- wide Spartina Action Coordination Team (ACT) identified Spartina eradication in the Management Area as a high priority task, noting that increased focus is needed in this region to achieve eradication success. The importance of coordination, political will, and adequate funding has been demonstrated at several other sites of Spartina invasion (such as Willapa Bay, Washington and the San Francisco Estuary, California) where coordinated programs have resulted in nearly complete Spartina eradication (Boe et al. 2010). This Regional Plan is consistent with critical elements that ACT identified as needed for all regions, including eradication of existing Spartina infestations, habitat restoration, prevention, early detection, rapid response to new invasions, and communication and outreach. Additionally, this Regional Plan addresses factors unique to the Management Area that affect how Spartina can be eradicated, as compared to other eradication methods and efforts on the West Coast. Factors unique to the Management Area include: • The Management Area currently contains just one species (S. densiflora) of the 4 non-native Spartina species that have invaded other areas of the West Coast. • S. densiflora has infested 1672 acres since its inadvertent introduction to Humboldt Bay in the 1870s, representing the oldest and most extensive occurrence of this species on the West Coast. • Approximately 90% of tidal marsh habitat in the Management Area has been invaded by S. densiflora to some extent, with evidence that the invasion is still progressing. • Continuing encroachment by S. densiflora threatens high elevation salt marsh, a diverse plant community that provides habitat for rare plant species, and that is already scarce in the Management Area. • Encroachment into mudflat habitats is becoming evident in some locations within the Management Area. S. densiflora does not extend as low in the intertidal zone as the invasive S. alterniflora, which Final Humboldt Bay Regional H. T. Harvey & Associates i Spartina Eradication Plan 5 April 2013 rapidly converted over 9,000 acres of mudflat habitat into dense cordgrass meadows in Willapa Bay before eradication by coordinated regional efforts there. • No native Spartina species occur in the Management Area. The only Spartina species that naturally occurs on the West Coast is S. foliosa, and its range extends only as far north as Bodega Bay, California. In the San Francisco Estuary, hybrid crosses between S. foliosa and invasive Spartina species (especially S. alterniflora, but also S. densiflora) pose a major management challenge. • S. densiflora is less responsive to herbicide treatments then other invasive Spartina species, leading ACT to prioritize the development of improved treatment methods for this species (Boe et al. 2010). • Mechanical treatment methods that effectively kill established stands of S. densiflora in 2 years have recently been developed and continue to be refined; substantial recovery by native plant communities following treatment has been documented. • Various combinations of chemical and mechanical methods are currently under investigation in the Management Area, having been used effectively to treat S. densiflora elsewhere. • Approximately 20% of lands infested by S. densiflora in the Management Area have received some level of treatment to date. This Regional Plan is intended to expedite current eradication efforts and provide regional coordination. This Regional Plan calls for an agency or other entity to be designated to perform regional coordination, appropriately referred to as the Regional Coordinator. The Regional Coordinator will be responsible for coordinated implementation of the Regional Plan, and will provide the long-term presence and commitment needed to eradicate Spartina. The Regional Coordinator will coordinate and lead acquisition and administration of funding, permitting, planning, implementation, monitoring, communication, and outreach. Public agencies will support the Regional Coordinator’s efforts; private landowners are not expected to fulfill these responsibilities, although willing landowners will be encouraged to participate. The Regional Coordinator will be the main communication conduit and hub among all Management Area parties involved. The Regional Coordinator will share information on work accomplished at the regional level and will collaborate with other West Coast managers who are eradicating invasive Spartina. The Humboldt Bay Harbor, Recreation and Conservation District has been identified as a possible agency to serve as the Regional Coordinator, with support from several additional agencies and non-governmental organizations. The California State Coastal Conservancy (Conservancy) will provide scientific and permitting support and may fund some of the eradication measures and/or help the Regional Coordinator acquire funding for implementation. The Humboldt Bay National Wildlife Refuge will provide scientific and logistical support, and a regional Spartina advisory committee may be formed to foster interagency and community communication and participation. The intended readers and audience for this Draft Regional Plan are resource managers, resource agency staff, landowners, and the local community and public. Sections 1 to 3 provide background information, including an overview and Regional Plan’s policy context; a description of the general physical geography of the Final Humboldt Bay Regional H. T. Harvey & Associates ii Spartina Eradication Plan 5 April 2013 Management Area; and information on Spartina ecology and the ecological impacts of Spartina invasion, with a focus on S. densiflora. Sections 4 to 6 present details on how regional Spartina eradication can be achieved; readers who are primarily interested in potential Spartina control actions in the Management Area should focus on these sections. The eradication strategy includes a discussion of the steps needed to eradicate existing invasive Spartina and enhance native plant communities; procedures for minimizing reinvasion; guidelines for monitoring; and means of communication and outreach. An overview of permits that will likely be required to perform eradication work is presented, with discussion of how permitting can be facilitated through coordination at a regional level. Lastly, a characterization of costs associated with plan implementation is provided. Extensive background information was gathered in the process of preparing this Regional Plan, and much of it is included in appendices (Appendices A to C). The Conservancy is the lead agency responsible for complying with the California Environmental Quality Act for regional Spartina eradication. A Programmatic Environmental Impact Report (PEIR) (CSCC 2012) is being prepared concurrently with development of this Regional Plan to assess potential environmental impacts and recommend mitigation measures to avoid, minimize, or mitigate impacts. Both the Draft Regional Plan and the PEIR will be available for public review and comment. Final Humboldt Bay Regional H. T. Harvey & Associates iii Spartina Eradication Plan 5 April 2013 Table of Contents Executive Summary ............................................................................................................................................................. i Table of Contents .............................................................................................................................................................. iv List of Contributors .......................................................................................................................................................... vii Acknowledgements .........................................................................................................................................................
Recommended publications
  • The Diversity of Terrestrial Isopods in the Natural Reserve “Saline Di Trapani E Paceco” (Crustacea, Isopoda, Oniscidea) in Northwestern Sicily
    A peer-reviewed open-access journal ZooKeys 176:The 215–230 diversity (2012) of terrestrial isopods in the natural reserve “Saline di Trapani e Paceco”... 215 doi: 10.3897/zookeys.176.2367 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The diversity of terrestrial isopods in the natural reserve “Saline di Trapani e Paceco” (Crustacea, Isopoda, Oniscidea) in northwestern Sicily Giuseppina Messina1, Elisa Pezzino1, Giuseppe Montesanto1, Domenico Caruso1, Bianca Maria Lombardo1 1 University of Catania, Department of Biological, Geological and Environmental Sciences, I-95124 Catania, Italy Corresponding author: Bianca Maria Lombardo ([email protected]) Academic editor: S. Sfenthourakis | Received 15 November 2011 | Accepted 17 February 2012 | Published 20 March 2012 Citation: Messina G, Pezzino E, Montesanto G, Caruso D, Lombardo BM (2012) The diversity of terrestrial isopods in the natural reserve “Saline di Trapani e Paceco” (Crustacea, Isopoda, Oniscidea) in northwestern Sicily. In: Štrus J, Taiti S, Sfenthourakis S (Eds) Advances in Terrestrial Isopod Biology. ZooKeys 176: 215–230. doi: 10.3897/zookeys.176.2367 Abstract Ecosystems comprising coastal lakes and ponds are important areas for preserving biodiversity. The natural reserve “Saline di Trapani e Paceco” is an interesting natural area in Sicily, formed by the remaining strips of land among salt pans near the coastline. From January 2008 to January 2010, pitfall trapping was conducted in five sampling sites inside the study area. The community of terrestrial isopods was assessed using the main diversity indices. Twenty-four species were collected, only one of them endemic to west- ern Sicily: Porcellio siculoccidentalis Viglianisi, Lombardo & Caruso, 1992. Two species are new to Sicily: Armadilloniscus candidus Budde-Lund, 1885 and Armadilloniscus ellipticus (Harger, 1878).
    [Show full text]
  • Conceptual Design Documentation
    Appendix A: Conceptual Design Documentation APPENDIX A Conceptual Design Documentation June 2019 A-1 APPENDIX A: CONCEPTUAL DESIGN DOCUMENTATION The environmental analyses in the NEPA and CEQA documents for the proposed improvements at Oceano County Airport (the Airport) are based on conceptual designs prepared to provide a realistic basis for assessing their environmental consequences. 1. Widen runway from 50 to 60 feet 2. Widen Taxiways A, A-1, A-2, A-3, and A-4 from 20 to 25 feet 3. Relocate segmented circle and wind cone 4. Installation of taxiway edge lighting 5. Installation of hold position signage 6. Installation of a new electrical vault and connections 7. Installation of a pollution control facility (wash rack) CIVIL ENGINEERING CALCULATIONS The purpose of this conceptual design effort is to identify the amount of impervious surface, grading (cut and fill) and drainage implications of the projects identified above. The conceptual design calculations detailed in the following figures indicate that Projects 1 and 2, widening the runways and taxiways would increase the total amount of impervious surface on the Airport by 32,016 square feet, or 0.73 acres; a 6.6 percent increase in the Airport’s impervious surface area. Drainage patterns would remain the same as both the runway and taxiways would continue to sheet flow from their centerlines to the edge of pavement and then into open, grassed areas. The existing drainage system is able to accommodate the modest increase in stormwater runoff that would occur, particularly as soil conditions on the Airport are conducive to infiltration. Figure A-1 shows the locations of the seven projects incorporated in the Proposed Action.
    [Show full text]
  • "Philosciidae" (Crustacea: Isopoda: Oniscidea)
    Org. Divers. Evol. 1, Electr. Suppl. 4: 1 -85 (2001) © Gesellschaft für Biologische Systematik http://www.senckenberg.uni-frankfurt.de/odes/01-04.htm Phylogeny and Biogeography of South American Crinocheta, traditionally placed in the family "Philosciidae" (Crustacea: Isopoda: Oniscidea) Andreas Leistikow1 Universität Bielefeld, Abteilung für Zoomorphologie und Systematik Received 15 February 2000 . Accepted 9 August 2000. Abstract South America is diverse in climatic and thus vegetational zonation, and even the uniformly looking tropical rain forests are a mosaic of different habitats depending on the soils, the regional climate and also the geological history. An important part of the nutrient webs of the rain forests is formed by the terrestrial Isopoda, or Oniscidea, the only truly terrestrial taxon within the Crustacea. They are important, because they participate in soil formation by breaking up leaf litter when foraging on the fungi and bacteria growing on them. After a century of research on this interesting taxon, a revision of the terrestrial isopod taxa from South America and some of the Antillean Islands, which are traditionally placed in the family Philosciidae, was performed in the last years to establish monophyletic genera. Within this study, the phylogenetic relationships of these genera are elucidated in the light of phylogenetic systematics. Several new taxa are recognized, which are partially neotropical, partially also found on other continents, particularly the old Gondwanian fragments. The monophyla are checked for their distributional patterns which are compared with those patterns from other taxa from South America and some correspondence was found. The distributional patterns are analysed with respect to the evolution of the Oniscidea and also with respect to the geological history of their habitats.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Gtr Pnw343.Pdf
    Abstract Marcot, Bruce G. 1995. Owls of old forests of the world. Gen. Tech. Rep. PNW- GTR-343. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 64 p. A review of literature on habitat associations of owls of the world revealed that about 83 species of owls among 18 genera are known or suspected to be closely asso- ciated with old forests. Old forest is defined as old-growth or undisturbed forests, typically with dense canopies. The 83 owl species include 70 tropical and 13 tem- perate forms. Specific habitat associations have been studied for only 12 species (7 tropical and 5 temperate), whereas about 71 species (63 tropical and 8 temperate) remain mostly unstudied. Some 26 species (31 percent of all owls known or sus- pected to be associated with old forests in the tropics) are entirely or mostly restricted to tropical islands. Threats to old-forest owls, particularly the island forms, include conversion of old upland forests, use of pesticides, loss of riparian gallery forests, and loss of trees with cavities for nests or roosts. Conservation of old-forest owls should include (1) studies and inventories of habitat associations, particularly for little-studied tropical and insular species; (2) protection of specific, existing temperate and tropical old-forest tracts; and (3) studies to determine if reforestation and vege- tation manipulation can restore or maintain habitat conditions. An appendix describes vocalizations of all species of Strix and the related genus Ciccaba. Keywords: Owls, old growth, old-growth forest, late-successional forests, spotted owl, owl calls, owl conservation, tropical forests, literature review.
    [Show full text]
  • Tc & Forward & Owls-I-IX
    USDA Forest Service 1997 General Technical Report NC-190 Biology and Conservation of Owls of the Northern Hemisphere Second International Symposium February 5-9, 1997 Winnipeg, Manitoba, Canada Editors: James R. Duncan, Zoologist, Manitoba Conservation Data Centre Wildlife Branch, Manitoba Department of Natural Resources Box 24, 200 Saulteaux Crescent Winnipeg, MB CANADA R3J 3W3 <[email protected]> David H. Johnson, Wildlife Ecologist Washington Department of Fish and Wildlife 600 Capitol Way North Olympia, WA, USA 98501-1091 <[email protected]> Thomas H. Nicholls, retired formerly Project Leader and Research Plant Pathologist and Wildlife Biologist USDA Forest Service, North Central Forest Experiment Station 1992 Folwell Avenue St. Paul, MN, USA 55108-6148 <[email protected]> I 2nd Owl Symposium SPONSORS: (Listing of all symposium and publication sponsors, e.g., those donating $$) 1987 International Owl Symposium Fund; Jack Israel Schrieber Memorial Trust c/o Zoological Society of Manitoba; Lady Grayl Fund; Manitoba Hydro; Manitoba Natural Resources; Manitoba Naturalists Society; Manitoba Critical Wildlife Habitat Program; Metro Propane Ltd.; Pine Falls Paper Company; Raptor Research Foundation; Raptor Education Group, Inc.; Raptor Research Center of Boise State University, Boise, Idaho; Repap Manitoba; Canadian Wildlife Service, Environment Canada; USDI Bureau of Land Management; USDI Fish and Wildlife Service; USDA Forest Service, including the North Central Forest Experiment Station; Washington Department of Fish and Wildlife; The Wildlife Society - Washington Chapter; Wildlife Habitat Canada; Robert Bateman; Lawrence Blus; Nancy Claflin; Richard Clark; James Duncan; Bob Gehlert; Marge Gibson; Mary Houston; Stuart Houston; Edgar Jones; Katherine McKeever; Robert Nero; Glenn Proudfoot; Catherine Rich; Spencer Sealy; Mark Sobchuk; Tom Sproat; Peter Stacey; and Catherine Thexton.
    [Show full text]
  • Littorina Sitkana Philippi, 1846)
    UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ Local site differences in survival and parasitism of periwinkles (Littorina sitkana Philippi, 1846) Mónica Ayala-Díaz, Jean M. L. Richardson, & Bradley R. Anholt 2017 © 2017 Ayala- Díaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0 This article was originally published at: https://doi.org/10.1002/ece3.2708 Citation for this paper: Ayala-Díaz, M.; Richardson, J. M. L.; & Anholt, B. R. (2017). Local site differences in survival and parasitism of periwinkles (Littorina sitkana Philippi, 1846). Ecology and Evolution, 7(4), 1021-1029. https://doi.org/10.1002/ece3.2708 Received: 7 August 2016 | Revised: 4 November 2016 | Accepted: 17 December 2016 DOI: 10.1002/ece3.2708 ORIGINAL RESEARCH Local site differences in survival and parasitism of periwinkles (Littorina sitkana Philippi, 1846) Mónica Ayala-Díaz1,2 | Jean M. L. Richardson1 | Bradley R. Anholt1,2 1Bamfield Marine Sciences Centre, Bamfield, BC, Canada Abstract 2Department of Biology, University of Victoria, The periwinkle, Littorina sitkana, is found throughout the intertidal zone, often in iso- Victoria, BC, Canada lated subpopulations. The majority of trematode parasites use snails as intermediate Correspondence hosts, and decreased survivorship is often observed in snails infected with trematodes. Mónica Ayala-Díaz, Bamfield Marine Sciences Sampling L. sitkana from four sites in Barkley Sound, British Columbia, Canada, we test Centre, Bamfield, BC, Canada. Email: [email protected] the effects of parasitic infection on snail survival using maximum likelihood and Bayesian approaches using the software MARK and WinBUGS.
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Alcolapia Grahami ERSS
    Lake Magadi Tilapia (Alcolapia grahami) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2015 Revised, August 2017, October 2017 Web Version, 8/21/2018 1 Native Range and Status in the United States Native Range From Bayona and Akinyi (2006): “The natural range of this species is restricted to a single location: Lake Magadi [Kenya].” Status in the United States No records of Alcolapia grahami in the wild or in trade in the United States were found. The Florida Fish and Wildlife Conservation Commission has listed the tilapia Alcolapia grahami as a prohibited species. Prohibited nonnative species (FFWCC 2018), “are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities.” Means of Introductions in the United States No records of Alcolapia grahami in the United States were found. 1 Remarks From Bayona and Akinyi (2006): “Vulnerable D2 ver 3.1” Various sources use Alcolapia grahami (Eschmeyer et al. 2017) or Oreochromis grahami (ITIS 2017) as the accepted name for this species. Information searches were conducted under both names to ensure completeness of the data gathered. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Alcolapia grahami (Boulenger 1912) is the current valid name for this species. It was originally described as Tilapia grahami; it has also been known as Oreoghromis grahami, and as a synonym, but valid subspecies, of
    [Show full text]
  • Circumscription of Apiaceae Tribe Oenantheae
    South African Journal of Botany 2004, 70(3): 393–406 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Circumscription of Apiaceae tribe Oenantheae TM Hardway1, K Spalik2, MF Watson3, DS Katz-Downie1 and SR Downie1* 1 Department of Plant Biology, University of Illinois, Urbana 61801, United States of America 2 Department of Plant Systematics and Geography, Warsaw University, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland 3 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom * Corresponding author, email: [email protected] Received 18 August 2003, accepted in revised form 17 November 2003 Previous molecular systematic investigations into the Sium and Trepocarpus. Relationships inferred from higher-level relationships of Apiaceae subfamily phylogenetic analyses of nuclear rDNA ITS sequences Apioideae have revealed a strongly supported clade from 64 accessions representing all 17 genera reveal recognised as tribe Oenantheae Dumort. These plants that four genera are not monophyletic. Bifora and may have clusters of fibrous or tuberous-thickened Cryptotaenia have members that fall outside of the tribe; roots, corky-thickened fruits, and other adaptations for Berula and Sium each comprise two or more lineages existence in wet or aquatic habitats. In some species, within Oenantheae. The St Helena endemics, Sium the leaves may be finely dissected or linear-septate and bracteatum and S. burchellii, ally with African Berula much reduced. We have initiated collaborative studies erecta; this clade is sister to the African endemic to produce a comprehensive estimate of phylogeny of species Sium repandum and Afrocarum imbricatum, the tribe, but such investigations are thwarted because and this entire group is allied closely with north tem- information on the composition of the tribe is lacking.
    [Show full text]
  • Tidal Marsh Vegetation of China Camp, San Pablo Bay, California Peter R
    AUGUST 2012 Tidal Marsh Vegetation of China Camp, San Pablo Bay, California Peter R. Baye1 ABSTRACT vegetation. Narrow high tidal marsh ecotones that borders terrestrial grasslands are locally dominated China Camp (Marin County, California) preserves by creeping wildrye (Elymus triticoides) and Baltic extensive relict stands of salt marsh vegetation rush (Juncus balticus), mostly on south-facing slopes. developed on a prehistoric salt marsh platform with Brackish tidal marsh ecotones above ordinary high a complex sinuous tidal creek network. The low salt tides are associated with freshwater discharges from marsh along tidal creeks supports extensive native groundwater and surface flows. Brackish marsh eco- stands of Pacific cordgrass (Spartina foliosa). After tones support large clonal stands of sedge, bulrush, hydraulic gold mining sedimentation, the outer and rush vegetation (Carex praegracilis, C. barbarae, salt marsh accreted. It consists of a wave-scarped Bolboschoenus maritimus, Juncus phaeocephalus, pickleweed-dominated (Sarcocornia pacifica) high Schoenoplectus acutus), intergrading with terrestrial salt marsh terrace, with a broad fringing low marsh freshwater wetlands and salt marsh. The terrestrial dominated by S. foliosa, including intermittent, vari- ecotone assemblages at China Camp are comparable able stands of alkali-bulrush (Bolboschoenus mari- with those of other prehistoric tidal marshes in the timus). Most of the extensive prehistoric salt marsh San Francisco Estuary, but China Camp lacks most plains within the tidal creek network also support native clonal perennial Asteraceae and halophytic mixed assemblages of S. pacifica, but high marsh annual forbs of the region’s remnant high tidal marsh zones along tidal creek banks support nearly continu- ecotones. Few globally-rare salt marsh plant popula- ous linear stands of gumplant (Grindelia stricta) and tions have been reported from China Camp within saltgrass (Distichlis spicata) with more diverse salt the National Estuarine Research Reserve (NERR) and marsh forb assemblages.
    [Show full text]