Pebblego Animals Article List

Total Page:16

File Type:pdf, Size:1020Kb

Pebblego Animals Article List PebbleGo Animals Article List AMPHIBIANS Humboldt Penguins Leaellynasaura Eoraptor Catfish Frogs Hummingbirds Leptoceratops Eotyrannus Clown Fish Mudpuppies Ibises Lexovisaurus Falcarius Coelacanths Newts King Penguins Lophorhothon Gallimimus Eels Salamanders Kingfishers Maiasaura Gasosaurus Great White Sharks Toads Kiwis Microceratus Giganotosaurus Hammerhead Sharks Little Penguins Micropachycephalosaurus Guanlong Mako Sharks ANIMAL BEHAVIOR Loons Minmi Herrerasaurus Megamouth Sharks Animal Communication Macaroni Penguins Montanoceratops Incisivosaurus Nurse Sharks Animals in the Fall Macaws Muttaburrasaurus Labocania Parrotfish Hibernation Magellanic Penguins Nedoceratops Liliensternus Piranhas Migration Orioles Nodosaurus Masiakasaurus Puffer Fish Nocturnal Animals Ostriches Olorotitan Metriacanthosaurus Salmon Owls Oryctodromeus Microraptor Sea Horses ANIMAL Parrots Ouranosaurus Neovenator Swordfish CLASSIFICATION Peacocks Pachycephalosaurus Ornithomimus Stingrays About Amphibians Pelicans Pachyrhinosaurus Ozraptor Tang Fish About Birds Pheasants Parasaurolophus Protarchaeopteryx Thresher Sharks About Fish Puffins Pawpawsaurus Rugops Tiger Sharks About Insects Quetzals Polacanthus Saurornitholestes Trout About Invertebrates Robins Protoceratops Shuvuuia Whale Sharks About Mammals Rockhopper Penguins Saurolophus Scelidosaurus Spinosaurus Wobbegongs About Reptiles Royal Penguins Scutellosaurus Suchomimus About Spiders Snares Penguins Shantungosaurus Therizinosaurus INSECTS AND Sparrows Stegosaurus Timimus SPIDERS ANIMAL HABITATS Swans Struthiosaurus Troodon Ants Desert Animals Toucans Stygimoloch Tyrannosaurus rex Beetles Grassland Animals Vultures Styracosaurus Variraptor Black Widow Spiders Ocean Animals Wild Turkeys Thescelosaurus Velociraptor Blue Morpho Butterflies Polar Animals Woodpeckers Torosaurus Xuanhanosaurus Bumblebees Rain Forest Animals Yellow-Eyed Penguins Triceratops Yaverlandia Cicadas Wetland Animals Tsintaosaurus Long-Necks Crickets Woodland Animals DINOSAURS Tuojiangosaurus Agustinia Dragonflies Beaked Dinosaurs Xiaosaurus Ampelosaurus Earwigs BIRDS Abrictosaurus Yingshanosaurus Apatosaurus Fireflies Adélie Penguins Aletopelta Zephyrosaurus Argentinosaurus Flies African Penguins Anchiceratops Bird-Like Dinosaurs Brachiosaurus Grasshoppers Arctic Terns Ankylosaurus Acrocanthosaurus Brachytrachelopan Honeybees Avocets Archaeoceratops Albertosaurus Camarasaurus Inchworms Birds of Paradise Centrosaurus Alioramus Cetiosauriscus Ladybugs Blue Jays Charonosaurus Allosaurus Diplodocus Mealworms Canada Geese Chungkingosaurus Alvarezsaurus Efraasia Millipedes Cardinals Corythosaurus Aucasaurus Futalognkosaurus Monarch Butterflies Chinstrap Penguins Dracorex Avimimus Huabeisaurus Mosquitoes Cranes Edmontonia Bambiraptor Magyarosaurus Moths Crows Edmontosaurus Baryonyx Omeisaurus Painted Lady Butterflies Dodo Birds Euoplocephalus Beipiaosaurus Buitreraptor Paralititan Praying Mantises Ducks Gasparinisaura Carcharodontosaurus Plateosaurus Silkworms Eagles Gastonia Carnotaurus Rhoetosaurus Tarantulas Emperor Penguins Gigantspinosaurus Caudipteryx Saltasaurus Termites Emus Graciliceratops Coelophysis Saturnalia Trapdoor Spiders Erect-Crested Penguins Hadrosaurus Coelurus Sauroposeidon Walking Sticks Falcons Hesperosaurus Compsognathus Suuwassea Wasps Fiordland Penguins Hexinlusaurus Cryolophosaurus Thecodontosaurus Wolf Spiders Flamingos Huayangosaurus Dahalokely Galapagos Penguins Hypsilophodon Daspletosaurus FISH Continued… Gentoo Penguins Iguanodon Deinocheirus Angelfish Grouse Kentrosaurus Deinonychus Barracudas Hawks Kritosaurus Deltadromeus Basking Sharks Herons Lambeosaurus Blue Sharks For more information, visit www.pebblego.com. PebbleGo Animals Article List (continued) INVERTEBRATES Cuscus Sloths Persian Cats Anemones Deer Snow Leopards Pet Birds Centipedes Dingoes Snowshoe Hare Pet Fish Corals Dolphins Sperm Whales Pet Rabbits Crabs Echidnas Spider Monkeys Pigs Crayfish Giant Pandas Squirrels Pitbulls Cuttlefish Gibbons Sugar Gliders Poodles Earthworms Giraffes Sun Bears Pugs Earwigs Gorillas Tapirs Sheep Giant Clams Gray Foxes Tasmanian Devils Shetland Ponies Giant Spider Crabs Gray Whales Tigers Shih Tzus Jellyfish Grizzly Bears Walruses Siamese Cat Lobsters Hedgehogs Wolverines Sphynx Cats Octopuses Hippopotamuses Wolves Thoroughbred Horses Oysters Howler Monkeys Wombats Yaks Pillbugs Humpback Whales Woodchucks Yorkshire Terriers Scorpions Hyenas Yaks Sea Stars Jackals Zebras REPTILES Sea Wasps Jackrabbits Alligators Snails Jaguars PETS AND FARM Anacondas Squid Kangaroos ANIMALS Bearded Dragons Tube Worms Killer Whales American Quarter Boa Constrictors Kinkajous Horses Chameleons MAMMALS Koalas American Saddlebred Cobras Aardvarks Lemmings Horses Copperheads African Elephants Lemurs American Shorthair Coral Snakes Amur Leopards Leopards Cats Cottonmouths Anteaters Lions American Staffordshire Crocodiles Antelope Lynx Terriers Emerald Tree Boas Arctic Foxes Manatees Appaloosa Horses Garter Snakes Arctic Hares Meerkats Arabian Horses Geckos Armadillos Mice Bichons Frises Gila Monsters Asian Elephants Moles Boxers Iguanas Aye-Aye Moose Bulldogs Komodo Dragons Baboons Musk Burmese Cats Mambas Badgers Narwhals Chickens Pythons Bats Oxen Chihuahuas Rattlesnakes Beavers Muskrats Chinchillas Sea Snakes Beluga Whales Naked Mole-Rat Cocker Spaniels Sea Turtles Bengal Tigers Ocelots Collies Turtles Bison Okapis Cows Black Bears Opossums Dachshunds Blue Whales Orangutans Donkeys Bobcats Platypuses Ferrets Bonobos Polar Bears Geese Camels Porcupines Gerbils Capybaras Prairie Dogs German Shepherds Caracals Raccoons Goats Caribou Red Foxes Golden Retrievers Chamois Red Pandas Guinea Pigs Cheetahs Red Wolves Hamsters Chimpanzees Rhinoceroses Hermit Crabs Chinchillas River Otters Labrador Retrievers Chipmunks Sea Lions Llamas Civets Sea Otters Maine Coon Cats Coatis Seals Manx Cats Cougars Servals Mules Coyotes Skunks Palomino Horses For more information, visit www.pebblego.com..
Recommended publications
  • Jurassic Park" Have Come to Pass
    JURASSIC WORLD and INDOMINUS REX 0. JURASSIC WORLD and INDOMINUS REX - Story Preface 1. EARLY DINOSAUR DISCOVERIES 2. THE JURASSIC PERIOD 3. JURASSIC-ERA DINOSAURS 4. FOSSILIZED AMBER 5. THE SOLNHOFEN LIMESTONE 6. TYRANNOSAURUS REX 7. T-REX - SUE 8. PTERANODON 9. TRICERATOPS 10. VELOCIRAPTOR 11. SPINOSAURUS 12. DINOSAUR TRACKS AND DISPUTES 13. NEW DINOSAUR DISCOVERIES 14. JURASSIC WORLD and INDOMINUS REX What do you do when you want to boost visitor attendance to your dinosaur-dominated, Jurassic World theme park? Use DNA, from four different dinosaurs, and “in the Hammond lab” create something entirely new and fearsome. Then ... give the new creature a name which signifies its awesome power: Indominus rex. At least ... that’s how the story theme works in the 2015 film “Jurassic World.” So ... let’s travel back in time, to the age of the dinosaurs, and meet the four interesting creatures whose DNA led to this new and ferocious predator: Rugops; Carnotaurus; Giganotosaurus; Majungasaurus. If—contrary to plan—Indominus rex becomes a killing machine, we have to ask: Did she “inherit” that trait from her “ancestors?” Let’s examine the question, starting with Rugops (ROO-gops). What we know about this theropod, from a physical standpoint, comes from a single, nearly complete and fossilized skull. With its weak but gaping jaw and skull, Rugops—which means “wrinkle face”—is not a predator like the Cretaceous-Period Spinosaurus. Instead, Rugops is a natural-born scavenger, likely waiting in the wings for what’s left of a Spinosaurus-caught, Cretaceous-era fish known as Onchopristis. Living off the scraps of meals, killed by another creature, could be enough for a Rugops.
    [Show full text]
  • Sereno 20060098.Vp
    Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger PAUL C. SERENO and STEPHEN L. BRUSATTE Sereno, P.C. and Brusatte, S.L. 2008. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica 53 (1): 15–46. We report the discovery of basal abelisaurid and carcharodontosaurid theropods from the mid Cretaceous (Aptian– Albian, ca. 112 Ma) Elrhaz Formation of the Niger Republic. The abelisaurid, Kryptops palaios gen. et sp. nov., is repre− sented by a single individual preserving the maxilla, pelvic girdle, vertebrae and ribs. Several features, including a maxilla textured externally by impressed vascular grooves and a narrow antorbital fossa, clearly place Kryptops palaios within Abelisauridae as its oldest known member. The carcharodontosaurid, Eocarcharia dinops gen. et sp. nov., is repre− sented by several cranial bones and isolated teeth. Phylogenetic analysis places it as a basal carcharodontosaurid, similar to Acrocanthosaurus and less derived than Carcharodontosaurus and Giganotosaurus. The discovery of these taxa sug− gests that large body size and many of the derived cranial features of abelisaurids and carcharodontosaurids had already evolved by the mid Cretaceous. The presence of a close relative of the North American genus Acrocanthosaurus on Af− rica suggests that carcharodontosaurids had already achieved a trans−Tethyan distribution by the mid Cretaceous. Key words: Theropod, abelisaurid, allosauroid, carcharodontosaurid, Kryptops, Eocarcharia, Cretaceous, Africa. Paul C. Sereno [[email protected]], Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, Illinois, 60637, USA; Stephen L. Brusatte [[email protected]], Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom.
    [Show full text]
  • Fused and Vaulted Nasals of Tyrannosaurid Dinosaurs: Implications for Cranial Strength and Feeding Mechanics
    Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics ERIC SNIVELY, DONALD M. HENDERSON, and DOUG S. PHILLIPS Snively, E., Henderson, D.M., and Phillips, D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51 (3): 435–454. Tyrannosaurid theropods display several unusual adaptations of the skulls and teeth. Their nasals are fused and vaulted, suggesting that these elements braced the cranium against high feeding forces. Exceptionally high strengths of maxillary teeth in Tyrannosaurus rex indicate that it could exert relatively greater feeding forces than other tyrannosaurids. Areas and second moments of area of the nasals, calculated from CT cross−sections, show higher nasal strengths for large tyrannosaurids than for Allosaurus fragilis. Cross−sectional geometry of theropod crania reveals high second moments of area in tyrannosaurids, with resulting high strengths in bending and torsion, when compared with the crania of similarly sized theropods. In tyrannosaurids trends of strength increase are positively allomeric and have similar allometric expo− nents, indicating correlated progression towards unusually high strengths of the feeding apparatus. Fused, arched nasals and broad crania of tyrannosaurids are consistent with deep bites that impacted bone and powerful lateral movements of the head for dismembering prey. Key words: Theropoda, Carnosauria, Tyrannosauridae, biomechanics, feeding mechanics, computer modeling, com− puted tomography. Eric Snively [[email protected]], Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Donald M. Henderson [[email protected]], Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta T0J 0Y0, Canada; Doug S.
    [Show full text]
  • The Braincase, Brain and Palaeobiology of the Basal Sauropodomorph Dinosaur Thecodontosaurus Antiquus
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–22. With 10 figures. Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa157/6032720 by University of Bristol Library user on 14 December 2020 The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus ANTONIO BALLELL1,*, J. LOGAN KING1, JAMES M. NEENAN2, EMILY J. RAYFIELD1 and MICHAEL J. BENTON1 1School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK 2Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Received 27 May 2020; revised 15 October 2020; accepted for publication 26 October 2020 Sauropodomorph dinosaurs underwent drastic changes in their anatomy and ecology throughout their evolution. The Late Triassic Thecodontosaurus antiquus occupies a basal position within Sauropodomorpha, being a key taxon for documenting how those morphofunctional transitions occurred. Here, we redescribe the braincase osteology and reconstruct the neuroanatomy of Thecodontosaurus, based on computed tomography data. The braincase of Thecodontosaurus shares the presence of medial basioccipital components of the basal tubera and a U-shaped basioccipital–parabasisphenoid suture with other basal sauropodomorphs and shows a distinct combination of characters: a straight outline of the braincase floor, an undivided metotic foramen, an unossified gap, large floccular fossae, basipterygoid processes perpendicular to the cultriform process in lateral view and a rhomboid foramen magnum. We reinterpret these braincase features in the light of new discoveries in dinosaur anatomy. Our endocranial reconstruction reveals important aspects of the palaeobiology of Thecodontosaurus, supporting a bipedal stance and cursorial habits, with adaptations to retain a steady head and gaze while moving.
    [Show full text]
  • New Heterodontosaurid Remains from the Cañadón Asfalto Formation: Cursoriality and the Functional Importance of the Pes in Small Heterodontosaurids
    Journal of Paleontology, 90(3), 2016, p. 555–577 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.24 New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids Marcos G. Becerra,1 Diego Pol,1 Oliver W.M. Rauhut,2 and Ignacio A. Cerda3 1CONICET- Museo Palaeontológico Egidio Feruglio, Fontana 140, Trelew, Chubut 9100, Argentina 〈[email protected]〉; 〈[email protected]〉 2SNSB, Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental Sciences, LMU München, Richard-Wagner-Str. 10, Munich 80333, Germany 〈[email protected]〉 3CONICET- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), Cipolletti, Río Negro, Argentina 〈[email protected]〉 Abstract.—New ornithischian remains reported here (MPEF-PV 3826) include two complete metatarsi with associated phalanges and caudal vertebrae, from the late Toarcian levels of the Cañadón Asfalto Formation. We conclude that these fossil remains represent a bipedal heterodontosaurid but lack diagnostic characters to identify them at the species level, although they probably represent remains of Manidens condorensis, known from the same locality. Histological features suggest a subadult ontogenetic stage for the individual. A cluster analysis based on pedal measurements identifies similarities of this specimen with heterodontosaurid taxa and the inclusion of the new material in a phylogenetic analysis with expanded character sampling on pedal remains confirms the described specimen as a heterodontosaurid. Finally, uncommon features of the digits (length proportions among nonungual phalanges of digit III, and claw features) are also quantitatively compared to several ornithischians, theropods, and birds, suggesting that this may represent a bipedal cursorial heterodontosaurid with gracile and grasping feet and long digits.
    [Show full text]
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • Dinosaurios Dinosaurios 6,50 EURO
    0 3 0 Dinosaurios 0 Dinosaurios 0 8 6 6 5 5 3 1 1 4 8 7 7 trimestre 2002 o 9 4 6,50 EURO I. ORIGEN Y DIVERSIFICACION 4 Dinosaurios gigantes de la Patagonia Leonardo Salgado y Rodolfo Coria 10 Los señores de los mares jurásicos Ryosuke Motani 18 Dinosaurios del Jurásico de América del Sur José F. Bonaparte 30 Dinosaurios polares de Australia Patricia Vickers-Rich y Thomas Hewitt Rich 36 Origen de los dinosaurios Fernando E. Novas II. COMPORTAMIENTO, EVOLUCION Y EXTINCION Sumario 46 Reptiles y mamíferos del Mesozoico de Madagascar John J. Flynn y André R. Wyss 56 Así vivía Tyrannosaurus rex Gregory M. Erickson 64 El origen de las aves y su vuelo Kevin Padian y Luis M. Chiappe 74 Reconstrucción del ataque de un dinosaurio David A. Thomas y James O. Farlow 80 Dinosaurios a la carrera R. McNeill Alexander 88 El impacto de un cuerpo extraterrestre Walter Alvarez y Frank Asaro ORIGEN Y DIVERSIFICACION LEONARDO SALGADO Y RODOLFO CORIA Dinosaurios gigantes de la Patagonia Hace millones de años, los dinosaurios se enseñorearon del planeta. Los saurópodos prosperaron en la Patagonia argentina, dejando innumerables restos óseos y huevos que dan testimonio de su diversidad y comportamiento Leonardo Salgado y Rodolfo Coria no de los aspectos de los dino- iban desde piezas delgadas y cilín- cia Fernández, en donde afloran se- saurios que más atraen la dricas hasta gruesas y espatuladas. dimentitas de la formación Cañadón U atención es el imponente ta- Todas las piezas dentarias de sau- Asfalto, de una antigüedad estimati- maño.
    [Show full text]