Capitulo 8. Flora Y Vegetación De Turberas De Sphagnum En La Región

Total Page:16

File Type:pdf, Size:1020Kb

Capitulo 8. Flora Y Vegetación De Turberas De Sphagnum En La Región CAPÍTULO 8 FLORA Y VEGETACIÓN DE TURBERAS DE SPHAGNUM EN LA REGIÓN DE AYSÉN, CHILE Erwin Domínguez1 & Fernán Silva2 1 Instituto de Investigaciones Agropecuarias - INIA - Kampenaike. Casilla 277, Punta Arenas, Chile. 2 Servicio Agrícola y Ganadero - SAG, Casilla 2960, Coyhaique, Chile. E-mail: [email protected] RESUMEN Las turberas de Sphagnum se caracterizan por almacenar agua, ser sumideros de carbono y por ser hábitat para una biodiversidad singular. Estos humedales se han convertido en un recurso económico a través de la cosecha de la cubierta vegetal de musgo Sphagnum, desde el año 2016 en la región de Aysén, generando impactos sobre el paisaje, la hidrología y la cubierta vegetal de estos ecosistemas. El objetivo de este trabajo es evaluar y comparar los efectos de la cosecha de musgo Sphagnum sobre la vegetación en turberas no intervenidas e intervenidas. Se estudiaron 13 turberas de Sphagnum en un gradiente latitudinal. Se establecieron 10 subparcelas de 1 m2 en una superficie de 1.000 m2 (50 x 20 m) a fin de determinar diferencias en la composición y cobertura de especies. Se registraron 67especies nativas, de las cuales 26 son endémicas para América del Sur. Sólo una especie exótica fue hallada (Carex canescens). La mayor riqueza de especies (S) = 17,78±6,49 e índice exponencial de entropía de Shannon (exp H’) = 7,14±2,53 fue hallada en las turberas mixtas de Sphagnum y pulvinadas no intervenidas. Las turberas de Sphagnum no intervenidas fueron las que presentaron mayor cobertura vegetal (%=91,36±5,14), pero menor riqueza y menor diversidad. Las plantas que estructuran las turberas en la región de Aysén son: Sphagnum magellanicum y Empetrum rubrum. Es necesario profundizar el conocimiento de la biodiversidad de las turberas, especialmente de los grupos poco estudiados como son las criptógamas. Palabras clave: riqueza de especies, diversidad, turberas de Sphagnum. Capítulo 8: Flora y vegetación de turberas de Sphagnum en la región de Aysén, Chile [193] INTRODUCCIÓN Las turberas de Sphagnum en Patagonia son un tipo de humedal, del cual se obtienen funciones ecosistémicas, tales como: regulación del ciclo del agua, constituyendo verdaderos reservorios hídricos (Iturraspe & Roig, 2000; Iturraspe, 2015); también regulan el clima a través del secuestro y almacenamiento de carbono (Loisel & Yu, 2013; Loisel, 2015; Hoyos-Santillan et al. 2019), y son el soporte para una biodiversidad representada por especies únicas adaptadas a un medio saturado de agua, ácido y carente de oxígeno (RAMSAR, 2004; Díaz et al. 2008; Kleinebecker et al. 2010; León et al. 2014; Larraín, 2015). Por otra parte, entre los servicios ambientales se reconoce la provisión de fibra vegetal de musgo Sphagnum, la cual es cosechada en las turberas (Díaz & Silva, 2012; Domínguez, 2014). Esta actividad se caracteriza por la extracción irracional, que se ha desarrollado por más de 20 años en el sur de Chile, desde la región de Los Ríos hasta la región de Magallanes. Por lo anterior, se hace necesario estudiar los componentes y atributos de este tipo de humedal, junto con evaluar el impacto que puede estar provocando la actividad comercial de la cosecha de musgo, sobre la composición y estructura de la vegetación de las turberas de Sphagnum. Las turberas corresponden a humedales de zonas de clima frío a frío- templado, dominados por plantas hidrófilas que producen y acumulan materia orgánica (i.e. turba) (RAMSAR, 2004). Se distribuyen principalmente en el hemisferio norte, mientras que en el hemisferio sur adquieren importancia en término de superficie en Sudamérica, especialmente en Chile y Argentina (Gunnarsson, 2005; Díaz et al. 2008). Las turberas en Chile han sido intervenidas principalmente en la región de Magallanes, por la extracción minera de turba primero, para hacer funcionar las dragas en la extracción de oro entre 1883 a 1909 en Tierra del Fuego. Luego, como sustrato para cultivos y como material de embalaje, afectando una superficie de 444 ha en la región de Magallanes (Vega- Valdés & Domínguez, 2015). Por otra parte, el año 2013 viajan desde Chiloé los recolectores y empresarios exportadores de musgo Sphagnum a la provincia de Última Esperanza, trabajando hasta el año 2015. Entre los años 2016 y 2017 se trasladan, los recolectores y empresas cosechadoras de musgo, a la región de Aysén por presentar ésta ventajas comparativas respecto a Magallanes, debido a que aquella posee una red de caminos que facilita el acceso a las turberas. Es por ello que, particularmente la región de Aysén, se ha convertido en un nuevo polo de desarrollo para la agroindustria relacionada a la cosecha de musgo Sphagnum, la cual aumentará la presión sobre este recurso. [194] COLECCIÓN LIBROS INIA - 41 Las turberas de Aysén han recibido la atención en la literatura científica, por numerosos naturalistas que visitaron dicha zona a principio del siglo XX. El primer botánico en estudiar las turberas fue Karl Reiche entre 1894 y 1911, a través de la descripción de la vegetación asociada a Sphagnum en las cuencas de los ríos Aysén y Baker. Este autor, si bien describe especies, no hace una clasificación de las asociaciones vegetales de turberas. Por otra parte, Gotschlich en 1913 describe la flora de Llanquihue, para esos años el territorio de Aysén era parte de esa provincia. El autor menciona la existencia de al menos 56 especies de criptógamas de las 200 que se conocían para la fecha en Chile, según lo descrito en el tomo VII de la obra de Claudio Gay. Posteriormente, Holdgate en 1961 hace una detallada descripción de la vegetación de turberas de Sphagnum y pulvinadas. En 1974, se hace una representación cartográfica de la vegetación chilena, describiéndose las turberas y sus especies típicas (Quintanilla, 1974), pero este autor no hace una separación fisonómica ni geomorfológica clara de los tipos de turberas y menos una referencia a la presencia de Sphagnum magellanicum sino a S. acutifolium. Posteriormente, Gajardo (1994) hace referencia explícita a cinco formaciones vegetales relacionadas a turberas, ellas son: 1) Turbera y matorral siempreverde, 2) Bosque siempreverde con turberas, 3) Matorral mixto y brezal turboso, 4) Turbera y estepa pantanosa archipelágica y 5) Bosque siempreverde. Esta clasificación, sin embargo, es a una escala sólo referencial y potencial para la región de Aysén. Dos años después, se realiza una importante descripción de los depósitos de turba en Chile y menciona que para la región de Aysén dominan las turberas bajas tipo “fen peat”, las cuales según la denominación inglesa son turberas que se desarrollan sobre terrazas fluvioaluviales y son alimentadas por aguas subterráneas o topogénicas. Este tipo de turberas se encuentran situadas al margen de los ríos Yelcho, Palena, La Zaranda, Laguna Pedro Aguirre Cerda, valles Río Huemules, Cajón, Cofré, Baker, Murta, Vargas, Ñadis, Bravo y Pascua (Hauser, 1996). Otro estudio que caracteriza la flora de las turberas de Tortel, específicamente de las cuencas de los ríos Vagabundo, Barrancoso y el desagüe del lago Quetru, reporta 28 especies: 1 liquen, 2 musgos, 2 helechos, 1 dicotiledónea primitiva, 14 Magnoliopsidas y 8 Liliopsidas; siendo los musgos (Sphagnum) y las Liliopsidas, los grupos de cobertura más dominante. Todas las Capítulo 8: Flora y vegetación de turberas de Sphagnum en la región de Aysén, Chile [195] especies reportadas fueron nativas y se menciona que la explotación del musgo, favorecería la recolonización del tipo forestal original, que desplazaría a la comunidad secundaria de Sphagnum magellanicum (Ramírez et al. 2007). Otro estudio realizado el 2008, hace un exhaustivo levantamiento de las turberas en las cuencas de los ríos Baker y Pascua, identificando 28 plantas vasculares, tres de ellas en categoría de conservación: Schizaea fistulosa (rara), Pilgerodendron uviferum y Lepidothamnus fonkii (vulnerable) (Rodríguez et al. 2008). El mismo año se realiza un estudio que describe la vegetación de dos turberas, localizadas en las inmediaciones de: 1) Laguna Pedro Aguirre Cerda al norte de Mañihuales y 2) Lago Vargas al sur de Cochrane. Mientras que en la primera se encontró sólo 18 plantas vasculares, en la segunda fueron identificadas 23, todas nativas. Las diferencias florísticas halladas entre ambas turberas podrían deberse a gradientes de precipitación y a variables físico-químicas, dadas por el origen geológico y la antigüedad de los valles, así como por el horizonte de acumulación de turba y el pH del sustrato de acuerdo a Teneb et al. 2008. Por otra parte, en el río Mosco, al oriente de Villa O’Higgins, García y Luebert (2008) describen la flora y vegetación incluyendo algunos pequeños ambientes de turberas, pero no especifican a que tipo de turberas pertenecen. Álvarez et al. (2010) reportaron una riqueza florística de 31 especies para una turbera de Sphagnum en un estudio en el archipiélago de los Chonos. Otro estudio realiza una descripción de las turberas de Sphagnum, pulvinadas y graminosas en la comuna de Tortel, describiendo la presencia de especies leñosas subarbustivas, dominadas por el ciprés enano (L. fonkii), las que presentan una gran afinidad florística y ecológica con las turberas esfagnosas y, al parecer, representarían una fase terminal de las turberas de Sphagnum magellanicum, según San Martín et al. 2014. Sandoval y colaboradores (2016) describen y comparan atributos de la diversidad vegetal en las cuencas de los ríos Baker y Pascua, reportando 66 especies y un índice de diversidad de Shannon de (H’= 2,038) para las turberas de Sphagnum. Todos estos trabajos entregan diversos y complejos tipos de clasificaciones, listas parciales de plantas, así como descripciones de las unidades vegetales en términos cualitativos a diferentes escalas espaciales. Sin embargo, no todos evalúan específicamente las turberas de Sphagnum, en términos de su diversidad florística y cómo ésta es afectada por la cosecha de musgo. Por esta razón, el objetivo de este capítulo es analizar la composición y estructura de las turberas de Sphagnum en la región de Aysén, a lo largo de un gradiente latitudinal que representa la heterogeneidad ambiental y perturbación generada por la cosecha de musgo Sphagnum en esta región.
Recommended publications
  • Végétation Et Climat De La Patagonie Chilienne Au Cours Des Derniers 20 000 Ans D’Après Les Données Polliniques Marines Vincent Montade
    Végétation et climat de la Patagonie chilienne au cours des derniers 20 000 ans d’après les données polliniques marines Vincent Montade To cite this version: Vincent Montade. Végétation et climat de la Patagonie chilienne au cours des derniers 20 000 ans d’après les données polliniques marines. Sciences de la Terre. Université Paris Sud - Paris XI; Uni- versidad austral de Chile, 2011. Français. NNT : 2011PA112302. tel-00659194 HAL Id: tel-00659194 https://tel.archives-ouvertes.fr/tel-00659194 Submitted on 12 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE EN COTUTELLE AVEC L‘UNIVERSITE PARIS-SUD 11 ET L‘UNIVERSITE AUSTRALE DU CHILI Présentée à L’UNIVERSITE PARIS-SUD 11 ECOLE DOCTORALE (534): MODELISATION ET INSTRUMENTATION EN PHYSIQUE, ENERGIES, GEOSCIENCES ET ENVIRONNEMENT Par Mr MONTADE Vincent Pour obtenir le grade de DOCTEUR SPECIALITE : Palynologie, Végétation et Climat VEGETATION ET CLIMAT DE LA PATAGONIE CHILIENNE AU COURS DES DERNIERS 20 000 ANS D’APRES LES DONNEES POLLINIQUES MARINES Soutenue le 12 Décembre 2011 Composition du jury : Marie Pierre Ledru Rapporteur Frank Lamy Rapporteur Florence Sylvestre Examinateur Pierre Henri Blard Examinateur Xavier Quidelleur Président du jury Nathalie Combourieu Nebout Directeur de thèse Sandor Mulsow Co-directeur de thèse 1 2 Remerciement Remerciement Cela fait maintenant un peu plus de 4 années que j‘arpente les couloirs du LSCE, et je tiens à remercier toutes les personnes que j‘y ai rencontrées et qui m‘ont aidé lors de ce parcours.
    [Show full text]
  • Plant Geography of Chile PLANT and VEGETATION
    Plant Geography of Chile PLANT AND VEGETATION Volume 5 Series Editor: M.J.A. Werger For further volumes: http://www.springer.com/series/7549 Plant Geography of Chile by Andrés Moreira-Muñoz Pontificia Universidad Católica de Chile, Santiago, Chile 123 Dr. Andrés Moreira-Muñoz Pontificia Universidad Católica de Chile Instituto de Geografia Av. Vicuña Mackenna 4860, Santiago Chile [email protected] ISSN 1875-1318 e-ISSN 1875-1326 ISBN 978-90-481-8747-8 e-ISBN 978-90-481-8748-5 DOI 10.1007/978-90-481-8748-5 Springer Dordrecht Heidelberg London New York © Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. ◦ ◦ Cover illustration: High-Andean vegetation at Laguna Miscanti (23 43 S, 67 47 W, 4350 m asl) Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Carlos Reiche (1860–1929) In Memoriam Foreword It is not just the brilliant and dramatic scenery that makes Chile such an attractive part of the world. No, that country has so very much more! And certainly it has a rich and beautiful flora. Chile’s plant world is strongly diversified and shows inter- esting geographical and evolutionary patterns. This is due to several factors: The geographical position of the country on the edge of a continental plate and stretch- ing along an extremely long latitudinal gradient from the tropics to the cold, barren rocks of Cape Horn, opposite Antarctica; the strong differences in altitude from sea level to the icy peaks of the Andes; the inclusion of distant islands in the country’s territory; the long geological and evolutionary history of the biota; and the mixture of tropical and temperate floras.
    [Show full text]
  • Podocarp Evolution: a Molecular Phylogenetic Perspective Edward Biffin, John G
    1 Podocarp Evolution: A Molecular Phylogenetic Perspective Edward Biffin, John G. Conran, and Andrew J. Lowe ABSTRACT. Phylogenetic reconstructions of the relationships among extant taxa can be used to infer the nature of the processes that have generated contemporary patterns of biotic diversity. In this study, we present a molecular phylogenetic hypothesis for the conifer family Podocarpaceae based upon three DNA fragments that have been sampled for approximately 90 taxa. We use Bayesian relaxed- clock methods and four fossil con- straints to estimate divergence times among the lineages of Podocarpaceae. Our dating analyses suggest that although the family is old (Triassic–Jurassic), the extant species groups are of recent evolutionary origin (mid- to late Cenozoic), a pattern that could reflect a temporal increase in the rate lineage accumulation or, alternatively, a high and constant rate of extinction. Our data do not support the hypothesis that Podocarpaceae have diversified at a homogeneous rate, instead providing strong evidence for a three- to eightfold increase in diversification associated with the Podocarpoid– Dacrydioid clade, which radiated in the mid- to late Cretaceous to the earliest Cenozoic, around 60–94 mya. This group includes a predominance of taxa that develop broad leaves and/or leaf- like shoots and are distributed predominantly throughout the tropics. Tropical podocarps with broad leaves may have experienced reduced extinction and/or increased speciation coincident with the radiation of the angiosperms, the expansion of megathermal forests, and relatively stable tropical climates that were widespread through the Tertiary. Edward Biffin, John G. Conran, and Andrew J. INTRODUCTION Lowe, Australian Centre for Evolutionary Biol- ogy and Biodiversity, School of Earth and Envi- Patterns of species diversity reflect the balance of speciation and extinction ronmental Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.
    [Show full text]
  • Hechenleitner V..Pdf
    Documento respaldado por la Sociedad de Botánica de Chile La cita bibliográfica correcta de este documento es: Hechenleitner V., P., M. F. Gardner, P. I. Thomas, C. Echeverría, B. Escobar, P. Brownless y C. Martínez A. 2005. Plantas Amenazadas del Centro-Sur de Chile. Distribución, Conservación y Propagación. Primera Edición. Universidad Austral de Chile y Real Jardín Botánico de Edimburgo. 188 pp. Edición: Paulina Hechenleitner Vega Diseño gráfico y Diagramación: Verónica Ramírez M. Fotografías Interiores: Créditos en cada imagen. Impresión: Trama Impresores S.A. Portada: Berberidopsis corallina (Debbie White/RBGE) Contraportada: Berberis negeriana (Paulina Hechenleitner V.), Myrcianthes coquimbensis (Peter Baxter), Jubaea chilensis (Carlos Zamorano E.), Puya venusta (Martin F. Gardner) y Passiflora pinnatistipula (Martin F. Gardner) Registro de Propiedad Intelectual: Nº 148665 ISBN: 1872291945 Primera Edición 2005 Se imprimieron 1.000 ejemplares. Impreso en Chile / Printed in Chile Para obtener copia o Archivo PDF de este documento dirigirse a: Facultad de Ciencias Forestales Universidad Austral de Chile Paulina Hechenleitner V. Fono: 56-63-221228 E-mail: [email protected], [email protected] Obra financiada por Iniciativa Darwin y aportes de la Universidad Austral de Chile, Núcleo Científico FORECOS y Forestal Mininco S.A. Contenido Dedicatoria 7 Presentación (Dr Oscar Balocchi L., UACh) 9 Prólogo 1 (Dr Antonio Lara, UACh) 11 Prólogo 2 (Dr David Rae, RBGE) 12 Colaboradores 13 Agradecimientos 15 Introducción 17 Introduction 19 Conservación 21 Listado de especies 41 Propagación 135 Bibliografía 150 Glosario 167 Abreviaturas y siglas 172 Anexos 1. Zonas Vegetacionales de Chile 173 2. Tipos Forestales de Chile 174 3. Categorías de la lista Roja de la UICN previas a 1994 175 4.
    [Show full text]
  • Download Royal Botanic Garden Edinburgh Collection Policy for The
    Collection Policy for the Living Collection David Rae (Editor), Peter Baxter, David Knott, David Mitchell, David Paterson and Barry Unwin 3908_Coll_policy.indd 1 21/9/06 3:24:25 pm 2 | ROYAL BOTANIC GARDEN EDINBURGH COLLECTION POLICY FOR THE LIVING COLLECTION Contents Regius Keeper’s Foreword 3 Section IV Collection types 22 Introduction 22 Introduction 3 Conservation collections 22 PlantNetwork Target 8 project 24 Purpose, aims and objectives 3 Scottish Plant Project 25 International Conifer Conservation Programme 25 Section I National and international context, National Council for the Conservation of Plants stakeholders and user groups 4 and Gardens (NCCPG) 25 Off-site collections 26 National and international context 4 Convention on Biological Diversity 4 Heritage or historic plants, plant collections or Global Strategy for Plant Conservation 4 landscape features 27 Plant Diversity Challenge 5 British native plants International Agenda for Botanic Gardens in Scottish Plants Project (formerly known as the Conservation 6 Scottish Rare Plants Project) 29 Action Plan for the Botanic gardens in the European Union & Planta Europa 6 Section V Acquisition and transfer 30 Convention on Trade in Endangered species of Introduction 30 Wild Flora and Fauna 8 Fieldwork 30 Global warming/outside influences 8 Index Seminum 31 Stakeholders and user groups 9 Other seed and plant catalogues 31 Research and conservation 9 Acquisition 31 Education and teaching 10 Repatriation 32 Interpretation 10 Policy for the short to medium term storage Phenology 10
    [Show full text]
  • A Chronology of Middle Missouri Plains Village Sites
    Smithsonian Institution Scholarly Press smithsonian contributions to botany • number 95 Smithsonian Institution Scholarly Press A EcologyChronology of the of MiddlePodocarpaceae Missouri Plainsin TropicalVillage Forests Sites By CraigEdited M. Johnsonby Benjamin L. Turner and withLucas contributions A. Cernusak by Stanley A. Ahler, Herbert Haas, and Georges Bonani SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines.
    [Show full text]
  • Male Cone Evolution in Conifers: Not All That Simple
    American Journal of Plant Sciences, 2014, 5, 2842-2857 Published Online August 2014 in SciRes. http://www.scirp.org/journal/ajps http://dx.doi.org/10.4236/ajps.2014.518300 Male Cone Evolution in Conifers: Not All That Simple Christian Schulz1, Kristina Vanessa Klaus1, Patrick Knopf2, Marcus Mundry3, Veit Dörken4, Thomas Stützel1 1Evolution and Biodiversity of Plants, Ruhr-Universität Bochum, Bochum, Germany 2Botanischer Garten Rombergpark, Dortmund, Germany 3Heisenberg Gymnasium, Dortmund, Germany 4Fachbereich Biologie M 613, Universität Konstanz, Konstanz, Germany Email: [email protected] Received 10 June 2014; revised 24 July 2014; accepted 26 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Despite the simple structure of male conifer cones, there is an enormous variability in cone prop- erties observed upon more careful examination. The diversity ranges from simple cones to com- pound cones. Moreover, cones can be distinguished according to different spatial distributions on the tree. Simple cones are distributed either as solitary cones or as fascicular or clustered aggre- gations, while compound cones only exhibit fascicular or clustered aggregations. Here, we demon- strate that these different spatial distribution patterns correlate with distinct leaf types and vari- able branching frequencies. Furthermore, we provide new insights into the evolution of the spo- rangiophore, particularly in Taxaceae. Two notably important and fast-evolving characters of conifers are the number of sporangia per sporangiophore and the number of sporangiophores per cone. We demonstrate, across many species and types of cones, how these characters are able to adjust according to the optimal amount of pollen.
    [Show full text]
  • Male Cone Evolution in Conifers: Not All That Simple
    Erschienen in: American Journal of Plant Sciences ; 5 (2016), 18. - S. 2842-2857 http://dx.doi.org/10.4236/ajps.2014.518300 American Journal of Plant Sciences, 2014, 5, 2842-2857 Published Online August 2014 in SciRes. http://www.scirp.org/journal/ajps http://dx.doi.org/10.4236/ajps.2014.518300 Male Cone Evolution in Conifers: Not All That Simple Christian Schulz1, Kristina Vanessa Klaus1, Patrick Knopf2, Marcus Mundry3, Veit Dörken4, Thomas Stützel1 1Evolution and Biodiversity of Plants, Ruhr-Universität Bochum, Bochum, Germany 2Botanischer Garten Rombergpark, Dortmund, Germany 3Heisenberg Gymnasium, Dortmund, Germany 4Fachbereich Biologie M 613, Universität Konstanz, Konstanz, Germany Email: [email protected] Received 10 June 2014; revised 24 July 2014; accepted 26 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Despite the simple structure of male conifer cones, there is an enormous variability in cone prop- erties observed upon more careful examination. The diversity ranges from simple cones to com- pound cones. Moreover, cones can be distinguished according to different spatial distributions on the tree. Simple cones are distributed either as solitary cones or as fascicular or clustered aggre- gations, while compound cones only exhibit fascicular or clustered aggregations. Here, we demon- strate that these different spatial distribution patterns correlate with distinct leaf types and vari- able branching frequencies. Furthermore, we provide new insights into the evolution of the spo- rangiophore, particularly in Taxaceae. Two notably important and fast-evolving characters of conifers are the number of sporangia per sporangiophore and the number of sporangiophores per cone.
    [Show full text]
  • Associative Nitrogen Fixation in Nodules of The
    www.nature.com/scientificreports OPEN Associative nitrogen fixation in nodules of the conifer Lepidothamnus fonkii Received: 04 July 2016 Accepted: 17 November 2016 (Podocarpaceae) inhabiting Published: 15 December 2016 ombrotrophic bogs in southern Patagonia Werner Borken1, Marcus A. Horn2,3, Stefan Geimer4, Nelson A. Bahamonde Aguilar5,7 & Klaus-Holger Knorr6 Biological N2 fixation (BNF) in the rhizosphere ofPodocarpaceae is currently attributed to unspecific diazotrophs with negligible impact on N acquisition. Here, we report specific and high associative BNF in dead cells of root nodules of Lepidothamnus fonkii distributed in ombrotrophic peatlands of 15 Patagonia. BNF of nodulated roots, intact plants of L. fonkii and rhizospheric peat was assessed by N2 and acetylene reduction. Diazotrophs were identified by electron microscopy, analysis of nitrogenase encoding genes (nifH) and transcripts, and 16S rRNA. Nitrogenase encoding nifH transcripts from root nodules point to Beijerinckiaceae (Rhizobiales), known as free-living diazotrophs. Electron microscopy and 16S rRNA analysis likewise identified activeBeijerinckiaceae in outer dead cells of root nodules. NifH transcripts from the rhizopshere peat revealed diverse active diazotrophs including Beijerinckiaceae. Both methods revealed high activity of nitrogenase rates in cut roots of L. fonkii −1 −1 15 −1 −1 (2.5 μmol N g d.w. d based on N2 assay; 2.4 μmol C2H4 g d.w. d based on acetylene reduction assay). The data suggest that (i) nodules recruit diazotrophic Beijerinckiaceae from peat, (ii) dead nodule cells provide an exclusive habitat for Beijerinckiaceae, and (iii) BNF in L. fonkii is one potent pathway to overcome N deficiency in ombrotrophic peatlands of Patagonia. Biological dinitrogen (N2) fixation (BNF) by plant-associated prokaryotes is a widespread and effective process of 1 N acquisition .
    [Show full text]
  • Physiological Ecology of Male and Female Trees of Austrocedrus Chilensis Along a Moisture Gradient in Patagonia Argentina
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2005 Physiological ecology of male and female trees of Austrocedrus chilensis along a moisture gradient in Patagonia Argentina Cecilia IneÌ?s Nuñez The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Nuñez, Cecilia IneÌ?s, "Physiological ecology of male and female trees of Austrocedrus chilensis along a moisture gradient in Patagonia Argentina" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 9530. https://scholarworks.umt.edu/etd/9530 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature** Yes, I grant permission No, I do not grant permission Author's Signature: Date: Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • New Phytologist Supporting Information Methods S1 & S2
    New Phytologist Supporting Information Methods S1 & S2 Article title: Legumes versus rhizobia: a model for ongoing conflict in symbiosis Authors: Joel L. Sachs, Kenjiro W. Quides and Camille E. Wendlandt Article acceptance date: 4 April 2018 Methods S1: Methods and references used for Figure 2 Overview of the acetylene reduction assay The acetylene reduction assay (ARA) was popularized by Hardy et al. (1968) and has become a mainstay of research into nitrogen fixation rates in root- and stem-nodulating plants. Briefly, the assay harnesses the natural ability of nitrogenase to reduce a variety of substrates, which includes protons (to H2), dinitrogen (to ammonia), and acetylene (to ethylene). In atmospheres of up to 10% acetylene, nitrogenase preferentially reduces acetylene over other available substrates, and nitrogen fixation rates can be approximated from ARA-determined nitrogenase activity by dividing the latter by some empirically-determined constant (usually 3-4). Nitrogenase activity is not equal to nitrogen fixation rate because, under normal physiological conditions, some nitrogenase activity is used to produce H2. Parsons et al. (1992) assumed an nitrogenase activity-to-nitrogen fixation ratio of 4:1 and calculated the ARA value that would be required to sustain the known growth rate of a Sesbania rostrata seedling of known nitrogen -1 -1 content; they found their ARA prediction (293 µmol C2H4 g h ) closely matched their empirical -1 -1 ARA measurements (270-280 µmol C2H4 g h ), supporting the utility of this assay for approximating nitrogen fixation rates. The acetylene reduction assay has been critiqued because common assay conditions increase the resistance of the nodular oxygen diffusion barrier, which artificially reduces nitrogenase activity (Minchin et al., 1983, 1986).
    [Show full text]
  • Prumnopitys Andina, the Chilean Plum Yew, Is a Species Introduced to Cultivation in The
    photograph © Martin Gardner Prumnopitys andina, the Chilean plum yew, is a species introduced to cultivation in the mid- nineteenth century but still rarely found and little known. Above is a typical old-growth tree in the Alto Biobío in Chile, its natural habitat where its survival is endangered (see pages 24 to 45). Tree of the Year: Prumnopitys andina MARTIN GARDNER, TOM CHRISTIAN and DAN LUSCOMBE Introduction Surprisingly perhaps, the dramatic and varied landscapes of Chile are home to only nine conifer species. Seven of these also occur across the Andes into neighbouring Argentina where they inhabit a narrow band of temperate rainforest. All but the shrubby Lepidothamnus fonkii have been successfully cultivated out of doors in temperate parts of the world, with Araucaria araucana and Fitzroya cupressoides being the most notable. Cultivated trees of Prumnopitys andina from the historical introductions are mostly confined to specialist collections and not surprisingly, for these we have no provenance data. More recent introductions through the International Conifer Conservation Programme (ICCP) working with Bedgebury National Pinetum, has greatly helped to broaden the genetic base of trees in cultivation. The hope is that this genetic resource can play a meaningful role in the restoration of depleted natural populations if this ever becomes necessary. Prumnopitys is a relatively small genus of only nine species with a distribution around the Pacific Rim including eastern Australia, Costa Rica, New Caledonia, New Zealand, and in South America from Venezuela along the Andes to Bolivia (Farjon, 2010). Southern Chile represents a disjunction 24 (separation) in the distribution of the genus with a gap of some 1,900 km between Prumnopitys exigua in Bolivia and P.
    [Show full text]