<<

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

Lesson IX April 9, 2019

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 1 / 54 Table of Contents

1 Particle in a central potential Generalities of angular Schrodinger¨ in 3D Internal states of the hydrogen atom

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 2 / 54 Particle in a central potential Generalities of operator

Operators can be often constructed taking corresponding dynamical variable of expressed in terms of coordinates and momenta x xˆ replacing → p pˆ  → Apply this prescription to angular momentum In classical mechanics one defines angular momentum by

~L =~r ~p × We get angular momentum operator by replacing: vector~r vector operator rˆ = (xˆ, yˆ, zˆ) momentum vector ~p momentum vector operator pˆ = i} = (∂ , ∂ , ∂ ) ∂ = ∂/∂ − ∇ ∇ x y z i i

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 3 / 54 Particle in a central potential Generalities of angular momentum operator

Complete fundamental commutation relations of coordinate and momentum operators are:

[xˆ, pˆx] = [yˆ, pˆy] = [zˆ, pˆz] = i}

and [xˆ, pˆ ] = [xˆ, pˆ ] = = [zˆ, pˆ ] = 0 y z ··· y It will be convenient to use following notation xˆ1 = xˆ, xˆ2 = yˆ, xˆ3 = zˆ and pˆ1 = pˆx, pˆ2 = pˆy, pˆ3 = pˆz Summary of fundamental commutation relations

[xˆi, pˆj] = i}δij

Kronecker symbol:

1 if i = j δ = ij 0 if i = j  6

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 4 / 54 Particle in a central potential Generalities of angular momentum operator Commutation relations for components of angular momentum operator

Convenient to get at first commutation relations with xˆi and pˆi Using fundamental commutation relations Lˆ = yˆpˆ zˆpˆ [xˆ, Lˆ ] = 0 x z − y x Lˆ y = zˆpˆx xˆpˆz [xˆ, Lˆ y] = [xˆ, zˆpˆx] [xˆ, xˆpˆz] = i}zˆ − − similarly [xˆ, Lˆ z] = i}yˆ − We can ummarize the nine commutation relations

[xˆi, Lˆ j] = i}eijkxˆk

and summation over the repeated index k is implied Levi-Civita tensor

1 if (ijk) = (1, 2, 3) or (2, 3, 1) or(3, 1, 2) e = 1 if (ijk) = (1, 3, 2) or (3, 2, 1) or (2, 1, 3) ijk  −  0 if i = j or i = k or j = k

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 5 / 54 Particle in a central potential Generalities of angular momentum operator

Similarly we can show

[pˆi, Lˆ j] = i}eijk pˆk

Now it is straightforward to deduce:

[Lˆ i, Lˆ j] = i}eijk Lˆ k

Important conclusion from this result: components of Lˆ have no common eigenfunctions Must show that angular momentum operators are hermitian This is of course plausible (reasonable) since we know that angular momentum is dynamical variable in classical mechanics Proof is left as exercise

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 6 / 54 Particle in a central potential Generalities of angular momentum operator Construct operator that commutes with all components of Lˆ ˆ 2 ˆ 2 ˆ 2 ˆ 2 L = Lx + Ly + Lz ˆ ˆ 2 ˆ ˆ 2 ˆ 2 ˆ 2 ˆ ˆ 2 ˆ ˆ 2 It follows that [Lx, L ] = [Lx, Lx + Ly + Lz] = [Lx, Ly] + [Lx, Lz] ˆ ˆ 2 There is simple technique to evaluate commutator like [Lx, Ly] write down explicitly known commutator

[Lˆ x, Lˆ y] = Lˆ x Lˆ y Lˆ y Lˆ x = i}Lˆ z − multiply on left by Lˆ y 2 Lˆ y Lˆ x Lˆ y Lˆ Lˆ x = i}Lˆ y Lˆ z − y multiply on right by Lˆ y 2 Lˆ x Lˆ Lˆ y Lˆ x Lˆ y = i}Lˆ z Lˆ y y − Add these commutation relations to get 2 2 Lˆ x Lˆ Lˆ Lˆ x = i}(Lˆ y Lˆ z + Lˆ z Lˆ y) y − y ˆ ˆ 2 ˆ 2 ˆ ˆ ˆ ˆ ˆ Similarly Lx Lz Lz Lx = i}(Ly Lz + Lz Ly) 2− − 2 2 All in all [Lˆ x, Lˆ ] = 0 and likewise [Lˆ y, Lˆ ] = [Lˆ z, Lˆ ] = 0 L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 7 / 54 Particle in a central potential Generalities of angular momentum operator

Summary of angular momentum operator ˆ ˆ ~L =~rˆ ~pˆ = i}~rˆ ~ (1) × − × ∇ in cartesian coordinates ∂ ∂ Lˆ x = yˆpˆz pˆyzˆ = i} y z − − ∂z − ∂y   ∂ ∂ Lˆ y = zˆpˆx pˆzxˆ = i} z x − − ∂x − ∂z   ∂ ∂ Lˆ z = xˆpˆy pˆxyˆ = i} x y (2) − − ∂y − ∂x   commutation relations

2 2 2 [Lˆ i, Lˆ j] = i} εijk Lˆ k and [Lˆ , Lˆ x] = [Lˆ , Lˆ y] = [Lˆ , Lˆ z] = 0 (3)

ˆ 2 ˆ 2 ˆ 2 ˆ 2 L = Lx + Ly + Lz

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 8 / 54 Particle in a central potential Schrodinger¨ in 3D

Prescription to obtain 3D Schrodinger¨ equation for free particle: substitute into classical energy momentum relation

~p 2 E = | | (4) 2m differential operators

∂ E i} and ~p i}~ (5) → ∂t → − ∇ resulting operator equation

}2 ∂ 2ψ = i} ψ (6) − 2m ∇ ∂t acts on complex ψ(~x, t) Interpret ρ = ψ 2 as probability density | | ψ 2d3x gives probability of finding particle in volume element d3x | |

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 9 / 54 Particle in a central potential Schrodinger¨ in 3D

Continuity equation We are often concerned with moving particles e.g. collision of particles Must calculate density flux of particle beam~ From conservation of probability rate of decrease of number of particles in a given volume is equal to total flux of particles out of that volume

∂ ρ dV = ~ nˆ dS = ~ ~ dV (7) ∂t − ZV ZS · ZV ∇ · (last equality is Gauss’ theorem) Probability and flux densities are related by continuity equation

∂ρ + ~ ~ = 0 (8) ∂t ∇ ·

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 10 / 54 Particle in a central potential Schrodinger¨ in 3D

Flux To determine flux. . . First form ∂ρ/∂t by substracting wave equation multiplied by iψ − ∗ from the complex conjugate equation multiplied by iψ −

∂ρ } 2 2 (ψ∗ ψ ψ ψ∗) = 0 (9) ∂t − 2m ∇ − ∇ Comparing this with continuity equation probability flux density

i} ~ = (ψ∗ ψ ψ ψ∗) (10) −2m ∇ − ∇ Example free particle of energy E and momentum ~p

i~p ~x iEt ψ = Ne · − (11)

has ρ = N 2 and~ = N2 ~p/m | | | |

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 11 / 54 Particle in a central potential Schrodinger¨ in 3D

Time-independent Schrodinger¨ equation for central potential Potential depends only on distance from origin

V(~r) = V( ~r ) = V(r) (12) | | hamiltonian is spherically symmetric Instead of using cartesian coordinates ~x = x, y, z { } use spherical coordinates ~x = r, ϑ, ϕ defined by { } x = r sin ϑ cos ϕ r = x2 + y2 + z2 y = r sin ϑ sin ϕ ϑ = arctan z/ x2 + y2 (13)   ⇔  p  z = r cos ϑ      ϕ = arctan(y/xp)   Express the Laplacian 2 in spherical coordinates  ∇ 1 ∂ ∂ 1 ∂ ∂ 1 ∂2 2 = r2 + sin ϑ + (14) ∇ r2 ∂r ∂r r2 sin ϑ ∂ϑ ∂θ 2 2 ∂ϕ2     r sin ϑ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 12 / 54 Particle in a central potential Schrodinger¨ in 3D To look for solutions...

Use separation of variable methods ψ(r, ϑ, ϕ) = R(r)Y(ϑ, ϕ)

}2 Y d dR R ∂ ∂Y R ∂2Y r2 + sin ϑ + + V(r)RY = ERY − 2m r2 dr dr r2 sin ϑ ∂ϑ ∂ϑ 2 2 ∂ϕ2      r sin ϑ  Divide by RY/r2 and rearrange terms

}2 1 d dR }2 1 ∂ ∂Y 1 ∂2Y r2 + r2(V E) = sin ϑ + − 2m R dr dr − 2mY sin ϑ ∂ϑ ∂ϑ 2 ∂ϕ2       sin ϑ  2 Each side must be independently equal to a constant κ = } l(l + 1) − 2m Obtain two equations

1 d dR 2mr2 r2 (V E) = l(l + 1) (15) R dr dr − 2 −   } 1 ∂ ∂Y 1 ∂2Y sin ϑ + = l(l + 1)Y (16) sin ϑ ∂ϑ ∂ϑ 2 ∂ϕ2 −   sin ϑ What is the meaning of operator in angular equation?

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 13 / 54 Particle in a central potential Schrodinger¨ in 3D

Choose polar axis along cartesian z direction After some tedious calculation angular momentum components

∂ ∂ Lˆ x = i} sin ϕ + cot ϕ cos ϕ ∂θ ∂ϕ   ∂ ∂ Lˆ y = i} cos ϕ cot ϑ sin ϕ − ∂ϑ − ∂ϕ   ∂ Lˆ z = i} (17) − ∂ϕ

Form of Lˆ 2 should be familiar 1 ∂ ∂ 1 ∂2 Lˆ 2 = }2 sin ϑ + (18) − sin ϑ ∂ϑ ∂ϑ 2 ∂ϕ2    sin ϑ  2 Eigenvalue equations for Lˆ and Lˆ z operators:

2 2 Lˆ Y(ϑ, ϕ) = } l(l + 1)Y(ϑ, ϕ) and Lˆ zY(ϑ, ϕ) = }mY(ϑ, ϕ)

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 14 / 54 Particle in a central potential Schrodinger¨ in 3D

We can always know: length of angular momentum plus one of its components E.g. choosing the z-component

3 2 

- -2 -3

2 Fig.28:Graphicalrepresentationoftheangularmomentum,withfixedLz andL ,butcompleteuncertaintyinLxandLy. L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 15 / 54 as you should recognize the angular part of the 3D Schr¨odinger equation. Wecan then write the eigenvalue equations forthesetwooperators: 2 2 Lˆ Φ(ϑ, ϕ) =! l(l +1)Φ(ϑ, ϕ) and ˆ Lz Φ(ϑ, ϕ) =!mz Φ(ϑ, ϕ) wherewealreadyusedthefactthattheysharecommoneigenfunctions(then,wecanlabeltheseeigenfunctionsbyl andmz :Φl,mz(ϑ, ϕ). Theallowedvaluesforl andmz areintegerssuchthatl =0, 1, 2,... andmz = l, . . . , l 1,l.Thisresultcanbe inferredfromthecommutationrelationship.Forinterestedstudents,thederivationisbelow.− −

2 Derivation of the eigenvalues. AssumethattheeigenvaluesofL andLz areunknown,andcallthemλ andµ.We introducetwonewoperators,theraisingandloweringoperatorsL+ =Lx+ iLyandL =Lx iLy.ThecommutatorwithLz 2 − − is [Lz,L ] = !L (whiletheyofcoursecommutewithL ). Now consider thefunctionf =L f,wheref isaneigenfunction 2 ± ± ± ± ± ofL andLz: L2f =L L2f =L λf =λf ± ± ± ± and Lzf =[Lz,L ]f +L Lzf = !L f +L µf =(µ !)f ± ± ± ± ± ± ± ± 2 Thenf =L f isalsoaneigenfunctionofL andLz.Furthermore,wecankeepfindingeigenfunctionsofLzwithhigherand ± ± 2 highereigenvaluesµ ′=µ + + + ... ,byapplyingtheL+ operator(orlowerandlowerwithL ),whiletheL eigenvalueis ! ! − fixed.Ofcoursethereisalimit,sincewewantµ′ λ.ThenthereisamaximumeigenfunctionsuchthatL+fM =0andwe ≤ 2 setthecorrespondingeigenvalueto lM .NownoticethatwecanwriteL insteadofbyusingLx,y byusingL : ! ± 2 2 L =L L+ +Lz+ Lz − !

UsingthisrelationshiponfM wefind:

2 2 2 2 2 Lfm=λfm (L L+ +Lz+!Lz)fM=[0+! lM+!(!lM )]fM λ =! lM (lM+ 1) → − → 2 Inthesameway,thereisalsoaminimumeigenvaluelmandeigenfunctions.t.L fm=0andwecanfindλ =! lm(lm 1). − − Sinceλ isalwaysthesame,wealsohavelm(lm 1)=lM (lM+ 1),withsolutionlm= lM (theothersolutionwouldhave − − lm>lM ).FinallywehavefoundthattheeigenvaluesofLzarebetween+!l and !l withintegerincreases,sothatl = l +N −2 − givingl =N/2:thatis,l iseitheranintegeroranhalf-integer.Wethussetλ =! l(l + 1)andµ =!m,m = l, l +1,...,l. − − !

Wecangathersomeintuitionabouttheeigenvaluesifwesolvefirstthesecondequation,finding

∂Φl,m imz ϕ i! =!mz Φ(ϑ, ϕ), Φl,m(ϑ, ϕ) =Θl(ϑ)e − ∂ϕ where, becauseofthe periodicityinϕ,mz canonlytakeonintegervalues(positiveandnegative)sothatΦlm(ϑ, ϕ + 2π) =Φlm(ϑ, ϕ).

Particle in a central potential Schrodinger¨ in 3D Solution of angular equation

1 ∂ ∂Ym(ϑ, ϕ) 1 ∂2Ym(ϑ, ϕ) sin ϑ l + l = l(l + 1)Ym(ϑ, ϕ) sin ϑ ∂ϑ ∂ϑ 2 ∂ϕ2 − l   sin ϑ Use separation of variables Y(ϑ, ϕ) = Θ(ϑ)Φ(ϕ) By multiplying both sides of the equation by sin2 ϑ/Y(ϑ, ϕ)

1 d dΘ 1 d2Φ sin ϑ sin ϑ + l(l + 1) sin2 ϑ = (19) Θ(ϑ) dϑ dϑ − Φ(ϕ) dϕ2    2 equations in different variables introduce constant m2:

d2Φ = m2Φ(ϕ) (20) dϕ2 −

d dΘ sin ϑ sin ϑ = [m2 l(l + 1) sin2 ϑ]Θ(ϑ) (21) dϑ dϑ −   L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 16 / 54 Particle in a central potential Schrodinger¨ in 3D

Solution of angular equation First equation is easily solved to give Φ(ϕ) = eimϕ

Imposing periodicity Φ(ϕ + 2π) = Φ(ϕ) m = 0, 1, 2, ± ± ··· m Solutions to the second equation Θ(ϑ) = APl (cos ϑ) m Pl associated Legendre polynomials Normalized angular eigenfunctions

m (2l + 1) (l m)! m imϕ Yl (ϑ, ϕ) = − Pl (cos ϑ)e (22) s 4π (l + m)!

Spherical harmonics are orthogonal:

π 2π m m Y ∗(ϑ, ϕ) Y 0 sin ϑdϑdϕ = δ δ , (23) l l0 ll0 mm0 Z0 Z0

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 17 / 54 §3.4] La ecuación de Helmholtz en coordenadas esféricas 145

Ejemplos Vamos a considerar ahora algunos ejemplos sencillos de armónicos esfé- ricos asociados a ℓ 0, 1, 2: ✎ =

Cuando ℓ 0, tenemos m 0. Ahora P0,0 1ylaconstantedenormalización = = = es c0,0 1/√4π.Portanto, =

1 Y0,0(θ, φ) . = √4π

La gráfica correspondiente es 146 Métodos de separación de variables y desarrollo en autofunciones [Capítulo 3 26

ℓ 1 = l =1 l =0

2 §3.4]2 La ecuación de Helmholtz en coordenadas esféricas 1 147 0 Y1± (#, ') Y0 (#, ') 0 2 Y Y(1,0#(θ,,'φ)) Y1, 1(θ, φ) 1 ± ℓ 2 ! ! ! ! Si ℓ 1podemostenertrescasos: m 1, 0 , 1. Debemos evaluar= las funciones! ! ! ! = = − de Legendre P1,0 y P1,1. Acudiendo a la fórmula (3.17) obtenemos l =2

d 2 P1,0(ξ) (ξ 1) 2ξ, = d ξ − = 2 2 d 2 2 P1,1(ξ) 1 ξ (ξ 1) 2 1 ξ . = − d ξ2 − = − Para ℓ 2esfácilobtener ! ! = 2 2Y (θ, φ) Y2± (2,#2 , ') ! ! 2 0 Y2,0(θ2, φ) ! ! Y2,1(θ, φ1) Por ello, Y ± (#, ') Y2 (#,! ') ! ! 2 ! ! ! ! ! 5145 2 §3.4] La ecuación de Helmholtz en coordenadas esféricas Y2,0(θ, φ) ( 1 3cos θ), 3 = "16π − + Y1,0(θ, φ) cos θ, = "4π 15 i φ 15 i φ Y2,1(θ, φ) sen θ cos θ e ,Y2, 1(θ, φ) sen θ cos θ e− , = −"8π − = "8π Ejemplos Vamos a considerar3 ahora algunos ejemplos sencillos3 de armónicos esfé- i φ i φ 15 15 Y1,1(θ, φ) sen θ e ,Y1, 1(θ, φ) senYθ e(−θ, φ). sen✎2 θ e2iφ,Y (θ, φ) sen2 θ e 2iφ. ricos asociados a ℓ 0, 1, 2: m 2 2,2 2, 2 − FIG.= − 44:"8 Representationsπ of Y − for di↵erent= " sets8π of quantum numbers."32π The z axis is the− vertical" direction.32π The probability = Por último, comol ejercicio dejamos el cálculo de = = densities have rotational symmetry| | about the z axis [62].

Cuando ℓ 0, tenemos m 0. Ahora P 1ylaconstantedenormalización1 385 2 3 3iφ Y0,50,3(θ, φ) ( 1 9cos θ) sen θe = = Particle in= a central= −32 potential" π − + Schrodinger¨ in 3D Acontinuaciónrepresentamoslassuperficieses c0,0 1/√4π.Portanto, r Yl,m(θ, φ) para estos armó- = = TABLE I: Associated Legendre polynomials. nicos esféricos # # m Cuya representación es# # @ 0123 l @ 1 Siendo las correspondientes gráficas Y0,0(θ, φ) . 0 = √ 0 EcuacionesP0 =1 Diferenciales4π II 0 1 Ecuaciones Diferenciales II 1 P1 =cos# P1 sin # 2 P 0 =(3cos2 # 1)/2 P 1 =3cos# sin # P 2 =3sin2 # La gráfica correspondiente2 es 2 2 3 P 0(5 cos3 # 3cos#)/2146 P 1 =3(5cosMétodos2 de# separación1)/2sin de variables# y desarrolloP 2 =15cos en autofunc# siniones2 # [CapítuloP 3 =15sin 3 3 # 3 3 3 3

ℓ 1 = We can then write the eigenvalue equations for these two operators: andl =1 ˆ2 2 l =0 ˆ L Y (#, ')=} l(l + 1)Y (#, ') and LzY (#, ')=}mY (#, ') (412)

where we already3.4.2. used Resolución the fact dethat la they ecuación share radial common eigenfunctions. Then, by its very nature we can label these eigenfunctions byDistinguimosl and m,i.e. dosY casosl,m(# según, '). k sea nulo o no. 1 1472 §3.4]2 La ecuación de Helmholtz en coordenadas esféricas ± EXERCISE 10.14Si k 0laecuaciónradialShow0 that the allowed values for l and mz are integersY1 such(#, ') that l =0, 1, 2, and = Y0 (#, ') 0 2 ··· m = l, ,l 1,l.[Hint: This result can be inferred fromY1 theY(1,0#(θ, commutation,'φ)) relationship.]Y1, 1(θ, φ) z 2 ± ··· r R′′ 2rRℓ ′2 ℓ(ℓ 1!)R 0 ! ! ! Si ℓ 1podemostenertrescasos: m 1, 0 , 1. Debemos+ evaluar= − las+ funciones! = ! ! ! = = − de LegendreWeP now1,0 y P go1,1. back Acudiendo to the aSchr¨odinger la fórmula (3.17) equation obtenemos in spherical coordinates and we consider the angular and radial Ecuacionesl =2 Diferenciales II

d 2 P1,0(ξ) (ξ 1) 2ξ, = d ξ − = 2 2 d 2 2 P1,1(ξ) 1 ξ (ξ 1) 2 1 ξ . = − d ξ2 − = − Para ℓ 2esfácilobtener ! ! = 2 2Y (θ, φ) Y2± (2,#2 , ') ! ! 2 0 Y2,0(θ2, φ) ! ! Y2,1(θ, φ1) Por ello, Y ± (#, ') Y2 (#,! ') ! ! 2 ! ! ! ! ! 5 2 Y2,0(θ, φ) ( 1 3cos θ), 3 = "16π − + Y1,0(θ, φ) cos θ, = "4π 15 i φ 15 i φ Y2,1(θ, φ) sen θ cos θ e ,Y2, 1(θ, φ) sen θ cos θ e− , = −"8π − = "8π 3 i φ 3 i φ Y (θ, φ) sen θ e ,Y (θ, φ) sen θ e . 15 2 2iφ 15 2 2iφ 1,1 1, 1 Y2,2(−θ, φ) sen θ e ,Y2, 2(θ, φ) sen θ e− . = −"8π − = "8π " − " Por último, como ejercicio dejamos el cálculo de = 32π = 32π L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 18 / 54

1 385 2 3 3iφ Y5,3(θ, φ) ( 1 9cos θ) sen θe Acontinuaciónrepresentamoslassuperficiesr Y = −(θ32, "φ)π para− + estos armó- = l,m nicos esféricos # # Cuya representación es# # Siendo las correspondientes gráficas Ecuaciones Diferenciales II Ecuaciones Diferenciales II

3.4.2. Resolución de la ecuación radial

Distinguimos dos casos según k sea nulo o no.

Si k 0laecuaciónradial = 2 r R′′ 2rR′ ℓ(ℓ 1)R 0 + − + =

Ecuaciones Diferenciales II Particle in a central potential Schrodinger¨ in 3D Solution of radial equation d dR(r) 2mr2 r2 (V E) = l(l + 1)R(r) (24) dr dr − 2 −   }

to simplify solution u(r) = rR(r)

}2 d2u } l(l + 1) + V + u(r) = Eu(r) (25) −2m dr2 2m r2   define an effective potential

}2 l(l + 1) V0(r) = V(r) + (26) 2m r2 (25) is very similar to the one-dimensional Schrodinger¨ equation Wave function need 3 quantum numbers (n, l, m)

m ψn,l,m(r, ϑ, ϕ) = Rn,l(r)Yl (ϑ, ϕ) (27)

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 19 / 54 Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom

We start with the equation for the relative motion of electron and proton 2 2 r VUrr EUH r 2 We use the spherical symmetry of this equation and change to spherical polar coordinates From now on, we drop the subscript r in the operator 2

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 20 / 54 Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom

In spherical polar coordinates, we have 2 22111 1 22r sin 22 rr rrsin sin where the term in square brackets 222ˆ is the operator , L / we introduced in discussing angular momentum Knowing the solutions to the angular momentum problem we propose the separation URrYr ,

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 21 / 54 Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom

The mathematics is simpler using the form 1 UrYr , r where, obviously rrRr This choice gives a convenient simplification of the radial derivatives 11 rr 2 r 2 rr22 rr r r

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 22 / 54 Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom

Hence the Schrödinger equation becomes 2 112 rr r YLYYVr ,,,ˆ2 22rr 23 r r 1 ErY , H r Dividing by 23 rY,/2 r and rearranging, we have r 2 2 r 211 rEVr22 LYˆ , rr 22H 2 Y,

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 23 / 54 Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom

In 2 2 r r 22211 rEVr LYˆ , ll 1 rr 22H 2 Y, in the usual manner for a separation argument the left hand side depends only on r and the right hand side depends only on and so both sides must be equal to a constant We already know what that constant is explicitly ˆ22 i.e., we already know that LYlm,1, l l Y lm so that the constant is ll 1

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 24 / 54 Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom

Hence, in addition to the L ˆ 2 eigenequation which we had already solved from our separation above, we also have r 2 2 r 2 rEVrll2 1 rr 22 H or, rearranging 22dr2 ll 1 22Vr r EH r 22dr r which we can write as an ordinary differential equation All the functions and derivatives are in one variable, r

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 25 / 54 Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom

Hence we have mathematical equation 22dr2 ll 1 22Vr r EH r 22dr r for this radial part of the wavefunction which looks like a Schrödinger wave equation with an additional effective potential energy term of the form 2 ll 1 2 r 2

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 26 / 54 Particle in a central potential Internal states of the hydrogen atom

Central potentials

Note incidentally that though here we have a specific form for Vr in our assumed Coulomb potential e2 V rrep 4 oerr p the above separation works for any potential that is only a function of r sometimes known as a central potential

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 27 / 54 Particle in a central potential Internal states of the hydrogen atom

Central potentials

The precise form of the equation 22dr2 ll 1 22Vr r EH r 22dr r will be different for different central potentials but the separation remains We can still separate out the Lˆ 2 angular momentum eigenequation with the spherical harmonic solutions

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 28 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions

Using a separation of the hydrogen atom wavefunction solutions into radial and angular parts URrYr , and rewriting the radial part using rrRr we obtained the radial equation 222dr2 e ll 1 22rE H r 242dro r r where we know l is 0 or any positive integer

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 29 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions

We now choose to write our energies in the form Ry E H n2 where n for now is just an arbitrary real number We define a new distance unit sr where the parameter is 22 2 2 EH nao

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 30 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions

We therefore obtain an equation dn2 ll 1 1 22 0 ds s s 4 Then we write ssLsl1 exp s / 2 so we get dL2 dL ssl21 nlL 1 0 ds2 ds

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 31 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions

The technique to solve this equation dL2 dL ssl21 nlL 1 0 ds2 ds is to propose a power series in s The power series will go on forever and hence the function will grow arbitrarily unless it “terminates” at some finite power which requires that n is an integer, and nl1

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 32 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions

The normalizable solutions of dL2 dL ssl21 nlL 1 0 ds2 ds then become the finite power series known as the associated Laguerre polynomials nl1 21lq q nl ! Lsnl1 1 s q0 nlq 1! q 2 l 1! or equivalently p jqq pj ! Lsp 1 s q0 p q !!!j qq

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 33 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions

Now we can work back to construct the whole solution In our definition ssLs l1 exp s / 2 we now insert the associated Laguerre polynomials ll121 ssLsnl1 exp s / 2

where snar (2 /o ) Since our radial solution was rrRr we now have 1 Rr nas/2 sll121 L s exp s /2 onlr 1 ll21 sLnl1 sexp s / 2

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 34 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions - normalization

We formally introduce a normalization coefficient A so 1 Rrnas/2 sLll21 s exp s /2 onlA 1 The full normalization integral of the wavefunction URrYr ,

would be 2 2 1,sin RrY r 2 d ddr r000 but we have already normalized the spherical harmonics so we are left with the radial normalization

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 35 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions - normalization

Radial normalization would be 1 R22rrdr 0 2 2!nn l We could show sL221ll sexp ssds 2 nl1 0 nl 1! so the normalized radial wavefunction becomes

1/2 3 l nl1!22rrr21l 2 Rr Lnl1 exp 2!nn l na na na na oo o o

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 36 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen atom radial wavefunctions

We write the wavefunctions

using the Bohr radius ao as the unit of radial distance so we have a dimensionless radial distance

ra/ o and we introduce the subscripts n -the principal quantum number, and l -the angular momentum quantum number

to index the various functions Rn,l

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 37 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial wavefunctions - n = 1

Principal quantum number 2 n = 1 1.5 R R Angular momentum 1 1,0 quantum number l = 0 0.5

R1,0 2exp 0 5 10 15 Radius

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 38 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial wavefunctions - n = 2

l = 0 0.8 2 R 2exp/2 0.6 2,0 4 R 0.4 R2,0 l = 1 0.2 R2,1 6 R2,1 exp / 2 0 5 10 15 12 0.2

Radius

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 39 / 54 Particle in a central potential Internal states of the hydrogen atom

Radial wavefunctions - n = 3

l = 0 0.4 R 3,0 0.3 R R 3,0 23 2 2 0.2 32 exp /3 27 9 R3,1 0.1 R3,2 l = 1 62 R3,1 4exp/3 0 5 10 15 81 3 0.1 l = 2 230 Radius R 2 exp / 3 3,2 1215

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 40 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

1s

z n = 1 x l = 0 x - z m = 0 cross-section at y = 0

0.3 MMZ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 41 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

2s

z n = 2 x l = 0 x - z m = 0 cross-section at y = 0

0.3 MMZ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 42 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

2s

z n = 2 x l = 0 x - z m = 0 cross-section at y = 0

logarithmic1.2 MMZl intensity scale

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 43 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

2p

z n = 2 x l = 1 x - z m = 0 cross-section at y = 0

2 MMZ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 44 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

3s

z n = 3 x l = 0 x - z m = 0 cross-section at y = 0

.3 MMZ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 45 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

3s

z n = 3 x l = 0 x - z m = 0 cross-section at y = 0

logarithmic1.2 MMZl intensity scale

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 46 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

3p

z n = 3 x l = 1 x - z m = 0 cross-section at y = 0

2 MMZ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 47 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

3p

z n = 3 x l = 1 x - z m = 0 cross-section at y = 0

logarithmic1.5 MMZl intensity scale

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 48 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

3d

z n = 3 x l = 2 x - z m = 0 cross-section at y = 0

4 MMZ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 49 / 54 Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

3d

z n = 3 x l = 2 x - z m = 1 cross-section at y = 0

10 MMZ

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 50 / 54 Particle in a central potential Internal states of the hydrogen atom

Behavior of the complete hydrogen solutions

(i) The overall “size” of the wavefunctions becomes larger with larger n (ii) The number of zeros in the wavefunction is n – 1 The radial wavefunctions have n – l – 1 zeros and the spherical harmonics have l nodal “circles” The radial wavefunctions appear to have an additional zero at r = 0 for all l 1 , but this is already counted because the spherical harmonics have at least one nodal “circle” for all l 1 which already gives a zero as r 0 in these cases

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 51 / 54 Particle in a central potential Internal states of the hydrogen atom

Behavior of the complete hydrogen solutions

In summary of the quantum numbers for the so-called principal quantum number n 1, 2, 3, and ln 1 We already deduced that l is a positive or zero integer We also now know the eigenenergies Given the possible values for n Ry E H n2 Note the energy does not depend on l (or m)

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 52 / 54 Particle in a central potential Internal states of the hydrogen atom

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 53 / 54 Particle in a central potential Internal states of the hydrogen atom

TAKE HOME MESSAGE Angular momentum operators commute with Hamiltonian of particle in central field E.g. Coulomb field This implies that Lˆ 2 and one of Lˆ components can be chosen to have common eigenfunctions with Hamiltonian

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 54 / 54 vV\ ~ (kep" I C S , ~~V' ~ II ~~~tv) N\)\}ft,d\~ 6Mrl u.~~rtJ-toV\J>" ~e.A~~) \I\h\tj B

Angular Momentum in Spherical Coordinates

In this appendix, we will show how to derive the expressions of the v, the Laplacian v2, and the components of the orbital angular momentum in spherical coordinates.

B.I Derivation of Some General Relations

The Cartesian coordinates (x, y, z) of a vector r are related to its spherical polar coordinates (r,e,cp)by x = r sine cos cp, y = r sine sincp, z = r cose (R1)

The orthonormal Cartesian basis (x, y, z) is related to its spherical counterpart (r, e, rp) by

x = r sin e cos cp + e cos e cos cp - rp sin cp (B.2) y = r sin e sin cp+ e cos e sin cp+ rp cos cp, (B.3) z = r cas e - e sin e. (B.4)

Differentiating (RI), we obtain

dx = sine cos cpdr + r cose cos cpde - r sine sincp dcp (B.5) dy = sin e sin cpdr + r cos e sin cpde + r cos cpdcp, (B.6) dz = cosedr -rsinede. (R7)

Solving these equations for dr, de and d cp, we obtain

dr = sine cos cpdx + sine sincp dy + cos e dz (B.8) 1 . 1 1 de - cos e cos cpdx cos e sin cpdy - - sin e dz, (B.9) r + -r r

dcp = - s~cp dx + co.scp dy. (RIO) r sme r sme

633 634 B. ANGULAR MOMENTUM IN SPHERICAL COORDINATES

We can verify that (B.5) to (B.I 0) lead to ar aB I arp sm rp - = sinBcosrp, - = -cosrpcosB, - - --.-, (B.ll) ax ax I' ax I' sm B ar .. aB I alp cos rp - = smB smrp, - = - sinrp cosB, - = -.-, (B.12) ~ ~ I' ~ rsmB ar ae I arp - = cosB, - = -- sinB, - = 0, (B.13) az az I' az which, in turn, yield a --+--+--a ar a ae a arp ax ar ax aB ax arp ax

. a I a sin rp a = sm B cos rp- + - cos B cos rp- - -- -, (B.14) ar I' aB I' sin B aB a --+--+--a ar a ae a arp ay ar ay ae ay arp ay . a I a cos rp a = sm B sin rp- + - cos B sin rp- + --- (B.15) ar I' aB I' sin B arp, a a ar a ae a arp a sin B a -- + -- + -- = cosB- - ---. (B.16) az ar az aB az arp az ar ar aB

B.2 Gradient and Laplacian in Spherical Coordinates

We can show that a combination of (B.14) to (B.16) allows us to express the operator V in spherical coordinates:

\/=x-+y-+z-=r-+~ ~a ~a Aa Aa BAla--+rp--- A I a (B.17) ax ay az ar I' aB r sinB arp, and also the Laplacian operator \/2

\/ =\/\/= 1'-+--+--- . 1'-+--+--- (B.18) . ar r aB r sinrp arp ar r aB r sinB arp . 2 ~ ~ (~a e a ~ a) (A a e a ~ a) Now, using the relations

ap ae a~ -=0, (B.19) arparaB = 0,e,~ sinB, ar = 0, ar 8Pap ae. a~ = 0, (B.20) -aB = -r, aB ae _ A -a~ = -I'A' sm B - BAcos B , (B.21) arp =rpcosB, arp we can show that the Laplacian operator reduces to

\/ = - - r - + --- smB- + ---- . (B.22) 2 1'2I [aar ( 2 ara ) sinBI aea (. aBa ) sin2I e arp2a2] B.3. ANGULAR MOMENTUM IN SPHERICAL COORDINATES 635

B.3 Angular Momentum in Spherical Coordinates

The orbital angular momentum operator Z can be expressed in spherical coordinates as:

(B.23) L=RxP=(-ilir)rxV=(-ilir)rx [arar+;:-ae+rsinealpea ~ a] , or as

(B.24) L = -ili (~ :e - si~e aalp). Using (B.24) along with (B.2) to (BA), we express the components ix, Ly, Lz within the con- text of the spherical coordinates. For instance, the expression for Lx can be written as follows

Lx = x.L=-irt rsm COSlp+ cos coslp-lpsmlp . lp---.-- ae sme alp A A ~ h (A . e eA eA. ) (A a e a)

= iIi (sin lp~ae + cote cos lp~)alp . (B.25)

Similarly, we can easily obtain

Ly (B.26) ili (- cos lp~ae + cote Sinlp~)alp a -ili-. (B.27) alp

From the expressions (B.25) and (B.26) for ix and Ly, we infer, that

L+ = Lx + iLy = liez'P - + i cote- , (B.28) A A A . (aae alpa)

L_ = L - iL = lie-1'P - - i cote- . (B.29) A A x A y . (aae alpa)

The expression for Z 2 is

(B.30) it can be easily written in terms of the spherical coordinates as

L = -Ii --- sme- + ---- ; (B.3l) .~ 2 2 [ sine1 aea (. aea ) sin21 e alp2a2] this expression was derived by substituting (B.22) into (B.30). Note that, using the expression (B.30) for Z 2, we can rewrite V2 as

(B.32) V 2 = r21 ara ( r 2 ara ) - li2r21 L~ 2 = -;;1 ar2a2 r - li2r21 L~ 2 .