NASA Astronauts on Soyuz: Experience and Lessons for the Future

Total Page:16

File Type:pdf, Size:1020Kb

NASA Astronauts on Soyuz: Experience and Lessons for the Future NASA/SP–2010–578 NASA Astronauts on Soyuz: Experience and Lessons for the Future OSMA Assessments Team Johnson Space Center, Houston National Aeronautics and Space Administration Johnson Space Center Houston, TX 77058 August 2010 NASA STI PROGRAM ... IN PROFILE Since its founding, NASA has been dedicated to conferences, symposia, seminars, or other the advancement of aeronautics and space meetings sponsored or cosponsored by science. The NASA Scientific and Technical NASA. Information (STI) Program Office plays a key part in helping NASA maintain this important SPECIAL PUBLICATION. Scientific, technical, role. or historical information from NASA programs, projects, and mission, often The NASA STI Program Office is operated by concerned with subjects having substantial Langley Research Center, the lead center for public interest. NASA’s scientific and technical information. The NASA STI Program Office provides access to the TECHNICAL TRANSLATION. English-language NASA STI Database, the largest collection of translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s The Program Office is also NASA’s institutional mission. mechanism for disseminating the results of its research and development activities. These Specialized services that complement the STI results are published by NASA in the NASA STI Program Office’s diverse offerings include Report Series, which includes the following creating custom thesauri, building customized report types: databases, organizing and publishing research results . even providing videos. TECHNICAL PUBLICATION. Reports of completed research or a major significant For more information about the NASA STI phase of research that present the results Program Office, see the following: of NASA programs and include extensive data or theoretical analysis. Includes Access the NASA STI Program Home Page at compilations of significant scientific and http://www.sti.nasa.gov technical data and information deemed to be of continuing reference value. NASA’s E-mail your question via the internet to counterpart of peer-reviewed formal [email protected] professional papers but has less stringent limitations on manuscript length and extent Fax your question to the NASA Access Help of graphic presentations. Desk at (301) 621-0134 TECHNICAL MEMORANDUM. Scientific and Telephone the NASA Access Help Desk at technical findings that are preliminary or of (301) 621-0390 specialized interest, e.g., quick release reports, working papers, and bibliographies Write to: that contain minimal annotation. Does not NASA Access Help Desk contain extensive analysis. NASA Center for AeroSpace Information 7121 Standard CONTRACTOR REPORT. Scientific and Hanover, MD 21076-1320 technical findings by NASA-sponsored contractors and grantees. CONFERENCE PUBLICATION. Collected papers from scientific and technical NASA/SP–2010–578 NASA Astronauts on Soyuz: Experience and Lessons for the Future OSMA Assessments Team Johnson Space Center, Houston National Aeronautics and Space Administration Johnson Space Center Houston, TX 77058 August 2010 Intended Audience This document is intended for Johnson Space Center (JSC) employees and contractors and other NASA centers and contractor groups participating in the development, use, study, and human-rating of crewed spaceflight systems. Questions about this document should be directed to: Mr. David F. Thelen, NASA, Manager, Safety and Mission Assurance Flight Safety Office, JSC Safety and Mission Assurance Directorate, Email: [email protected] Mr. Bill M. Wood, SAIC, Flight Safety & Integration Manager, Science Applications International Corporation, Email: [email protected] Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 Phone: 301-621-0390 or 703-605-6000 Fax: 301-621-0134 This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/ Foreword The chief of the NASA Headquarters Office of Safety and Mission Assurance (OSMA), Bryan O’Connor, requested that the NASA Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Director, Terrence Wilcutt, convene a team to report on NASA’s experience working with the Russians and lessons on astronaut safety assurance of the Soyuz spacecraft. This report on Soyuz history was conceived as a possible analogy relevant to domestic commercial spaceflight vehicles. On behalf of the JSC S&MA Directorate, David F. Thelen (Manager, Flight Safety Office), and SAIC’s [Science Applications International Corporation] Gary W. Johnson were assigned to lead this task. Gary is the former NASA Chairperson of the Shuttle/Mir Joint Safety Assurance Working Group and the Inter- national Space Station (ISS) Joint American Russian Safety Working Group. He was also a member of the Apollo-Soyuz Test Project. Acknowledgements Contributors to this report included: Richard K. Fullerton of NASA Headquarters OSMA Mission Support Division who also served as the Phase 1 Program co-chair of Working Group 7 Extravehicular Activity Nathan J. Vassberg of NASA JSC who is the ISS Program’s Safety Review Panel chair, and who was a safety, reliability and quality assurance engineer with SAIC supporting the Assured Crew Return Vehicle (ACRV) Project Office John K. Hirasaki, senior engineer, Ares Corporation who currently supports the ISS Program and International Partner Element Integration Office, and who previously supported the ACRV Project Office as an operations integration engineer with Eagle Engineering Michael R. Barratt M.D., flight surgeon and astronaut, who launched on Soyuz TMA-14 on March 26, 2009, to the ISS during Expeditions 19 and 20 Kenny L. Mitchell, NASA Marshall Space Flight Center retiree, who was manager of the Moscow Space Station Program Office, Moscow Technical Liaison Office from July 1994 to July 1996 George K. Gafka of NASA JSC’s S&MA Office, and who is the ISS Chief Safety and Mission Assurance Officer Chrystal L. Hoelscher, information/data administrator and technical editor of SAIC’s Flight Safety Office Dennis W. Pate, senior human factors engineer of SAIC’s Flight Safety Office David M. Salvador, lead systems engineer of SAIC’s Flight Safety Office i Contents 1.0 Executive Summary ............................................................................................................ 1 2.0 Scope ................................................................................................................................... 2 3.0 Apollo-Soyuz Test Project .................................................................................................. 2 3.1 Apollo-Soyuz Test Project organization and management ................................................. 3 3.2 Apollo-Soyuz Test Project mission objective ..................................................................... 3 3.3 Apollo-Soyuz Test Project joint safety assessments ........................................................... 4 3.4 Apollo-Soyuz Test Project unilateral system safety reports ................................................ 5 3.5 Apollo-Soyuz Test Project conclusion ................................................................................ 5 4.0 NASA Assessment of the Soyuz Spacecraft for Space Station Freedom Assured Crew Return Vehicle ............................................................................................. 6 4.1 Soyuz/assured crew return vehicle general lessons learned ................................................ 8 4.2 Soyuz/assured crew return vehicle conclusion .................................................................... 8 5.0 Shuttle/Mir Program ............................................................................................................ 8 5.1 Joint safety policy ................................................................................................................ 9 5.2 Statement of safety policy ................................................................................................... 9 5.3 Guidelines ............................................................................................................................ 9 5.4 Risk assessment of the U.S. astronaut on the Soyuz/Mir .................................................... 9 5.5 Risk assessment for the joint Shuttle/Mir mission .............................................................. 9 5.6 Shuttle/Mir Safety Integration Assessment Criteria ............................................................ 10 5.7 Shuttle/Mir organization ...................................................................................................... 10 5.8 Shuttle/Mir conclusion ........................................................................................................ 10 6.0 Phase 1 International Space Station (NASA/Mir) ............................................................... 10 6.1 Phase 1 Program objectives ................................................................................................. 11 6.2 Phase 1 Program organization ............................................................................................. 11 6.3 Comparison of NASA and Russian quality, reliability, and safety assurance ..................... 11 6.4 Russian process for flight readiness .................................................................................... 12 6.5 Russian
Recommended publications
  • Artemis Sustained Translational Acceleration Limits: Human Tolerance Evidence from Apollo to International Space Station
    NASA/TM-20205008196 Artemis Sustained Translational Acceleration Limits: Human Tolerance Evidence from Apollo to International Space Station James M. Pattarini, NASA Jeffrey T. Somers, KBR Jacquelyn Charvat, KBR Devan Petersen, KBR Nathaniel Newby, KBR Preston C. Greenhalgh, KBR Michael B. Stenger, NASA Stuart M. C. Lee, KBR National Aeronautics and Space Administration Johnson Space Center Houston, Texas 77058 November 2020 NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA or other meetings sponsored or maintain this important role. co-sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Report Server, thus providing one of the largest • TECHNICAL TRANSLATION. collections of aeronautical and space science STI in English-language translations of foreign the world. Results are published in both non-NASA scientific and technical material pertinent to channels and by NASA in the NASA STI Report NASA’s mission. Series, which includes the following report types: Specialized services also include organizing • TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant specialized research announcements and feeds, phase of research that present the results of providing information desk and personal search NASA Programs and include extensive data or support, and enabling data exchange services.
    [Show full text]
  • ORION ORION a to Z APOGEE to Break the Frangible Joints and Separate the Fairings, Three Parachutes
    National Aeronautics and Space Administration ORION www.nasa.gov ORION A to Z APOGEE to break the frangible joints and separate the fairings, three parachutes. The next two parachutes will then VAN ALLEN RADIATION BELTS The term apogee refers to the point in an elliptical exposing the spacecraft to space. LAS - LAUNCH ABORT SYSTEM deploy and open. Once the spacecraft slows to around The Van Allen Belts are belts of plasma trapped by orbit when a spacecraft is farthest from the Earth. Orion’s Launch Abort System (LAS) is designed to 100 mph, the three main parachutes will then deploy the Earth’s magnetic field that shield the surface of During Exploration Flight Test-1, Orion’s flight path will GUPPY propel the crew module away from an emergency on using three pilot parachutes and slow the spacecraft the Earth from much of the radiation in space. During take it to an apogee of 3,600 miles. Just how high is The Super Guppy is a special airplane capable of the launch pad or during initial takeoff, moving the to around 20 mph for splashdown in the Pacific Ocean. Exploration Flight Test-1, Orion will pass within the Van that? A commercial airliner flies about 8 miles above transporting up to 26 tons in its cargo compartment crew away from danger. Orion’s LAS has three new When fully deployed, the canopies of three main Allen Radiation Belts and will spend more time in the the Earth’s surface, so Orion’s flight is 450 times farther measuring 25 feet tall, 25 feet wide, and 111 feet long.
    [Show full text]
  • The Orbital-Hub: Low Cost Platform for Human Spaceflight After ISS
    67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016. Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved. IAC-16, B3,1,9,x32622 The Orbital-Hub: Low Cost Platform for Human Spaceflight after ISS O. Romberga, D. Quantiusa, C. Philpota, S. Jahnkea, W. Seboldta, H. Dittusb, S. Baerwaldeb, H. Schlegelc, M. Goldd, G. Zamkad, R. da Costae, I. Retate, R. Wohlgemuthe, M. Langee a German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany, [email protected] b German Aerospace Center (DLR), Executive Board, Space Research and Technology, Cologne, Germany, c European Space Agency (ESA) Contractor, Johnson Space Center, Houston, USA, d Bigelow Aerospace, Las Vegas / Washington, USA, e Airbus DS, Bremen, Germany Abstract The International Space Station ISS demonstrates long-term international cooperation between many partner governments as well as significant engineering and programmatic achievement mostly as a compromise of budget, politics, administration and technological feasibility. A paradigm shift to use the ISS more as an Earth observation platform and to more innovation and risk acceptance can be observed in the development of new markets by shifting responsibilities to private entities and broadening research disciplines, demanding faster access by users and including new launcher and experiment facilitator companies. A review of worldwide activities shows that all spacefaring nations are developing their individual programmes for the time after ISS. All partners are basically still interested in LEO and human spaceflight as discussed by the ISECG. ISS follow-on activities should comprise clear scientific and technological objectives combined with the long term view on space exploration.
    [Show full text]
  • Paper Session III-A-History of the First NASA Contract with Russia
    1994 (31st) Space Exploration and Utilization The Space Congress® Proceedings for the Good of the World Apr 28th, 2:00 PM - 5:00 PM Paper Session III-A - History of the First NASA Contract with Russia Barbara D. Connelly-Fratzke NASA Headquarters, Office of Space Systems Development Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Connelly-Fratzke, Barbara D., "Paper Session III-A - History of the First NASA Contract with Russia" (1994). The Space Congress® Proceedings. 18. https://commons.erau.edu/space-congress-proceedings/proceedings-1994-31st/april-28-1994/18 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. History of the First NASA Contract with Russia Barbara D. Connelly-Fratzke NASA Headquarters Office of Space Systems Development This story begins after the end of the cold war with the Soviet Union. after perestroika had its initial impact on the economy, at about the time the Russian space firms were beginning to lose government support and fac ing hard times ahead. As part or the FY92 Budget approval, Congress, in its wisdom, directed NASA to investigate the Russian space hardware and determine its feasibility for use in the U.S. space program. At the invitation of the U.S. Embassy in Moscow and the Russian firm NPO Energia, NASA made a reconnaissance visit to NPO Energia to open discussions concerning Russian space hardware.
    [Show full text]
  • Current Status of Hybrid Bearing Damage Detection
    NASA/TM—2004-212882 ARL–TR–3119 U.S. ARMY RESEARCH LABORATORY Current Status of Hybrid Bearing Damage Detection Paula J. Dempsey Glenn Research Center, Cleveland, Ohio Joseph M. Certo U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio Wilfredo Morales Glenn Research Center, Cleveland, Ohio June 2004 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA’s scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA’s institutional • TECHNICAL TRANSLATION. English- mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA’s are published by NASA in the NASA STI Report mission. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office’s diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results .
    [Show full text]
  • View / Download
    www.arianespace.com www.starsem.com www.avio Arianespace’s eighth launch of 2021 with the fifth Soyuz of the year will place its satellite passengers into low Earth orbit. The launcher will be carrying a total payload of approximately 5 518 kg. The launch will be performed from Baikonur, in Kazakhstan. MISSION DESCRIPTION 2 ONEWEB SATELLITES 3 Liftoff is planned on at exactly: SOYUZ LAUNCHER 4 06:23 p.m. Washington, D.C. time, 10:23 p.m. Universal time (UTC), LAUNCH CAMPAIGN 4 00:23 a.m. Paris time, FLIGHT SEQUENCES 5 01:23 a.m. Moscow time, 03:23 a.m. Baikonur Cosmodrome. STAKEHOLDERS OF A LAUNCH 6 The nominal duration of the mission (from liftoff to separation of the satellites) is: 3 hours and 45 minutes. Satellites: OneWeb satellite #255 to #288 Customer: OneWeb • Altitude at separation: 450 km Cyrielle BOUJU • Inclination: 84.7degrees [email protected] +33 (0)6 32 65 97 48 RUAG Space AB (Linköping, Sweden) is the prime contractor in charge of development and production of the dispenser system used on Flight ST34. It will carry the satellites during their flight to low Earth orbit and then release them into space. The dedicated dispenser is designed to Flight ST34, the 29th commercial mission from the Baikonur Cosmodrome in Kazakhstan performed by accommodate up to 36 spacecraft per launch, allowing Arianespace and its Starsem affiliate, will put 34 of OneWeb’s satellites bringing the total fleet to 288 satellites Arianespace to timely deliver the lion’s share of the initial into a near-polar orbit at an altitude of 450 kilometers.
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • Experimental Methods in Reduced-Gravity Soldering Research
    NASA/TM—2002-211993 Experimental Methods in Reduced-Gravity Soldering Research Richard D. Pettegrew National Center for Microgravity Research, Cleveland, Ohio Peter M. Struk Glenn Research Center, Cleveland, Ohio John K. Watson Johnson Space Center, Houston, Texas Daniel R. Haylett National Center for Microgravity Research, Cleveland, Ohio December 2002 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA’s scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA’s institutional • TECHNICAL TRANSLATION. English- mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA’s are published by NASA in the NASA STI Report mission. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office’s diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results .
    [Show full text]
  • Limitations of Spacecraft Redundancy: a Case Study Analysis
    44th International Conference on Environmental Systems Paper Number 13-17 July 2014, Tucson, Arizona Limitations of Spacecraft Redundancy: A Case Study Analysis Robert P. Ocampo1 University of Colorado Boulder, Boulder, CO, 80309 Redundancy can increase spacecraft safety by providing the crew or ground with multiple means of achieving a given function. However, redundancy can also decrease spacecraft safety by 1) adding additional failure modes to the system, 2) increasing design “opaqueness”, 3) encouraging operational risk, and 4) masking or “normalizing” design flaws. Two Loss of Crew (LOC) events—Soyuz 11 and Challenger STS 51-L—are presented as examples of these limitations. Together, these case studies suggest that redundancy is not necessarily a fail-safe means of improving spacecraft safety. I. Introduction A redundant system is one that can achieve its intended function through multiple independent pathways or Aelements 1,2. In crewed spacecraft, redundancy is typically applied to systems that are critical for safety and/or mission success3,4. Since no piece of hardware can be made perfectly reliable, redundancy—in theory—allows for the benign (e.g. non-catastrophic) failure of critical elements. Redundant elements can be 1) similar or dissimilar to each other, 2) activated automatically (“hot spare”) or manually (“cold spare”), and 3) located together or separated geographically5-7. U.S. spacecraft have employed redundancy on virtually all levels of spacecraft design, from component to subsystem7,8. Redundancy has a successful history of precluding critical and catastrophic failures during human spaceflight. A review of NASA mission reports, from Mercury to Space Shuttle, indicates that redundancy has saved the crew or extended the mission over 160 times, or roughly once per flight9.
    [Show full text]
  • Soyuz Launch Brochure
    Incredible Adventures is excited to offer a unique opportunity – a chance to visit the famous Baikonur Cosmodrome and observe a manned launch of a Russian Soyuz spacecraft. You’ll be completely immersed in the electric atmosphere surrounding a launch. You’ll explore Baikonur’s launch sites, museums and most historic places. Join IA for an Incredible Space Adventure. Highlights of Your Incredible Baikonur Adventure 800-644-7382 or 941-346-2603 www.incredible-adventures.com Observe roll-out and installation of the Soyuz rocket at launch pad. Attend international press conference of main and back- up crews. See the farewell of the crew at the cosmonaut hotel. Hear crew's ready-to-go official report. See launch of the Soyuz rocket, something you’ll never forget. Incredible Baikonur Adventure Day 1 Meet IA representative at the airport. Flight from Moscow to Baikonur .Transfer to the hotel. Time to relax. Day 2 Breakfast in the hotel Transfer to Baikonur Cosmodrome Roll-out of the Soyuz Rocket. (Follow the Soyuz to its launch site.) Observe installation of the rocket on the launch pad. Visit to the integration building of Soyuz and Progress spaceships. Transfer back to town. Visit to the International Space School. 9 Day 3 Breakfast in the hotel. Visit Museum of History Cosmodrome Baikonur. Enjoy general sightseeing in the town of Baikonur (learn history of the town, visit memorials and monuments). Transfer to Cosmonaut hotel. International press conference with the main and backup crews of Soyuz-TMA vehicle. Walk along the historical alley of Cosmonauts where personalized trees are planted.
    [Show full text]
  • Rex D. Hall and David J. Shayler
    Rex D. Hall and David J. Shayler Soyuz A Universal Spacecraft ruuiiMicPublishedu 11in1 aaaundiiuiassociationi witwimh ^^ • Springer Praxis Publishing PRHB Chichester, UK "^UF Table of contents Foreword xvii Authors' preface xix Acknowledgements xxi List of illustrations and tables xxiii Prologue xxix ORIGINS 1 Soviet manned spaceflight after Vostok 1 Design requirements 1 Sever and the 1L: the genesis of Soyuz 3 The Vostok 7/1L Soyuz Complex 4 The mission sequence of the early Soyuz Complex 6 The Soyuz 7K complex 7 Soyuz 7K (Soyuz A) design features 8 The American General Electric concept 10 Soyuz 9K and Soyuz 1 IK 11 The Soyuz Complex mission profile 12 Contracts, funding and schedules 13 Soyuz to the Moon 14 A redirection for Soyuz 14 The N1/L3 lunar landing mission profile 15 Exploring the potential of Soyuz 16 Soyuz 7K-P: a piloted anti-satellite interceptor 16 Soyuz 7K-R: a piloted reconnaissance space station 17 Soyuz VI: the military research spacecraft Zvezda 18 Adapting Soyuz for lunar missions 20 Spacecraft design changes 21 Crewing for circumlunar missions 22 The Zond missions 23 The end of the Soviet lunar programme 33 The lunar orbit module (7K-LOK) 33 viii Table of contents A change of direction 35 References 35 MISSION HARDWARE AND SUPPORT 39 Hardware and systems 39 Crew positions 40 The spacecraft 41 The Propulsion Module (PM) 41 The Descent Module (DM) 41 The Orbital Module (OM) 44 Pyrotechnic devices 45 Spacecraft sub-systems 46 Rendezvous, docking and transfer 47 Electrical power 53 Thermal control 54 Life support 54
    [Show full text]
  • Proposals on Spw Evolution
    ROSCOSMOS Igor V. Orlovsky Deputy Head of Onboard Control Systems Division Alexey A. Khakhulin Team Manager, Next‐Generation Onboard Control Systems Developm th 16 SpaceWire Working Group, 21‐23 March 2011 ESA/ESTEC, Noorwijk, The Netherla Rocket and Space Corporation Energia named after Sergei Korolev Rocket and Space Corporation Energia after S.P. Korolev Rocket is the strategic enterprise of Russia and the leading company engaged in manned space systems. A great deal of attention is focused on the development of new space technologies, including dedicated unmanned space systems for various applications, rocket systems for spacecraft orbital injection. Its presence is noticeable on the international market of rocket and space services. It is the leader in introducing space high technologies for manufacture of products not related to space industry. Its structure: •Primary Design Bureau; •Baikonur branch; •ZAO Experimental Machinebuilding Plant, RSC Energia; •ZAO Volzhskoye DB; •ZAO PO Kosmos, RSC Energia; •Developed social infrastructure. •38% of the Corporation equity is owned by the state. CORE ACTIVITIES • Manned Space Systems • Unmanned Space Systems • Rocket Systems • Advanced Programs • Provision of Services CRUCIALLY IMPORTANT REQUIREMENTS FOR ONBOARD INTERFACES . providing equipment scalability . easy upgrading . supporting real-time transmission of large amounts of data and time-critical commands and data within a broad range of data rates and transmission distances . etc Up to now it has been very difficult to develop an all‐purpose interface. SPACEWIRE AS A BASE FOR NEXT‐GENERATION ONBOARD CONTROL SYSTEM Parameters of SpaceWire interface are closest to meeting the requirements of the all-purpose interface but along with significant advantages, has certain drawbacks.
    [Show full text]