2.7 an Introduction to the Periodic Table Periodic Table

Total Page:16

File Type:pdf, Size:1020Kb

2.7 an Introduction to the Periodic Table Periodic Table 2.7 An Introduction to the Periodic Table Periodic Table Dmitri Mendeleev (1834-1907) Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–2 Groups and Periods On the periodic table, • elements are arranged according to similar properties. • groups contain elements with similar properties in vertical columns. • periods are horizontal rows of elements. Copyright © Houghton Mifflin Company. All rights reserved. 2–3 Groups and Periods Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–4 Group Numbers Group Numbers • use the letter A for the representative elements (1A to 8A) and the letter B for the transition elements. • also use numbers 1-18 to the columns from left to right. Copyright © Houghton Mifflin Company. All rights reserved. 2–5 Names of Some Representative Elements Several groups of representative elements are known by common names. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–6 Alkali Metals Group 1A(1), the alkali metals, includes lithium, sodium, and potassium. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–7 Halogens Group 7A(17) the halogens, includes chlorine, bromine, and iodine. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–8 Learning Check Identify the element described by the following. A. Group 7A(17), Period 4 1) Br 2) Cl 3) Mn B. Group 2A(2), Period 3 1) beryllium 2) boron 3) magnesium C. Group 5A(15), Period 2 1) phosphorus 2) arsenic 3) nitrogen Copyright © Houghton Mifflin Company. All rights reserved. 2–9 Solution A. Group 7A (17), Period 4 1) Br B. Group 2A (2), Period 3 3) magnesium C. Group 5A(15), Period 2 3) nitrogen Copyright © Houghton Mifflin Company. All rights reserved. 2–10 Metals, Nonmetals, and Metalloids The heavy zigzag line separates metals and nonmetals. • Metals are located to the left. • Nonmetals are located to the right. • Metalloids are located along the heavy zigzag line between the metals and nonmetals. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–11 Properties of Metals, Nonmetals, and Metalloids Metals • are shiny and ductile. • are good conductors of heat and electricity. Nonmetals • are dull, brittle, and poor conductors. • are good insulators. Metalloids • are better conductors than nonmetals, but not as good as metals. • are used as semiconductors and insulators. Copyright © Houghton Mifflin Company. All rights reserved. 2–12 Comparing a Metal, Metalloid, and Nonmetal Copyright © Houghton Mifflin Company. All rights reserved. 2–13 Learning Check Identify each of the following elements as 1) metal 2) nonmetal 3) metalloid A. sodium ____ B. chlorine ____ C. silicon ____ D. iron ____ E. carbon ____ Copyright © Houghton Mifflin Company. All rights reserved. 2–14 Solution Identify each of the following elements as 1) metal 2) nonmetal 3) metalloid A. sodium 1 metal B. chlorine 2 nonmetal C. silicon 3 metalloid D. iron 1 metal E. carbon 2 nonmetal Copyright © Houghton Mifflin Company. All rights reserved. 2–15 Metals Tend to Lose Electrons Copyright © Houghton Mifflin Company. All rights reserved. 2–16 Nonmetals Tend to Gain Electrons Copyright © Houghton Mifflin Company. All rights reserved. 2–17.
Recommended publications
  • Nutrients: Nitrogen (N), Sulfur (S), Phosphorus (P), Potassium (K)
    Nutrients: Nitrogen (N), Sulfur (S), Phosphorus (P), Potassium (K) Essential for all life, their availability (or lack thereof) controls the distribution of flora and fauna Look into their: Sources Pools (sinks) Fluxes root uptake + microbial uptake leaching solid solution Nutrients must be in a specific form – specie - for use by organisms Nutrient Cycling: N, S, P, K Soil Organic Matter (CHONPS) Minerals Primary Productivity (P, S, K) O Leaves & Roots A Decomposition Heterotrophic respiration B Gas loss SOM/Minerals Microbes leaching of nutrients plant nutrient uptake Nutrients: natural & anthropogenic sources (IN) and outputs (OUT) N2 fertilizers (chemical, manure, sludge) gases and particulates to atmosphere pesticides (fossil fuel combustion (coal/oil); cycles; trees) wet and dry deposition (acid rain, aerosols) harvesting plant tissue/residues root uptake IN OUT SOIL Pools (sinks) (SOM/clays/oxides) Fluxes (transformations) OUT IN ions and molecules in solution (leaching) roots (exudates, biomass) colloidal transport bedrock (1ry/2ry minerals in parent material) erosion runoff The Nitrogen Cycle + The Nitrogen Cycle Denitrification: - - NO3 is the most stable N2 (g) is prevalent in reduction of NO3 chemical form of N in the air of soil pores to reduced forms aerated soil solutions of N (N2) (energy- consuming) Atmospheric N deposition Nitrogen evolution (gases) Fertilizer additions 700 (+5) +5 Oxic - denitrification NO3 (+3) zone - NO2 (+2) (mV) NO (+1) h E N2O Suboxic (0) nitrification N state oxidation N2 236 zone immobilization
    [Show full text]
  • The Periodic Table
    THE PERIODIC TABLE Dr Marius K Mutorwa [email protected] COURSE CONTENT 1. History of the atom 2. Sub-atomic Particles protons, electrons and neutrons 3. Atomic number and Mass number 4. Isotopes and Ions 5. Periodic Table Groups and Periods 6. Properties of metals and non-metals 7. Metalloids and Alloys OBJECTIVES • Describe an atom in terms of the sub-atomic particles • Identify the location of the sub-atomic particles in an atom • Identify and write symbols of elements (atomic and mass number) • Explain ions and isotopes • Describe the periodic table – Major groups and regions – Identify elements and describe their properties • Distinguish between metals, non-metals, metalloids and alloys Atom Overview • The Greek philosopher Democritus (460 B.C. – 370 B.C.) was among the first to suggest the existence of atoms (from the Greek word “atomos”) – He believed that atoms were indivisible and indestructible – His ideas did agree with later scientific theory, but did not explain chemical behavior, and was not based on the scientific method – but just philosophy John Dalton(1766-1844) In 1803, he proposed : 1. All matter is composed of atoms. 2. Atoms cannot be created or destroyed. 3. All the atoms of an element are identical. 4. The atoms of different elements are different. 5. When chemical reactions take place, atoms of different elements join together to form compounds. J.J.Thomson (1856-1940) 1. Proposed the first model of the atom. 2. 1897- Thomson discovered the electron (negatively- charged) – cathode rays 3. Thomson suggested that an atom is a positively- charged sphere with electrons embedded in it.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Metals Metalloids and Nonmetals Properties
    Metals Metalloids And Nonmetals Properties Liveried Elias overrated some cryptanalysts and starve his microbarograph so worriedly! Palpitant or bandy, Spud never ozonizing any sitcoms! Shakable Mic sometimes mobilities any carefulness veer gracefully. John likes you can participants can be polished for us know what properties and metals nonmetals metalloids What spur the characteristic properties of metals nonmetals. Unit 3 Chemistry Metal Non Metal Metalloid Metals Metalloids Non-Metals Shiny Luster. Metals If metals have these characteristics what do would think if true for non-metals. Classifying Metals Non-Metals and Metalloids. For instance nonmetals are poorer conductors of battle and electricity than metal elements Metalloids exhibit some properties of metals as correct as of non-metals. Metals Metalloids and Nonmetals Course Hero. Metals Nonmetals and Metalloids Virginia Department of. Properties of metalloids list Just Hatched. Pin on ScienceDoodads-TPT Products Pinterest. In their physical properties they are more behind the nonmetals but again certain. Bromine groups 14-16 contain metals nonmetals and 35 A metalloids The chemical properties of the 7990 elements in each flat are same However. METALS NONMETALS AND METALLOIDS LESSON PLAN. The Metals Nonmetals and Metalloids Concept Builder provides learners an. Metalloids soil chemistry and prod environment PubMed. Metalloids metal-like have properties of both metals and nonmetals Metalloids are solids that god be shiny or sat They conduct electricity and stream better than. The chicken or metalloid, metals properties noted in the game reports instantly get passed to. Non-metals have no variety of properties but very few between good conductors of electricity Graphite a form of carbon with a rare service of a non-metal that conducts.
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • Largest Mixed Transition Metal/Actinide Cluster: a Bimetallic Mn/Th Complex with A
    Inorg. Chem. 2006, 45, 2364−2366 Largest Mixed Transition Metal/Actinide Cluster: A Bimetallic Mn/Th 18+ Complex with a [Mn10Th6O22(OH)2] Core Abhudaya Mishra, Khalil A. Abboud, and George Christou* Department of Chemistry, UniVersity of Florida, GainesVille, Florida 32611-7200 Received December 6, 2005 A high-nuclearity mixed transition metal/actinide complex has been well-characterized transition metal/actinide complexes, among III - - prepared from the reaction of a Mn 4 complex with Th(NO3)4 in which are the dinuclear metal metal bonded M An orga- ) ) 6a MeCN/MeOH. The complex [Th6Mn10O22(OH)2(O2CPh)16(NO3)2- nometallic complexes (M Fe, Ru and An Th, U) and the family of linear trimetallic M IIUIV (M ) Co, Ni, Cu, (H2O)8] is the largest such complex to date and the first Th/Mn 2 6b species. It is rich in oxide groups, which stabilize all of the metals Zn) complexes containing a hexadentate Schiff base. in the high ThIV and MnIV oxidation levels. Magnetic characterization However, only one of these contains Mn, trinuclear [MnU O L (py) ](L- ) 1,7-diphenyl-1,3,5,7-heptanetetro- establishes that the complex has an S ) 3 ground-state spin value. 2 2 2 4 nato).7 Although Th is used in a wide array of products and processes, the cluster chemistry of Th is poorly developed compared to transition metals: Currently, there - 8a We have had a longstanding interest in the development are metal organic frameworks and organically templated 8b of manganese carboxylate cluster chemistry, mainly because Th complexes known, and the largest molecular Th 9 of its relevance to a variety of areas, including bioinorganic complex is Th6.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Stratospheric Ozone Is Destroyed by Reactions Involving
    20 Questions: 2010 Update Section II: THE OZONE DEPLETION PROCESS What are the chlorine and bromine reactions that destroy Q9 stratospheric ozone? Reactive gases containing chlorine and bromine destroy stratospheric ozone in “catalytic” cycles made up of two or more separate reactions. As a result, a single chlorine or bromine atom can destroy many thousands of ozone molecules before it leaves the stratosphere. In this way, a small amount of reactive chlorine or bromine has a large impact on the ozone layer. A special situation develops in polar regions in the late winter/early spring season where large enhancements in the abun- dance of the most reactive gas, chlorine monoxide, leads to severe ozone depletion. tratospheric ozone is destroyed by reactions involving before it happens to react with another gas, breaking the cata- Sreactive halogen gases, which are produced in the chemi- lytic cycle, and up to tens of thousands of ozone molecules cal conversion of halogen source gases (see Figure Q8-1). The during the total time of its stay in the stratosphere. most reactive of these gases are chlorine monoxide (ClO), bro- Polar Cycles 2 and 3. The abundance of ClO is greatly mine monoxide (BrO), and chlorine and bromine atoms (Cl increased in polar regions during winter as a result of reac- and Br). These gases participate in three principal reaction tions on the surfaces of polar stratospheric clouds (PSCs) (see cycles that destroy ozone. Q8 and Q10). Cycles 2 and 3 (see Figure Q9-2) become the Cycle 1. Ozone destruction Cycle 1 is illustrated in Figure dominant reaction mechanisms for polar ozone loss because of Q9-1.
    [Show full text]
  • Adverse Health Effects of Heavy Metals in Children
    TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children.
    [Show full text]
  • Phosphorus: from the Stars to Land &
    Phosphorus: From the Stars to Land & Sea The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Cummins, Christopher C. “Phosphorus: From the Stars to Land & Sea.” Daedalus 143, no. 4 (October 2014): 9–20. As Published http://dx.doi.org/10.1162/DAED_a_00301 Publisher MIT Press Version Final published version Citable link http://hdl.handle.net/1721.1/92509 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Phosphorus: From the Stars to Land & Sea Christopher C. Cummins Abstract: The chemistry of the element phosphorus offers a window into the diverse ½eld of inorganic chemistry. Fundamental investigations into some simple molecules containing phosphorus reveal much about the rami½cations of this element’s position in the periodic table and that of its neighbors. Addition - ally, there are many phosphorus compounds of commercial importance, and the industry surrounding this element resides at a crucial nexus of natural resource stewardship, technology, and modern agriculture. Questions about our sources of phosphorus and the applications for which we deploy it raise the provocative issue of the human role in the ongoing depletion of phosphorus deposits, as well as the transfer of phos- phorus from the land into the seas. Inorganic chemistry can be de½ned as “the chem- istry of all the elements of the periodic table,”1 but as such, the ½eld is impossibly broad, encompassing everything from organic chemistry to materials sci- ence and enzymology.
    [Show full text]
  • Nitrogen and Phosphorus Fertilization Increases the Uptake of Soil Heavy Metal Pollutants by Plant Community
    Nitrogen and phosphorus fertilization increases the uptake of soil heavy metal pollutants by plant community Guangmei Tang Yunnan University Xiaole Zhang Chuxiong Normal University Lanlan Qi Yunnan Normal University Chenjiao Wang Yunnan Normal University Lei Li Yunnan Normal University Jiahang Guo Yunnan Normal University Xiaolin Dou Research Centre for Eco-Environmental Sciences Chinese Academy of Sciences Meng Lu Yunnan University Jingxin Huang ( [email protected] ) Yunnan University https://orcid.org/0000-0001-5641-2731 Research Keywords: soil heavy metals pollution, phytoremediation, nitrogen and phosphorus fertilizer Posted Date: April 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-413625/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Soil heavy metal pollution is widespread around the world. Heavy metal pollutants are easily absorbed by plants and enriched in food chain, which may harm human health, cause the loss of plant, animal and microbial diversity. Plants can generally absorb soil heavy metal pollutants. Compared with hyperaccumulation plants, non-hyperaccumulator plant communities have many advantages in the remediation of heavy metals pollution in soil. However, the amount of heavy metals absorbed could be less, and the biomass would be reduced under heavy metal pollution. The application of nitrogen (N) and phosphorus (P) is inexpensive and convenient, which can increase the resistance of plants to adversity and promote the growth of plants of heavy metal polluted soils. Methods: We designed a comparative greenhouse experiment with heavy metal contaminated soils, and set up four treatments: CK treatment (soil without fertilizer), N treatment (soil with N addition), P treatment (soil with P addition), and N+P treatment (soil with N and P addition).
    [Show full text]
  • Q7 What Emissions from Human Activities Lead to Ozone Depletion?
    20 Questions: 2010 Update Section II: THE OZONE DEPLETION PROCESS Q7 What emissions from human activities lead to ozone depletion? Certain industrial processes and consumer products result in the emission of ozone-depleting substances (ODSs) to the atmosphere. ODSs are manufactured halogen source gases that are controlled worldwide by the Montreal Protocol. These gases bring chlorine and bromine atoms to the stratosphere, where they destroy ozone in chemical reactions. Important examples are the chlorofluorocarbons (CFCs), once used in almost all refrigeration and air conditioning systems, and the halons, which were used in fire extinguishers. Current ODS abundances in the atmosphere are known directly from air sample measurements. Halogen source gases versus ODSs. Those halogen activities (see Figure Q7-1). Methyl bromide is used primarily source gases emitted by human activities and controlled by as an agricultural and pre-shipping fumigant. the Montreal Protocol are referred to as ODSs within the Mon- Natural sources of chlorine and bromine. There are a treal Protocol, by the media, and in the scientific literature. few halogen source gases present in the stratosphere that have The Montreal Protocol now controls the global production large natural sources. These include methyl chloride (CH3Cl) and consumption of ODSs (see Q15). Halogen source gases and methyl bromide (CH3Br), both of which are emitted by that have only natural sources are not classified as ODSs. The oceanic and terrestrial ecosystems. Natural sources of these contributions of ODSs and natural halogen source gases to two gases contributed about 17% of the chlorine in the strato- chlorine and bromine entering the stratosphere in 2008 are sphere in 2008 and about 30% of the bromine (see Figure Q7-1).
    [Show full text]