SOLID BOOSTERS How Far Have We Come? How Far Can We Go? by J

Total Page:16

File Type:pdf, Size:1020Kb

SOLID BOOSTERS How Far Have We Come? How Far Can We Go? by J View down through the center of the world's largest solid rocket shows rubberlike propellant charge framing two Aerojet- I General engineers as they stand between the center pair of the motor's segments. Rocket develops half million pounds thrust. The big solid-rocket program, a USAF responsibility, is now going to get its chance . SOLID BOOSTERS How Far Have We Come? How Far Can We Go? By J. S. Butz, Jr. TECHNICAL EDITOR, AIR FORCE MAGAZINE . S OLID rockets have now attained a really solid Today, the situation has been completely reversed. position in our space planning. The big solid rocket is going to get its chance. Devel- A year ago, few people familiar with the US opment of these boosters has been made an Air Force space effort would have bet much money that solid responsibility, and about $60 million has been pro- propellants would ever be used as "superboosters," de- vided to begin the job in earnest during this fiscal veloping upward of fifteen million pounds of thrust. year. All signs point toward a maximum-effort devel- By last fall, in fact, the large solid-rocket program opment program that will be pushed as fast as tech- apparently was stuck for good on the treadmill of end- nology will allow. less study and research. Several factors contributed to this sudden change Since Sputnik I opened the space age, the nation's of fortune. Yuri Gagarin's orbital flight in April—in solid-rocket experts had contended that multimil- which the Red flyer became history's first spaceman— lion-pound-thrust solid-propellant boosters would be certainly was instrumental. It changed the entire cheaper, more reliable, and ready sooner than large course of the US space program by overcoming the liquid-fuel boosters. These contentions had fallen on go-slow philosophy of President Kennedy's scientific deaf ears, however. Large solids remained in the "re- advisers. Strong elements in the Air Force had pushed search" stage. No plan existed to put them into devel- for development of large, solid-fuel boosters. But one opment. (Continued on following page) AIR FORCE Magazine • October 1961 33 SOLID BOOSTERS CONTINUED Probably Already Fired —Will Fire Under Study - 1 Before 1962 _ci 120 \ I II 110 ."‘E' 100 0 90 0 8: =2 80 _ci -01 0 '4; ru 70 0 0- in 60 50 172 40 C ai 30 20 10 A, IL UTC GCR UTC AGC AGC AGC AGC UTC Saturn Nova P-1 $S-B TW-1 FW-1 FW-2 P-2 Large motors similar to those oil the right above are the goal of the solid-rocket booster program. The biggest motor flight tested to date (extreme left) and the USAF - NASA series of experimental segmented motors are compared in size in this scale draw ing. In clusters of eight or more the Nova motor could serve as a booster for a multistage moon rocket. In smaller clusters Saturn motor, second from right, could replace the liquid-fuel Saturn booster, which is now in development. factor undoubtedly contributed more than any other ever, at budget time the paper proposals for solid-fuel to the rise of solid rockets. This was the fight that boosters have always been pitted against established solid-propellant manufacturers put up against the projects for large liquid-fuel systems such as the research" status they had been given by the National Saturn booster and the 1.5 million-pound-thrust F-1 Aeronautics and Space Administration, which was in engine. These have been in the works for several charge of all booster development until last May. years. These projects soaked up all of the available The solid-propellant companies carried their argu- booster-development money in the first three years of ments to the Congress and to the public in every man- the space age when urgency, parallel programs, and ner available to them. Company officials made in- technical insurance were not in vogue. Small sums of numerable speeches, appeared on radio and TV, and research money were then spread around to keep wrote or assisted with articles for mass-circulation promising ideas going for possible development in magazines. They clearly regarded publicity and public the future. education their main job in the fall of 1960 and early The solid booster was clearly lodged in the research months of 1961. As a result, Congress probably is as stage last fall. In the Eisenhower Administration's FY thoroughly briefed on the arguments for solid-pro- 1962 budget, $3 million was allotted for NASA to study pellant rockets as on any technical subject. Large large, solid-fuel rockets. Liquid-fuel rocket programs numbers of congressmen and senators on both sides on the other hand received more than $65 million. of the aisle are convinced that solid boosters offer a Congressional testimony showed that most NASA possible means of getting ahead of the Soviets in officials and liquid-propellant rocket experts from in- booster power. dustry believed that time was against the large solid In principle, no overwhelming technical opposition booster. The argument, in essence, was that the solid has been registered against large solids, even by the booster would eventually work but that it would take partisan supporters of liquid-fuel rockets. How- many years of research and development to bring it AIR FORCE Magazine • October 1961 to a usable state. According to this theory, the solid propellant in a solid rocket is of more interest than the booster would follow the liquid-fuel rocket booster thrust it produces. The weight of propellant charges into operational space use, just as the solid-fuel ICBM had been increased about nine times within seven followed the liquid. years, from the neighborhood of 5,000 pounds to about The change in Administrations last January brought 45,000 pounds. Solid-rocket engineers believed that no change in the solid-fuel booster situation. As Presi- the successful tests with 45,000-pound engines proved dent Kennedy's advisers reviewed the space program, that it was possible to go directly to single motors NASA asked for an additional $5 million in solid-rocket holding more than 700,000 pounds of propellant. research money, but this was refused and the appropri- • Most of the technical know-how needed to build ations request remained at $3 million. large solid rockets had been made available in the Intense congressional pressure in the wake of the Minuteman and Polaris programs. These two military first Soviet orbital flight succeeded in reversing the rockets have done more than anything else to advance picture. The solid-rocket booster now has the status the solid-rocket state of the art. When the Minuteman of a parallel development to the liquid-fuel booster and Polaris entered development, no one was abso- program. It is a backup for the ten-million-pound- lutely certain that they could be built. Their perform- thrust-plus, liquid-fuel Nova booster called for in the ance specifications called for propellant efficiencies Kennedy Administration's moon program. It is prob- and structural excellence that were not possible at the ably also the main contender for the military space time. Together they have caused the creation of a new booster role. solid-rocket technology. They have made it possible The hard sell has brought the solid rocket equal for the solid-rocket superbooster almost to equal the status, so to speak, but it has also given wide pub- over-all performance of a similar type liquid booster licity to a number of ambitious claims and predictions. using kerosene and liquid-oxygen propellants. The If they can be realized as soon as the solid-rocket in- performance advantage, but not the cost advantage, dustry predicts, then the US space program will would go back to liquids if liquid hydrogen and liquid receive an almost miraculous speedup. oxygen were used as first-stage propellants as now These predictions include: being considered. • Demonstration of the reliability of a 3.5 million- There is one major developmental unknown. It was pound-thrust booster, composed of a cluster of seven not solved in the Minuteman and Polaris programs. motors, within eighteen months, and its first flight test This is the mechanism for controlling the vehicle by in two years. moving the thrust vector. Many engineers believe that • Flight test of a first-stage booster of twenty-one gimballing nozzles will not be efficient on large motors. million pounds' total thrust, within thirty-seven to They point to small-scale experiments that show a thirty-nine months. With the program pushed to the fluid injected into the nozzle will cause the flow to maximum, the first flight, it is said, could take place cant. Others doubt the effectiveness of this method. within two years. These are questions that probably can be answered • Payload of the largest solid booster, when com- early in a development program. bined with the proper upper stages, to be two million • Clustering of large solid rockets is believed to be pounds in a 300-mile orbit, or about 600,000 pounds feasible on the basis of experience with the X-17 re- to the moon. search vehicle, the Nike-Hercules booster, and the The optimism displayed by all solid-rocket manu- Little Joe test vehicle used in the Mercury program. facturers was based primarily on four facts prior to Obviously the people in charge at NASA and all of May of this year. They were: the authorities in the rocket industry did not agree • Almost perfect reliability. Thiokol Chemical with these estimates of the state of the art in solid- Corp., as a typical example, could boast that their rocket technology.
Recommended publications
  • Vulcan Centaur
    VULCAN CENTAUR The Vulcan Centaur rocket design leverages the flight-proven success of the Delta IV and Atlas V launch vehicles while introducing new technologies and innovative features to ensure a reliable and aordable space launch service. Vulcan Centaur will service a diverse range of markets including 225 ft commercial, civil, science, cargo and national security space customers. 1 The spacecraft is encapsulated in a 5.4-m- (17.7-ft-) diameter payload fairing (PLF), a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates the spacecraft. The payload attach fitting (PAF) is a similar sandwich composite structure creating the mating interface from spacecraft to second stage. The PLF separates using a debris-free horizontal and vertical separation system with 2 200 ft spring packs and frangible joint assembly. The payload fairing is available in the 15.5-m (51-ft) standard and 21.3-m (70-ft) 1 long configurations. The Centaur upper stage is 5.4 m (17.7 ft) in diameter and 3 11.7 m (38.5 ft) long with a 120,000-lb propellant capacity. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle, with two RL10C 4 engines. The Vulcan Centaur Heavy vehicle, flies the upgraded 2 Centaur using RL10CX engines with nozzle extensions. The 5 175 ft cryogenic tanks are insulated with spray-on foam insulation (SOFI) to manage boil o of cryogens during flight. An aft equipment shelf provides the structural mountings for vehicle electronics.
    [Show full text]
  • Rocket Nozzles: 75 Years of Research and Development
    Sådhanå Ó (2021) 46:76 Indian Academy of Sciences https://doi.org/10.1007/s12046-021-01584-6Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) Rocket nozzles: 75 years of research and development SHIVANG KHARE1 and UJJWAL K SAHA2,* 1 Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway 2 Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India e-mail: [email protected]; [email protected] MS received 28 August 2020; revised 20 December 2020; accepted 28 January 2021 Abstract. The nozzle forms a large segment of the rocket engine structure, and as a whole, the performance of a rocket largely depends upon its aerodynamic design. The principal parameters in this context are the shape of the nozzle contour and the nozzle area expansion ratio. A careful shaping of the nozzle contour can lead to a high gain in its performance. As a consequence of intensive research, the design and the shape of rocket nozzles have undergone a series of development over the last several decades. The notable among them are conical, bell, plug, expansion-deflection and dual bell nozzles, besides the recently developed multi nozzle grid. However, to the best of authors’ knowledge, no article has reviewed the entire group of nozzles in a systematic and comprehensive manner. This paper aims to review and bring all such development in one single frame. The article mainly focuses on the aerodynamic aspects of all the rocket nozzles developed till date and summarizes the major findings covering their design, development, utilization, benefits and limitations.
    [Show full text]
  • Status of the Space Shuttle Solid Rocket Booster
    The Space Congress® Proceedings 1980 (17th) A New Era In Technology Apr 1st, 8:00 AM Status of The Space Shuttle Solid Rocket Booster William P. Horton Solid Rocket Booster Engineering Office, George C. Marshall Space Flight Center, Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Horton, William P., "Status of The Space Shuttle Solid Rocket Booster" (1980). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1980-17th/session-1/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATUS OF THE SPACE SHUTTLE SOLID ROCKET BOOSTER William P. Horton, Chief Engineer Solid Rocket Booster Engineering Office George C. Marshall Space Flight Center, AL 35812 ABSTRACT discuss retrieval and refurbishment plans for Booster reuse, and will address Booster status Two Solid Rocket Boosters provide the primary for multimission use. first stage thrust for the Space Shuttle. These Boosters, the largest and most powerful solid rocket vehicles to meet established man- BOOSTER CONFIGURATION rated design criteria, are unique in that they are also designed to be recovered, refurbished, It is appropriate to review the Booster config­ and reused. uration before describing the mission profile. The Booster is 150 feet long and is 148 inches The first SRB f s have been stacked on the in diameter (Figure 1), The inert weight Mobile Launch Platform at the Kennedy Space is 186,000 pounds and the propellant weight is Center and are ready to be mated with the approximately 1.1 million pounds for each External Tank and Orbiter in preparation for Booster.
    [Show full text]
  • Atlas V Cutaway Poster
    ATLAS V Since 2002, Atlas V rockets have delivered vital national security, science and exploration, and commercial missions for customers across the globe including the U.S. Air Force, the National Reconnaissance Oice and NASA. 225 ft The spacecraft is encapsulated in either a 5-m (17.8-ft) or a 4-m (13.8-ft) diameter payload fairing (PLF). The 4-m-diameter PLF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The Atlas V 400 series oers three payload fairing options: the large (LPF, shown at left), the extended (EPF) and the extra extended (XPF). The 5-m PLF is a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates both the Centaur upper stage and the spacecraft, which separates using a debris-free pyrotechnic actuating 200 ft system. Payload clearance and vehicle structural stability are enhanced by the all-aluminum forward load reactor (FLR), which centers the PLF around the Centaur upper stage and shares payload shear loading. The Atlas V 500 series oers 1 three payload fairing options: the short (shown at left), medium 18 and long. 1 1 The Centaur upper stage is 3.1 m (10 ft) in diameter and 12.7 m (41.6 ft) long. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle. It uses a single RL10 engine producing 99.2 kN (22,300 lbf) of thrust.
    [Show full text]
  • Abstract US Patent References
    Architecture for Reusable Responsive Exploration Systems: ARES - Platform and Reusable Responsive Architecture for Innovative Space Exploration: PRAISE (Part 1) PATENT PENDING Abstract A comprehensive Modular Reusable Responsive Space Exploration Platform (Architecture) composed of multiple modular reusable elements such that the assemblies can be flexibly configured into systems for low earth orbits launches and for long-range exploration such as orbits to moon, Lagrange points and others. This platform & architecture is named as Architecture for Reusable Responsive Exploration System (acronym ARES) / Platform and Reusable Responsive Architecture for Innovative Space Exploration (acronym PRAISE), in short ARES/PRAISE or simply ARES. It is also known as Alpha Spaces Architecture and Platform (acronym ASAP), in short as “αPlatform” or “αArchitecture”, or “αAres”. As an example, the configuration involves reusable lightweight wing, core stage, (optional booster stages) combination of expendable upper stage and reusable crew capsule. Further, the expendable upper stage can be re-used to serve as in-orbit fuel depots and for other innovative uses. This is first part of the multi part patent application. Inventor: Atreya, Dinesh S. US Patent References US Patent 6158693 - Recoverable booster stage and recovery method US Patent 4878637 - Modular space station US Patent 6726154 - Reusable space access launch vehicle system US Patent 6113032 - Delivering liquid propellant in a reusable booster stage US Patent 4557444 - Aerospace vehicle US Patent 4880187 - Multipurpose modular spacecraft US Patent 4452412 - Space shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank US Patent 4802639 - Horizontal-takeoff transatmospheric launch system US Patent 4884770 - Earth-to-orbit vehicle providing a reusable orbital stage US Patent 4265416 - Orbiter/launch system U.S.
    [Show full text]
  • Evolved Expendable Launch Operations at Cape Canaveral, 2002-2009
    EVOLVED EXPENDABLE LAUNCH OPERATIONS AT CAPE CANAVERAL 2002 – 2009 by Mark C. Cleary 45th SPACE WING History Office PREFACE This study addresses ATLAS V and DELTA IV Evolved Expendable Launch Vehicle (EELV) operations at Cape Canaveral, Florida. It features all the EELV missions launched from the Cape through the end of Calendar Year (CY) 2009. In addition, the first chapter provides an overview of the EELV effort in the 1990s, summaries of EELV contracts and requests for facilities at Cape Canaveral, deactivation and/or reconstruction of launch complexes 37 and 41 to support EELV operations, typical EELV flight profiles, and military supervision of EELV space operations. The lion’s share of this work highlights EELV launch campaigns and the outcome of each flight through the end of 2009. To avoid confusion, ATLAS V missions are presented in Chapter II, and DELTA IV missions appear in Chapter III. Furthermore, missions are placed in three categories within each chapter: 1) commercial, 2) civilian agency, and 3) military space operations. All EELV customers employ commercial launch contractors to put their respective payloads into orbit. Consequently, the type of agency sponsoring a payload (the Air Force, NASA, NOAA or a commercial satellite company) determines where its mission summary is placed. Range officials mark all launch times in Greenwich Mean Time, as indicated by a “Z” at various points in the narrative. Unfortunately, the convention creates a one-day discrepancy between the local date reported by the media and the “Z” time’s date whenever the launch occurs late at night, but before midnight. (This proved true for seven of the military ATLAS V and DELTA IV missions presented here.) In any event, competent authorities have reviewed all the material presented in this study, and it is releasable to the general public.
    [Show full text]
  • Internal Aerodynamics in Solid Rocket Propulsion (L’Aérodynamique Interne De La Propulsion Par Moteurs-Fusées À Propergols Solides)
    NORTH ATLANTIC TREATY RESEARCH AND TECHNOLOGY ORGANISATION ORGANISATION AC/323(AVT-096)TP/70 www.rta.nato.int RTO EDUCATIONAL NOTES EN-023 AVT-096 Internal Aerodynamics in Solid Rocket Propulsion (L’aérodynamique interne de la propulsion par moteurs-fusées à propergols solides) The material in this publication was assembled to support a RTO/VKI Special Course under the sponsorship of the Applied Vehicle Technology Panel (AVT) and the von Kármán Institute for Fluid Dynamics (VKI) presented on 27-31 May 2002 in Rhode-Saint-Genèse, Belgium. Published January 2004 Distribution and Availability on Back Cover NORTH ATLANTIC TREATY RESEARCH AND TECHNOLOGY ORGANISATION ORGANISATION AC/323(AVT-096)TP/70 www.rta.nato.int RTO EDUCATIONAL NOTES EN-023 AVT-096 Internal Aerodynamics in Solid Rocket Propulsion (L’aérodynamique interne de la propulsion par moteurs-fusées à propergols solides) The material in this publication was assembled to support a RTO/VKI Special Course under the sponsorship of the Applied Vehicle Technology Panel (AVT) and the von Kármán Institute for Fluid Dynamics (VKI) presented on 27-31 May 2002 in Rhode-Saint-Genèse, Belgium. The Research and Technology Organisation (RTO) of NATO RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote co-operative research and information exchange. The objective is to support the development and effective use of national defence research and technology and to meet the military needs of the Alliance, to maintain a technological lead, and to provide advice to NATO and national decision makers. The RTO performs its mission with the support of an extensive network of national experts.
    [Show full text]
  • 2020 Florida Space Day Handout
    2020 Florida Space Day is a milestone event that presents an opportunity to educate and bring awareness to Florida legislators on the significance of the aerospace industry and its impact on Florida’s economy. Florikan Scientific Instruments Scientific Lighting Solutions Zero Gravity Solutions BIOS Lighting Sarasota County Palm Beach County Brevard County Palm Beach County Brevard County The aerospace industry represents billions of dollars Has partnered with Supplies Kennedy Space Builds high-speed camera Has developed a micronutrient Is using NASA LED technology in annual economic impact and employs NASA multiple times to Center, as well as other space systems to detect and map formula, BAM-FX, that increases to create lighting systems for create a more robust and medical companies, with lightning strikes before the nutritional value and yield of unique applications, such as thousands of residents in the state’s 67 counties. polymer coating for its silicon diode sensors capable launches. The technology also crops. Nutrient-rich foods like maximizing plant photosynthesis controlled-release of tracking temperatures has applications in protecting these will be necessary for future and inducing wakefulness in fertilizer and to develop hundreds of degrees wind farms and investigating long-term space missions. humans by outputting only fertilizer to meet the below zero. insurance claims. certain wavelengths of light. needs of plants growing in space. 2020 SPACE DAY PARTNERS ECONOMIC DEVELOPMENT COMMISSION FLORIDA’S SPACE COAST FloridaSpaceDay.com » #FLSpaceDay The Florida Space Day is an organized and united effort to communicate to the Governor, Lt. Governor and Legislators an appreciation of their support to the space industry, educate them on the state wide economic impact of space and to develop and advocate for key initiatives that will enhance the competitiveness and viability of the state of Florida in the space sector.
    [Show full text]
  • Paper Session I-A - Liquid Rocket Boosters for Shuttle
    The Space Congress® Proceedings 1989 (26th) Space - The New Generation Apr 25th, 2:00 PM Paper Session I-A - Liquid Rocket Boosters for Shuttle James E. Hughes Manager, LRB Studies, Marshall Space Flight Center, NASA Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Hughes, James E., "Paper Session I-A - Liquid Rocket Boosters for Shuttle" (1989). The Space Congress® Proceedings. 8. https://commons.erau.edu/space-congress-proceedings/proceedings-1989-26th/april-25-1989/8 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. LIQUID ROCKET BOOSTERS FOR SHUTTLE James E. Hughes, Manager LRB Studies Marshall Space Flight Center, NASA ABSTRACT The Liquid Rocket Booster study was initiated vehicles, and a pressure fed system, once by NASA to define an alternative to the Solid referred to as the "Big Dumb Booster". The Rocket Boosters used on the STS. These prime study contractors, Martin Marietta Cor­ studies have involved MSFC, JSC and KSC poration and General Dynamics Space Sys­ and their contractors. The prime study con­ tems, were assisted considerably by the ef­ tractors, Martin Marietta Corporation and forts of Lockheed Space Operations Co. General Dynamics Space Systems, have (LSOC) at the Kennedy Space Center and identified Liquid Booster configurations which Lockheed Engineering and Sciences Co. would replace the SRB's in the Shuttle stack. (LESC) at Johnson Space Center, as well as wind tunnel testing at MSFC, and other sup­ The Liquid Rocket Booster increases Shuttle port.
    [Show full text]
  • Large Reusable Liquid Rocket Booster
    Determination of the Nose Cone Shape for a Large Reusable Liquid Rocket Booster by ROBERT LAUREN ACKER B.S., Massachusetts Institute of Technology 1987 SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1988 ©Robert L. Acker 1988 The author hereby grants M.I.T. and Hughes Aircraft Company permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author Department of Aeronautics and Astronautics January 12, 1988 Reviewed by C. P. Rubin Hughes Aircraft Company Certified by - rv -- - Prof. Walter M. Hollister Thesis Supervisor, Deprtment of Aeronautics and Astronautics Accepted by , {"' Prof. Harold Y. Wachman Chairman, Department Graduate Committee Department of Aeronautics and Astronautics MASSACHUSETTSINST:7, a OF TECHNOLOGY WHDAWN I FEB 0 4198 M.LT.W LIB-RAiES , J Determination of the Nose Cone Shape for a Large Reusable Liquid Rocket Booster by Robert L. Acker Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics January 15, 1988 Abstract Recently there has been a lot of interest in making reusable space vehicles in an effort to lower launch costs. In addition, the use of liquid propellant in a multistage vehicle provides for the maximum performance. This study examines the forces on the nose cone of the first stage of such a rocket and uses them to determine the best shape for the nose cone. The specific stage looked at is a strap-on booster on a design proposed at Hughes Aircraft Company.
    [Show full text]
  • Hybrid Rocket Propulsion
    CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF TRANSPORTATION Department of Air Transport Bc. Tomáš Cáp HYBRID ROCKET PROPULSION Diploma Thesis 2017 1 2 3 4 Acknowledgements I would like to express my sincere thanks to my thesis advisor, doc. Ing. Jakub Hospodka, PhD., for valuable feedback and support during the process of creation of this thesis. Additionally, I am thankful for moral support extended by my family without which the process of writing this thesis would be significantly more difficult. Čestné prohlášení Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací. Nemám žádný závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon). V Praze dne 29. 5. 2017 ……………………………… Tomáš Cáp 5 Abstrakt Autor: Bc. Tomáš Cáp Název práce: Hybrid Rocket Propulsion Škola: České vysoké učení technické v Praze, Fakulta dopravní Rok obhajoby: 2017 Počet stran: 56 Vedoucí práce: doc. Ing. Jakub Hospodka, PhD. Klíčová slova: hybridní raketový motor, raketový pohon, raketové palivo, komerční lety do vesmíru Cílem této diplomové práce je představení hybridního raketového pohonu coby perspektivní technologie, která do budoucna zřejmě výrazně ovlivní směřování kosmonautiky. Součástí práce je stručný popis konvenčních raketových motorů na tuhá a kapalná paliva a základní popis problematiky hybridních raketových motorů. V druhé části práce jsou zmíněny přibližné náklady na provoz těchto systémů a je provedeno srovnání těchto finančních nákladů v poměru k poskytovanému výkonu. V závěru jsou doporučeny oblasti možných využití vhodné pro hybridní raketové motory vzhledem k současnému stupni jejich technologické vyspělosti.
    [Show full text]
  • Alternatives for Future U.S. Space-Launch Capabilities Pub
    CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE A CBO STUDY OCTOBER 2006 Alternatives for Future U.S. Space-Launch Capabilities Pub. No. 2568 A CBO STUDY Alternatives for Future U.S. Space-Launch Capabilities October 2006 The Congress of the United States O Congressional Budget Office Note Unless otherwise indicated, all years referred to in this study are federal fiscal years, and all dollar amounts are expressed in 2006 dollars of budget authority. Preface Currently available launch vehicles have the capacity to lift payloads into low earth orbit that weigh up to about 25 metric tons, which is the requirement for almost all of the commercial and governmental payloads expected to be launched into orbit over the next 10 to 15 years. However, the launch vehicles needed to support the return of humans to the moon, which has been called for under the Bush Administration’s Vision for Space Exploration, may be required to lift payloads into orbit that weigh in excess of 100 metric tons and, as a result, may constitute a unique demand for launch services. What alternatives might be pursued to develop and procure the type of launch vehicles neces- sary for conducting manned lunar missions, and how much would those alternatives cost? This Congressional Budget Office (CBO) study—prepared at the request of the Ranking Member of the House Budget Committee—examines those questions. The analysis presents six alternative programs for developing launchers and estimates their costs under the assump- tion that manned lunar missions will commence in either 2018 or 2020. In keeping with CBO’s mandate to provide impartial analysis, the study makes no recommendations.
    [Show full text]