MANUSCRIT Nina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exobasidium Darwinii, a New Hawaiian Species Infecting Endemic Vaccinium Reticulatum in Haleakala National Park
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Mycol Progress (2012) 11:361–371 DOI 10.1007/s11557-011-0751-4 ORIGINAL ARTICLE Exobasidium darwinii, a new Hawaiian species infecting endemic Vaccinium reticulatum in Haleakala National Park Marcin Piątek & Matthias Lutz & Patti Welton Received: 4 November 2010 /Revised: 26 February 2011 /Accepted: 2 March 2011 /Published online: 8 April 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Hawaii is one of the most isolated archipelagos Exobasidium darwinii is proposed for this novel taxon. This in the world, situated about 4,000 km from the nearest species is characterized among others by the production of continent, and never connected with continental land peculiar witches’ brooms with bright red leaves on the masses. Two Hawaiian endemic blueberries, Vaccinium infected branches of Vaccinium reticulatum. Relevant char- calycinum and V. reticulatum, are infected by Exobasidium acters of Exobasidium darwinii are described and illustrated, species previously recognized as Exobasidium vaccinii. additionally phylogenetic relationships of the new species are However, because of the high host-specificity of Exobasidium, discussed. it seems unlikely that the species infecting Vaccinium calycinum and V. reticulatum belongs to Exobasidium Keywords Exobasidiomycetes . ITS . LSU . vaccinii, which in the current circumscription is restricted to Molecular phylogeny. Ustilaginomycotina -
The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible. -
Phylogenetic Studies on Nuclear Large Subunit Ribosomal DNA Sequences of Smut Fungi and Related Taxar
2045 Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxar Dominik Begerow, Robert Bauer, and Franz Oberwinkler Abstract: To show phylogenetic relationships among the smut fungi and thcir relatives. we sequenced a part of the nuclear LSU rDNA from 43 different species of smut fungi and related taxa. Our data were combined with the existing sequences of seven further smut fungi and 17 other basidiomycetes. Two sets of sequences were analyzed. The first set with a representative number of simple septate basidiomycetes, complex scptate basidiomycetes, and smut fungi was analyzed with the neighbor-joining method to estimate the general topology of the basidiomycetes phylogeny and the positions of the smut fungi. The tripartite subclassification of the basidiomycetes into the Urediniomycetes, Ustilaginomycetes, and Hymcnomycetes was confirmed and two groups of smut fungi appeared. Thc smut genera Aurantiosporiurn, Microbotrl-unr, Fulvisporium, and Ustilentr-loma are members of the Urediniomycetes, whereas the other smut species tested are members of the Ustilaginomycetes wrth Entorrhiz.a as a basal taxon. The second set of 46 Ustilaginomycetes was analyzed using the neighbor-joining and the maximum parsimony methods to show the inner topology of the Ustilaginomycetes. The results indicated three major lineages among Ustilaginomycetes corresponding to the Entorrhizomycetidae, Exobasidiomycetidae, and Ustilaginomycetidae. The Entorrhizomycetidae are represented by Entorrhiza species. The Ustilaginomycctidae contain at least two groups, thc Urocystales and Ustilaginales. The Exobasidiomycetidae include five orders, i.e., Doassansiales, Entylomatales, Exobasidiales. Georgefischeriales. and Tilletiales, and Graphiola phoenicis and Microstroma juglandis. Our results support a classification mainly based on ultrastructure. The description of the Glomosporiaceae is emended. -
Mancha Foliar De Grafiola
ISSN 1983-134X Governo do Estado de São Paulo Secretaria de Agricultura e Abastecimento Agência Paulista de Tecnologia dos Agronegócios Instituto Biológico Documento Técnico 002—Julho de 2008—p.1-8 Mancha Foliar de Grafiola Olga Maria Ripinskas Russomanno1 e Pedro Carlos Kruppa2 1Pesquisador Científico, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Av. Cons. Rodrigues Alves, 1252, CEP 04014-002 – CEP 04014-002, São Paulo, SP. E-mail: [email protected] 2Pesquisador Científico, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Av. Cons. Rodrigues Alves, 1252, CEP 04014-002 – CEP 04014-002, São Paulo, SP. E-mail: [email protected] Instituto Biológico—APTA Documento Técnico 002—Julho de 2008—p.1-8 Disponível em www.biologico.sp.gov.br 1. INTRODUÇÃO Graphiola phoenicis (Moug.) Poit. é um fungo Basidiomycota, responsável pela doença conhecida como ―mancha foliar de grafiola‖ que ocorre em diversas espécies de palmeiras (família Arecaceae). Nas folhas das palmeiras, os sintomas causados pelo fungo surgem inicialmente na forma de numerosas manchas amarelas. O fungo desenvolve-se subepidermicamente nos dois lados dos folíolos e na ráquis, formando manchas ne- cróticas que podem coalescer e de onde emergem os soros (estruturas reprodutivas do fungo). A doença ocor- re na maioria das plantas pertencentes à família Arecaceae (Palmae), principalmente naquelas do gênero Phoe- nix. Infecções severas deste fungo podem reduzir o crescimento das plantas e a produção de frutos, levando à morte prematura dos tecidos foliares. No final de 2007, folhas de Palmeira Tamareira (Phoenix dactylifera L.), procedentes de Campo Limpo Paulista, SP, foram enviadas ao Laboratório de Micologia Fitopatológica (LMF), Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal do Instituto Biológico para exames mico- lógicos. -
A Survey of Ballistosporic Phylloplane Yeasts in Baton Rouge, Louisiana
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 A survey of ballistosporic phylloplane yeasts in Baton Rouge, Louisiana Sebastian Albu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Plant Sciences Commons Recommended Citation Albu, Sebastian, "A survey of ballistosporic phylloplane yeasts in Baton Rouge, Louisiana" (2012). LSU Master's Theses. 3017. https://digitalcommons.lsu.edu/gradschool_theses/3017 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. A SURVEY OF BALLISTOSPORIC PHYLLOPLANE YEASTS IN BATON ROUGE, LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana Sate University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Plant Pathology by Sebastian Albu B.A., University of Pittsburgh, 2001 B.S., Metropolitan University of Denver, 2005 December 2012 Acknowledgments It would not have been possible to write this thesis without the guidance and support of many people. I would like to thank my major professor Dr. M. Catherine Aime for her incredible generosity and for imparting to me some of her vast knowledge and expertise of mycology and phylogenetics. Her unflagging dedication to the field has been an inspiration and continues to motivate me to do my best work. -
Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104). -
Secondary Metabolites from Eurotium Species, Aspergillus Calidoustus and A
mycological research 113 (2009) 480–490 journal homepage: www.elsevier.com/locate/mycres Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities Gregory J. SLACKa, Eva PUNIANIa, Jens C. FRISVADb, Robert A. SAMSONc, J. David MILLERa,* aOttawa-Carleton Institute of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6 bDepartment of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark cCBS Fungal Biodiversity Centre, PO Box 85167, NL-3508 AD Utrecht, The Netherlands article info abstract Article history: As part of studies of metabolites from fungi common in the built environment in Canadian Received 22 July 2008 homes, we investigated metabolites from strains of three Eurotium species, namely Received in revised form E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally 26 November 2008 identified as Aspergillus ustus. The latter have been recently assigned as the new species Accepted 16 December 2008 A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin Published online 14 January 2009 B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metab- Corresponding Editor: olites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum Stephen W. Peterson produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in Keywords: E. amstelodami. This species also produced questin and neoechinulin E as minor metabo- Aspergillus insuetus lites. This is the first report of epiheveadride occurring as a natural product, and the first A. -
1 Ornamental Palms
1 Ornamental Palms: Biology and Horticulture T.K. Broschat and M.L. Elliott Fort Lauderdale Research and Education Center University of Florida, Davie, FL 33314, USA D.R. Hodel University of California Cooperative Extension Alhambra, CA 91801, USA ABSTRACT Ornamental palms are important components of tropical, subtropical, and even warm temperate climate landscapes. In colder climates, they are important interiorscape plants and are often a focal point in malls, businesses, and other public areas. As arborescent monocots, palms have a unique morphology and this greatly influences their cultural requirements. Ornamental palms are over- whelmingly seed propagated, with seeds of most species germinating slowly and being intolerant of prolonged storage or cold temperatures. They generally do not have dormancy requirements, but do require high temperatures (30–35°C) for optimum germination. Palms are usually grown in containers prior to trans- planting into a field nursery or landscape. Because of their adventitious root system, large field-grown specimen palms can easily be transplanted. In the landscape, palm health and quality are greatly affected by nutritional deficien- cies, which can reduce their aesthetic value, growth rate, or even cause death. Palm life canCOPYRIGHTED also be shortened by a number of MATERIAL diseases or insect pests, some of which are lethal, have no controls, or have wide host ranges. With the increasing use of palms in the landscape, pathogens and insect pests have moved with the Horticultural Reviews, Volume 42, First Edition. Edited by Jules Janick. 2014 Wiley-Blackwell. Published 2014 by John Wiley & Sons, Inc. 1 2 T.K. BROSCHAT, D.R. HODEL, AND M.L. -
Marine Fungi from the Sponge Grantia Compressa: Biodiversity, Chemodiversity, and Biotechnological Potential
marine drugs Article Marine Fungi from the Sponge Grantia compressa: Biodiversity, Chemodiversity, and Biotechnological Potential Elena Bovio 1,5, Laura Garzoli 1, Anna Poli 1, Anna Luganini 2 , Pietro Villa 3, Rosario Musumeci 3 , Grace P. McCormack 4, Clementina E. Cocuzza 3, Giorgio Gribaudo 2 , Mohamed Mehiri 5,* and Giovanna C. Varese 1,* 1 Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; [email protected] (E.B.); [email protected] (L.G.); [email protected] (A.P.) 2 Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; [email protected] (A.L.); [email protected] (G.G.) 3 Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy; [email protected] (P.V.); [email protected] (R.M.); [email protected] (C.E.C.) 4 Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; [email protected] 5 University Nice Côte d’Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, 60103 Nice, France * Correspondence: [email protected] (M.M.); [email protected] (G.C.V.); Tel.: +33-492-076-154 (M.M.); +39-011-670-5964 (G.C.V.) Received: 24 December 2018; Accepted: 8 April 2019; Published: 11 April 2019 Abstract: The emergence of antibiotic resistance and viruses with high epidemic potential made unexplored marine environments an appealing target source for new metabolites. -
Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system. -
Integrative Analysis of the West African Ceraceosorus Africanus Sp
Org Divers Evol DOI 10.1007/s13127-016-0285-3 ORIGINAL ARTICLE Integrative analysis of the West African Ceraceosorus africanus sp. nov. provides insights into the diversity, biogeography, and evolution of the enigmatic Ceraceosorales (Fungi: Ustilaginomycotina) Marcin Piątek1 & Kai Riess2 & Dariusz Karasiński1 & Nourou S. Yorou3 & Matthias Lutz4 Received: 28 January 2016 /Accepted: 11 May 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The order Ceraceosorales (Ustilaginomycotina) single gene dataset (D1/D2 28S rDNA) supported the mono- currently includes the single genus Ceraceosorus,withone phyly of the two Ceraceosorus species and the Ceraceosorales species, Ceraceosorus bombacis,parasiticonBombax ceiba and their placement within the Ustilaginomycotina. Molecular in India. The diversity, biogeography, evolution, and phyloge- phylogenetic analyses of a multigene dataset (18S/5.8S/28S netic relationships of this order are still relatively unknown. rDNA/RPB2/TEF1) revealed Exobasidium rhododendri Here, a second species of Ceraceosorus is described from (Exobasidiales) as the closest relative of Ceraceosorus, both West Africa as a novel species, Ceraceosorus africanus,in- clustering together with Entyloma calendulae (Entylomatales), fecting Bombax costatum in Benin, Ghana, and Togo. This indicating affinities to the Exobasidiomycetes. This phylogenet- species produces conspicuous fructifications, similar to ic placement is in agreement with ultrastructural characteristics corticioid basidiomata when mature, but sorus-like in early (presence of local interaction zone and interaction apparatus) stages of ontogenetic development. The fructifications cover reported for the Ceraceosorales, Entylomatales, and much of the leaf surface and resemble leaf blight. This con- Exobasidiales. trasts with the inconspicuous fructifications of C. bombacis comprising small spots scattered over the lower leaf surface Keywords Basidiomycota . -
Drivers of Genetic Diversity in Secondary Metabolic Gene Clusters in a Fungal Population 5 6 7 8 Abigail L
bioRxiv preprint doi: https://doi.org/10.1101/149856; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 Drivers of genetic diversity in secondary metabolic gene clusters in a fungal population 5 6 7 8 Abigail L. Lind1, Jennifer H. Wisecaver2, Catarina Lameiras3, Philipp Wiemann4, Jonathan M. 9 Palmer5, Nancy P. Keller4, Fernando Rodrigues6,7, Gustavo H. Goldman8, Antonis Rokas1,2 10 11 12 1. Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, 13 Tennessee, USA. 14 2. Department of Biology, Vanderbilt University, Nashville, Tennessee, USA. 15 3. Department of Microbiology, Portuguese Oncology Institute of Porto, Porto, Portugal 16 4. Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, 17 Madison, Wisconsin, USA 18 5. Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, 19 Wisconsin, USA 20 6. Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 21 Braga, Portugal 22 7. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. 23 8. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São 24 Paulo, Brazil 25 †Corresponding author and lead contact: [email protected] 26 bioRxiv preprint doi: https://doi.org/10.1101/149856; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.