Lecture 5 Spin Hamiltonians Angular Momentum. Angular Momentum Operators in Matrix Representation

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 5 Spin Hamiltonians Angular Momentum. Angular Momentum Operators in Matrix Representation Lecture 5 Spin Hamiltonians Angular momentum. Angular momentum operators in matrix representation. Angular momentum as a spin of higher size. Spin Hamiltonians. Addition of angular momenta. Clebsh‐Gordun coefficients. 1) Angular momentum Hydrogen atom and its es (eigenstates) R radial part of wave function. θ, ϕ – spherical harmonic, angular part of w.f. – principal quantum number, defines energy level. ℓ ‐ angular momentum quantum number, defines magnitude of the angular momentum. projection quantum number, defines projection of angular momentum on axis z (taken as a convention). – orbital degeneracy number. Classical angular momentum ⃗ ⃗⃗. Quantum angular momentum is a vector operator with three components All these operators can be represented in spherical coordinates θ, ϕ. See textbook. Spherical harmonics are the eigenstates of operators and . From definition of angular momentum (eq.1) it can be shown that they satisfy the following relation. For a given ℓ , takes the numbers ℓ,ℓ1,..0,..,ℓ resulting in degeneracy 2ℓ1. 1 We can also introduce rising and lowering operator, which are defined and act as following: (see textbook for details) From the above relation one can see that the set of angular wave functions, ,…, ,…., , is a closed set, meaning that result of action of any angular momentum operator on can be expressed as a linear superposition of spherical harmonics from this set. So it is customary to speak about such objects as higher spins. We can create the corresponding matrix description of angular momentum (spin) rd operators in the basis of . See problems in Griffiths (3 ed. 4.34, 4.61, 4.62) . Let’s do this for a particle with the spin 1, that is with ℓ1. First I switch, for consistency, from spherical harmonics to z‐components of spin 1. and then use them as basis vectors The matrix for operator can be easily constructed. You can check that it acts on the basis vectors in accordance with eq.5. In the next step we find how rising and lowering operator acts on the basis vectors using eq. (8,9) Next we express , via , and construct the matrices. 2 Continuing this procedure, we get At this point we can equate meaning by a higher spin Generalization: 1) From atomic orbitals (spherical harmonics) we can construct matrices for operators with rank 0,3,5,7.. corresponding to operators with 0,1,2, …. Purely .. mathematically, using expression for raising and lowering operators we can get matrices for 1/2, 3/2,5/2,.. Most importantly we get op erators with the lowest non‐zero rank 1/2, that is starting from , get matrices for ,. This is remarkable, because we do not know how to write the wave function corresponding to say / 2) The same algebra of matrix operators works when we deal with elementary particles in high energy physics and in atomic physics. 3 2. Spin Hamiltonians s 2.1. Spin in magnetic field In general, μ⃗ γ⃗ , where μ⃗ magnetic moment, γ gyromagnetic ratio, ⃗ spin vector operator. || For spin ½ of electron μ⃗ g ⃗, where 2 so‐called g‐factor. Another popular notation convention used both for spin ½ and higher spin J. μμ , where is the total angular momentum or spin measured in integer of half‐integer ||ℏ numbers : ‐1,0,+1 or ‐1/2 , +1/2. And μ is Bohr magneton. Notice that ℏ is moved from spin to μ. The minus sign in eq.2 and gyromagnetic ratio appears because magnetic moment is antiparallel to spin angular momentum for an electron. (electron has negative charge) The energy of magnetic moment placed in magnetic field in classical EM is μ⃗⃗ In QM, it is replaced with operator Hamiltonian (and this is our first spin Hamiltonian) Problem: ⃗ 0,0, , at 0, spin is in the state , that is it point into positive x‐ direction. Q.1 Describe time evolution of the spin. Here Ωγ is Larmor frequency. 4 The state of the spin at 0, can be represented as Then its time evolution is given by the time evolution of the eigenstates, Q.2 Find ⟨⟩ average value of as a function of time. ℏ You can further show that Ω. So the physical picture is similar to the classical behavior. Spin rotates (precesses) around z axis in x‐y plane. Energy level splitting picture #1: Arrows indicate direction of magnetic moment. This picture is used in literature all the time. Energy level splitting picture #2. Arrows indicate direction of the spin. It is different for electron (negative particle) and proton (positive particle) 5 2.2 Spin Hamiltonians with the product term. Spin‐orbit, Heisenberg ….. The are many examples of physical systems where Hamiltonians depend on interaction between spins. Let’s give some examples. 1) Spin‐orbit coupling. Fine structure of hydrogen and other atoms. Griffiths p.299. I do not give all details just basics facts that allow us to write the Hamiltonian. Static charge. Electrical field acts on the charge, magnetic field on magnetic moment. However, moving electron experience Lorentz force ⃗⃗. There is a mirror effect. A particle moving in electrical field “sees” magnetic field ⃗ ⃗⃗. Handwave explanation: In our usual frame, electron rotates around proton. However, in the reference frame of electron, proton rotates around it and produces magnetic field in the electron position. The orbital motion of electron is related to its angular momentum. The Hamiltonian has the following form (actually it is a small correction to Coulomb potential). ⃗ and ⃗ characterize the same electron. 2) Hyperfine interaction (splitting) – interaction between spin of electron and spin of proton (nuclei) 6 Here we have two magnetic moments interacting with each other via dipole‐dipole magnetic interaction. Additional “contact” interaction occurs for s electrons, because they have finite probability to be found at the origin, where the proton (nuclei) is located. When ℓ0 one can find: 3) Heisenberg model In some approximation, the Hamiltonian of two interacting electrons in, say, diatomic molecule can be represented as: (Comm: we will derive this result) ⃗⃗ This Hamiltonian is known as the Heisenberg model. is the exchange constant. It can be both positive and negative. The Heisenberg model can be extended to the case of many spins in 1,2,3 dimension. Spin can be ½, 1, …. The model plays important role in the theory of magnetism. To summarize, we have a rather generic model Hamiltonian, which has the product of two vector operators. Let’s use the matrix method to solve it for the simplest case of two interacting ½ spins. Importantly, here we start dealing with many‐body QM, so the approach has many generic features. First, we simplify Hamiltonian using Pauli matrices. Plank constant are absorbed in . The basis vectors are formed as direct product of states of the first spin and the second spin. Notation with arrows are often used in literature. I prefer more explicit notation which specify the state and particle. For completeness I also list the number of the state in the Hamiltonian basis and corresponding column. 7 To compute matrix elements of H such as we need to find an action of individual Pauli matrices on individual spin states Let’s demonstrate how we find matrix element for Heisenberg Hamiltonian. The rule is each operator acts on its own spin sate 1 on 1, 2 on 2. Some intermediate results needed for computation of matrix elements. ∗ Matrix is Hermitian so . Here is what we get 8 We see that our matrix of rank 4 splits into three square matrices A, B, C of rank 1,2, and 1, respectively. The procedure of finding eigenstates and eigenvalues for these matrices can be done independently. We see that the eigenstates of the Hamiltonian can be split into two groups. The group with form multiplet corresponding to the total spin equal 1 (in ℏ units) and projections m=+1 for , m=‐1 for , and m=0 for /√2. (You will be asked to prove the last statement in the homework problem. ) This multiplet has the special name triplet. The state with 3 is called singlet The picture of the energy splitting when (positive) exchange interaction is present can be summarized as following. 9 3. Addition of angular momentums. The result that we have obtained for the Heisenberg model can be obtain in a simpler, as some think, method of the addition of angular momentums. I still believe the matrix method is much superior – it uncovers all details, allows to compute all parameters and does not need analogy with classical physics case often used in the textbooks. Still for the sake of completeness I would like to consider the addition method as well. We consider the spin‐orbit coupling term, where ⃗ is operator of the electron angular momentum and ⃗ its spin operator Next we introduce total angular momentum operator and make some manipulations. Our starting choice of the basis vectors is all combinations of angular momentum and spin component such as for example: ⃗ ⃗ The is not the eigenstate of the operator . However, we can go around this problem if we notice the following relations So, we found that operators , , , commute with ⃗ ⃗ and therefore they have the same eigenstates and eigenvalues. The Hamiltonian in the basis | ,, , ⟩ takes diagonal form. Eigenvalues can be computed using relations Which can be generalized for total angular momentum 10 So the eigenvalues of the ⃗⃗ take the form Let’s see how it works for the case we just have solved using the matrix method, 1/2, 1/2. Here we have two options for total angular momentum 1, 0. We some dropped common factor we have got the same results from the matrix method.
Recommended publications
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Representations of U(2O) and the Value of the Fine Structure Constant
    Symmetry, Integrability and Geometry: Methods and Applications Vol. 1 (2005), Paper 028, 8 pages Representations of U(2∞) and the Value of the Fine Structure Constant William H. KLINK Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA E-mail: [email protected] Received September 28, 2005, in final form December 17, 2005; Published online December 25, 2005 Original article is available at http://www.emis.de/journals/SIGMA/2005/Paper028/ Abstract. A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion- antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first order Casimir operator (corresponding to baryon number or charge). Eigenvectors and eigenvalues of the four-momentum operator are analyzed and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex. Key words: point form relativistic quantum mechanics; antisymmetric representations of infinite unitary groups; semidirect sum of unitary with Heisenberg algebra 2000 Mathematics Subject Classification: 22D10; 81R10; 81T27 1 Introduction With the exception of QCD and gravitational self couplings, all of the fundamental particle interaction Hamiltonians have the form of bilinears in fermion and antifermion creation and annihilation operators times terms linear in boson creation and annihilation operators. For example QED is a theory bilinear in electron and positron creation and annihilation operators and linear in photon creation and annihilation operators.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Angular Momentum 23.1 Classical Description
    Physics 342 Lecture 23 Angular Momentum Lecture 23 Physics 342 Quantum Mechanics I Monday, March 31st, 2008 We know how to obtain the energy of Hydrogen using the Hamiltonian op- erator { but given a particular En, there is degeneracy { many n`m(r; θ; φ) have the same energy. What we would like is a set of operators that allow us to determine ` and m. The angular momentum operator L^, and in partic- 2 ular the combination L and Lz provide precisely the additional Hermitian observables we need. 23.1 Classical Description Going back to our Hamiltonian for a central potential, we have p · p H = + U(r): (23.1) 2 m It is clear from the dependence of U on the radial distance only, that angular momentum should be conserved in this setting. Remember the definition: L = r × p; (23.2) and we can write this in indexed notation which is slightly easier to work with using the Levi-Civita symbol, defined as (in three dimensions) 8 < 1 for (ijk) an even permutation of (123). ijk = −1 for an odd permutation (23.3) : 0 otherwise Then we can write 3 3 X X Li = ijk rj pk = ijk rj pk (23.4) j=1 k=1 1 of 9 23.2. QUANTUM COMMUTATORS Lecture 23 where the sum over j and k is implied in the second equality (this is Einstein summation notation). There are three numbers here, Li for i = 1; 2; 3, we associate with Lx, Ly, and Lz, the individual components of angular momentum about the three spatial axes.
    [Show full text]
  • Hamilton Equations, Commutator, and Energy Conservation †
    quantum reports Article Hamilton Equations, Commutator, and Energy Conservation † Weng Cho Chew 1,* , Aiyin Y. Liu 2 , Carlos Salazar-Lazaro 3 , Dong-Yeop Na 1 and Wei E. I. Sha 4 1 College of Engineering, Purdue University, West Lafayette, IN 47907, USA; [email protected] 2 College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 3 Physics Department, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China; [email protected] * Correspondence: [email protected] † Based on the talk presented at the 40th Progress In Electromagnetics Research Symposium (PIERS, Toyama, Japan, 1–4 August 2018). Received: 12 September 2019; Accepted: 3 December 2019; Published: 9 December 2019 Abstract: We show that the classical Hamilton equations of motion can be derived from the energy conservation condition. A similar argument is shown to carry to the quantum formulation of Hamiltonian dynamics. Hence, showing a striking similarity between the quantum formulation and the classical formulation. Furthermore, it is shown that the fundamental commutator can be derived from the Heisenberg equations of motion and the quantum Hamilton equations of motion. Also, that the Heisenberg equations of motion can be derived from the Schrödinger equation for the quantum state, which is the fundamental postulate. These results are shown to have important bearing for deriving the quantum Maxwell’s equations. Keywords: quantum mechanics; commutator relations; Heisenberg picture 1. Introduction In quantum theory, a classical observable, which is modeled by a real scalar variable, is replaced by a quantum operator, which is analogous to an infinite-dimensional matrix operator.
    [Show full text]
  • H20 Maser Observations in W3 (OH): a Comparison of Two Epochs
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 7-13-2012 H20 Maser Observations in W3 (OH): A comparison of Two Epochs Steven Merriman DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Physics Commons Recommended Citation Merriman, Steven, "H20 Maser Observations in W3 (OH): A comparison of Two Epochs" (2012). College of Science and Health Theses and Dissertations. 31. https://via.library.depaul.edu/csh_etd/31 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. DEPAUL UNIVERSITY H2O Maser Observations in W3(OH): A Comparison of Two Epochs by Steven Merriman A thesis submitted in partial fulfillment for the degree of Master of Science in the Department of Physics College of Science and Health July 2012 Declaration of Authorship I, Steven Merriman, declare that this thesis titled, `H2O Maser Observations in W3OH: A Comparison of Two Epochs' and the work presented in it are my own. I confirm that: This work was done wholly while in candidature for a masters degree at Depaul University. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
    [Show full text]
  • Lecture 8 Symmetries, Conserved Quantities, and the Labeling of States Angular Momentum
    Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Today’s Program: 1. Symmetries and conserved quantities – labeling of states 2. Ehrenfest Theorem – the greatest theorem of all times (in Prof. Anikeeva’s opinion) 3. Angular momentum in QM ˆ2 ˆ 4. Finding the eigenfunctions of L and Lz - the spherical harmonics. Questions you will by able to answer by the end of today’s lecture 1. How are constants of motion used to label states? 2. How to use Ehrenfest theorem to determine whether the physical quantity is a constant of motion (i.e. does not change in time)? 3. What is the connection between symmetries and constant of motion? 4. What are the properties of “conservative systems”? 5. What is the dispersion relation for a free particle, why are E and k used as labels? 6. How to derive the orbital angular momentum observable? 7. How to check if a given vector observable is in fact an angular momentum? References: 1. Introductory Quantum and Statistical Mechanics, Hagelstein, Senturia, Orlando. 2. Principles of Quantum Mechanics, Shankar. 3. http://mathworld.wolfram.com/SphericalHarmonic.html 1 Symmetries, conserved quantities and constants of motion – how do we identify and label states (good quantum numbers) The connection between symmetries and conserved quantities: In the previous section we showed that the Hamiltonian function plays a major role in our understanding of quantum mechanics using it we could find both the eigenfunctions of the Hamiltonian and the time evolution of the system. What do we mean by when we say an object is symmetric?�What we mean is that if we take the object perform a particular operation on it and then compare the result to the initial situation they are indistinguishable.�When one speaks of a symmetry it is critical to state symmetric with respect to which operation.
    [Show full text]
  • Derivation of the Momentum Operator
    Physics H7C May 12, 2019 Derivation of the Momentum Operator c Joel C. Corbo, 2008 This set of notes describes one way of deriving the expression for the position-space representation of the momentum operator in quantum mechanics. First of all, we need to meet a new mathematical friend, the Dirac delta function δ(x − x0), which is defined by its action when integrated against any function f(x): Z 1 δ(x − x0)f(x)dx = f(x0): (1) −∞ In particular, for f(x) = 1, we have Z 1 δ(x − x0)dx = 1: (2) −∞ Speaking roughly, one can say that δ(x−x0) is a \function" that diverges at the point x = x0 but is zero for all other x, such that the \area" under it is 1. We can construct some interesting integrals using the Dirac delta function. For example, using Eq. (1), we find 1 1 Z −ipx 1 −ipy p δ(x − y)e ~ dx = p e ~ : (3) 2π −∞ 2π Notice that this has the form of a Fourier transform: 1 Z 1 F (k) = p f(x)e−ikxdx (4a) 2π −∞ 1 Z 1 f(x) = p F (k)eikxdk; (4b) 2π −∞ where F (k) is the Fourier transform of f(x). This means we can rewrite Eq. (3) as Z 1 1 ip (x−y) e ~ dx = δ(x − y): (5) 2π −∞ 1 Derivation of the Momentum Operator That's enough math; let's start talking physics. The expectation value of the position of a particle, in the position representation (that is, in terms of the position- space wavefunction) is given by Z 1 hxi = ∗(x)x (x)dx: (6) −∞ Similarly, the expectation value of the momentum of a particle, in the momentum representation (that is, in terms of the momentum-space wavefunction) is given by Z 1 hpi = φ∗(p)pφ(p)dp: (7) −∞ Let's try to calculate the expectation value of the momentum of a particle in the position representation (that is, in terms of (x), not φ(p)).
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • Quantum Mechanics of Atoms and Molecules Lectures, the University of Manchester 2005
    Quantum Mechanics of Atoms and Molecules Lectures, The University of Manchester 2005 Dr. T. Brandes April 29, 2005 CONTENTS I. Short Historical Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 I.1 Atoms and Molecules as a Concept . 1 I.2 Discovery of Atoms . 1 I.3 Theory of Atoms: Quantum Mechanics . 2 II. Some Revision, Fine-Structure of Atomic Spectra : : : : : : : : : : : : : : : : : : : : : 3 II.1 Hydrogen Atom (non-relativistic) . 3 II.2 A `Mini-Molecule': Perturbation Theory vs Non-Perturbative Bonding . 6 II.3 Hydrogen Atom: Fine Structure . 9 III. Introduction into Many-Particle Systems : : : : : : : : : : : : : : : : : : : : : : : : : 14 III.1 Indistinguishable Particles . 14 III.2 2-Fermion Systems . 18 III.3 Two-electron Atoms and Ions . 23 IV. The Hartree-Fock Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24 IV.1 The Hartree Equations, Atoms, and the Periodic Table . 24 IV.2 Hamiltonian for N Fermions . 26 IV.3 Hartree-Fock Equations . 28 V. Molecules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35 V.1 Introduction . 35 V.2 The Born-Oppenheimer Approximation . 36 + V.3 The Hydrogen Molecule Ion H2 . 39 V.4 Hartree-Fock for Molecules . 45 VI. Time-Dependent Fields : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48 VI.1 Time-Dependence in Quantum Mechanics . 48 VI.2 Time-dependent Hamiltonians . 50 VI.3 Time-Dependent Perturbation Theory . 53 VII.Interaction with Light : : : : : : : : : : : : : : : : : : : : : : :
    [Show full text]
  • Optical Pumping 1
    Optical Pumping 1 OPTICAL PUMPING OF RUBIDIUM VAPOR Introduction The process of optical pumping is a beautiful example of the interaction between light and matter. In the Advanced Lab experiment, you use circularly polarized light to pump a particular level in rubidium vapor. Then, using magnetic fields and radio-frequency excitations, you manipulate the population of the pumped state in a manner similar to that used in the Spin Echo experiment. You will determine the energy separation between the magnetic substates (Zeeman levels) in rubidium as well as determine the Bohr magneton and observe two-photon transitions. Although the experiment is relatively simple to perform, you will need to understand a fair amount of atomic physics and experimental technique to appreciate the signals you witness. A simple example of optical pumping Let’s imagine a nearly trivial atom: no nuclear spin and only one electron. For concreteness, you can think of the 4He+ ion, which is similar to a Hydrogen atom, but without the nuclear spin of the proton. Its ground state is 1S1=2 (n = 1,S = 1=2,L = 0, J = 1=2). Photon absorption can excite it to the 2P1=2 (n = 2,S = 1=2,L = 1, J = 1=2) state. If you place it in a magnetic field, the energy levels become split as indicated in Figure 1. In effect, each original level really consists of two levels with the same energy; when you apply a field, the “spin up” state becomes higher in energy, the “spin down” lower. The spin energy splitting is exaggerated on the figure.
    [Show full text]
  • Quantum State Detection of a Superconducting Flux Qubit Using A
    PHYSICAL REVIEW B 71, 184506 ͑2005͒ Quantum state detection of a superconducting flux qubit using a dc-SQUID in the inductive mode A. Lupașcu, C. J. P. M. Harmans, and J. E. Mooij Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands ͑Received 27 October 2004; revised manuscript received 14 February 2005; published 13 May 2005͒ We present a readout method for superconducting flux qubits. The qubit quantum flux state can be measured by determining the Josephson inductance of an inductively coupled dc superconducting quantum interference device ͑dc-SQUID͒. We determine the response function of the dc-SQUID and its back-action on the qubit during measurement. Due to driving, the qubit energy relaxation rate depends on the spectral density of the measurement circuit noise at sum and difference frequencies of the qubit Larmor frequency and SQUID driving frequency. The qubit dephasing rate is proportional to the spectral density of circuit noise at the SQUID driving frequency. These features of the back-action are qualitatively different from the case when the SQUID is used in the usual switching mode. For a particular type of readout circuit with feasible parameters we find that single shot readout of a superconducting flux qubit is possible. DOI: 10.1103/PhysRevB.71.184506 PACS number͑s͒: 03.67.Lx, 03.65.Yz, 85.25.Cp, 85.25.Dq I. INTRODUCTION A natural candidate for the measurement of the state of a flux qubit is a dc superconducting quantum interference de- An information processor based on a quantum mechanical ͑ ͒ system can be used to solve certain problems significantly vice dc-SQUID .
    [Show full text]