Evolution of Batteries: from Experiments to Everyday Usage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discovery of Radio Waves 1887 Static Electricity
Heinrich Hertz (1857 - 1894) Discovery of Radio Waves 1887 Static Electricity • Thales of Miletus (624 – 526 BC) – Two pieces of amber rubbed with wool or two pieces of glass rubbed with silk would repel each other. • We now know that the amber removes electrons from the wool and becomes negatively charged. • Similarly, the glass becomes positively charged, having given up electrons to the silk. – Also, the amber would be attracted to the glass and the wool to the silk. Static Electricity Magnetism • Thales of Miletus (624-526 BCE) • Described the lodestone • China in 100 BCE used the magnetic compass. • By convention, the direction of a magnetic field (S -> N) is indicated by a compass needle. Galileo Galilei (1564 – 1642) • One of the earliest “scientists”, dared to “tinker with nature”, rather than merely observing it. • Observed moons of Jupiter, and supported the Copernican hypothesis. Isaac Newton (1642 – 1727) • Invented calculus to describe gravitation. • Demonstrated that white light is a mixture of colours. • Postulated that light is a stream of corpuscles. • Invented the Newtonian telescope. Static Electricity • 1663 – The earliest friction machines rubbed a glass sphere against wool. • 1733 – Charles Francois du Fay (1698 – 1739) postulated that there were two kinds of electrical fluid – vitreous and resinous Static Electricity • 1733 – The Leyden jar invented in Holland could store charges from generators. • Spurred much research into static electricity. Static Electricity • Benjamin Franklin (1705 - 1790) • 1751 - Lightning was static electricity • Arbitrarily defined Vitreous as “positive” • Resinous, “negative” • Theory of charge conservation Static Electricity • Luigi Galvani (1737–1798) • 1770 - Discovered that static electricity from a Leyden jar could make frog’s legs twitch. -
The Stage Is Set
The Stage Is Set: Developments before 1900 Leading to Practical Wireless Communication Darrel T. Emerson National Radio Astronomy Observatory1, 949 N. Cherry Avenue, Tucson, AZ 85721 In 1909, Guglielmo Marconi and Carl Ferdinand Braun were awarded the Nobel Prize in Physics "in recognition of their contributions to the development of wireless telegraphy." In the Nobel Prize Presentation Speech by the President of the Royal Swedish Academy of Sciences [1], tribute was first paid to the earlier theorists and experimentalists. “It was Faraday with his unique penetrating power of mind, who first suspected a close connection between the phenomena of light and electricity, and it was Maxwell who transformed his bold concepts and thoughts into mathematical language, and finally, it was Hertz who through his classical experiments showed that the new ideas as to the nature of electricity and light had a real basis in fact.” These and many other scientists set the stage for the rapid development of wireless communication starting in the last decade of the 19th century. I. INTRODUCTION A key factor in the development of wireless communication, as opposed to pure research into the science of electromagnetic waves and phenomena, was simply the motivation to make it work. More than anyone else, Marconi was to provide that. However, for the possibility of wireless communication to be treated as a serious possibility in the first place and for it to be able to develop, there had to be an adequate theoretical and technological background. Electromagnetic theory, itself based on earlier experiment and theory, had to be sufficiently developed that 1. -
Alessandro Volta and the Discovery of the Battery
1 Primary Source 12.2 VOLTA AND THE DISCOVERY OF THE BATTERY1 Alessandro Volta (1745–1827) was born in the Duchy of Milan in a town called Como. He was raised as a Catholic and remained so throughout his life. Volta became a professor of physics in Como, and soon took a significant interest in electricity. First, he began to work with the chemistry of gases, during which he discovered methane gas. He then studied electrical capacitance, as well as derived new ways of studying both electrical potential and charge. Most famously, Volta discovered what he termed a Voltaic pile, which was the first electrical battery that could continuously provide electrical current to a circuit. Needless to say, Volta’s discovery had a major impact in science and technology. In light of his contribution to the study of electrical capacitance and discovery of the battery, the electrical potential difference, voltage, and the unit of electric potential, the volt, were named in honor of him. The following passage is excerpted from an essay, written in French, “On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds,” which Volta sent in 1800 to the President of the Royal Society in London, Joseph Banks, in hope of its publication. The essay, described how to construct a battery, a source of steady electrical current, which paved the way toward the “electric age.” At this time, Volta was working as a professor at the University of Pavia. For the excerpt online, click here. The chief of these results, and which comprehends nearly all the others, is the construction of an apparatus which resembles in its effects viz. -
Deep Cycle Battery Frequently Asked Questions
DEEP CYCLE BATTERY FREQUENTLY ASKED QUESTIONS DEEP CYCLE BATTERY FAQ The links below are on this page - you can also just scroll down if you want to read them all. This entire page is copyright 1998-2014 by Northern Arizona Wind & Sun. Please do not use without prior permission. • What is a Battery? • Types of Batteries • Battery Lifespan • Starting, Marine, or Deep Cycle? • Deep Cycle Battery as a Starting Battery? • What Batteries are made of • Industrial Deep Cycle Batteries (fork lift type) • Sealed Batteries • Battery Size Codes • Gel Cells (Gelled Electrolyte) (and why we don't like them) • AGM Batteries (and why we do like them) • Temperature Effects • Cycles vs Lifespan • Amp-Hours - what are they? • Battery Voltages • Battery Charging (Here is where we get into the real meat) • Charge Controllers (for wind/solar) • Mini Factoids - Some small facts about batteries The subject of batteries could take up many pages. All we have room for here is a basic overview of batteries commonly used with photovoltaic power systems. These are nearly all various variations of Lead-Acid batteries. For a very brief discussion on the advantages and disadvantages of these and other types of batteries, such as NiCad, NiFe (Nickel-Iron), etc. go to our Batteries for Deep Cycle Applications page. These are sometimes referred to as "deep discharge" or "deep cell" batteries. The correct term is deep cycle. A printable version of this page will be available in Adobe PDF format when we finish updating this page for downloading and printing: Most of the charts have small images for faster downloading. -
Battery Technologies for Small Scale Embeded Generation
Battery Technologies for Small Scale Embedded Generation. by Norman Jackson, South African Energy Storage Association (SAESA) Content Provider – Wikipedia et al Small Scale Embedded Generation - SSEG • SSEG is very much a local South African term for Distributed Generation under 10 Mega Watt. Internationally they refer to: Distributed generation, also distributed energy, on-site generation (OSG) or district/decentralized energy It is electrical generation and storage performed by a variety of small, grid- connected devices referred to as distributed energy resources (DER) Types of Energy storage: • Fossil fuel storage • Thermal • Electrochemical • Mechanical • Brick storage heater • Compressed air energy storage • Cryogenic energy storage (Battery Energy • Fireless locomotive • Liquid nitrogen engine Storage System, • Flywheel energy storage • Eutectic system BESS) • Gravitational potential energy • Ice storage air conditioning • Hydraulic accumulator • Molten salt storage • Flow battery • Pumped-storage • Phase-change material • Rechargeable hydroelectricity • Seasonal thermal energy battery • Electrical, electromagnetic storage • Capacitor • Solar pond • UltraBattery • Supercapacitor • Steam accumulator • Superconducting magnetic • Thermal energy energy storage (SMES, also storage (general) superconducting storage coil) • Chemical • Biological • Biofuels • Glycogen • Hydrated salts • Starch • Hydrogen storage • Hydrogen peroxide • Power to gas • Vanadium pentoxide History of the battery This was a stack of copper and zinc Italian plates, -
Leyden Jars and Batteries According to Benjamin Franklin
eRittenhouse The Art of Making Leyden Jars and Batteries According to Benjamin Franklin Sara J. Schechner David P. Wheatland Curator of the Collection of Historical Scientific Instruments Department of the History of Science, Harvard University [email protected] Abstract The Leyden jar was arguably the most important instrument for electrical experiments in the second half of the 18th century, and Benjamin Franklin’s fame as a natural philosopher was based largely on his explanation of how it worked. In two remarkable letters written in the 1750s to scholars in Boston, Franklin offers instruction on the making of Leyden jars and assembling them into batteries. The letters also illustrate the challenges of getting and maintaining natural philosophical apparatus in colonial America, and a culture of recycling goods in order to make do. In the 1750s, Benjamin Franklin sent supplies and instructions for making Leyden jars to James Bowdoin, a Boston merchant and statesman interested in natural philosophy,1 and to John Winthrop, Hollis Professor of Mathematics and Natural Philosophy at Harvard College. Given the importance of Leyden jars to the development of Franklin’s own electrical theory, we are curious to know how Franklin made his own and what his recommendations might have been. The letters also illustrate the culture of repurposing goods and bricolage that was part of early modern science, particularly in the American colonies.2 1 James Bowdoin (1726-1790) was elected to the Massachusetts House of Representatives in 1753 and in 1757 began decades of service in the Council. His later leadership positions included governorship of the Commonwealth of Massachusetts in 1785-1787. -
Lesson 04 Capacitors Inductors Antennas
Sierra College CIE-01 Jim Weir 530.272.2203 Lesson 04 [email protected] www.rstengineering.com/sierra Capacitors Inductors Antennas Capacitors A capacitor is two conductors separated by an insulator. That's pretty generic, isn't it? For example, you are a salt water sack (conductor) separated from your lab partner by an insulator (air). Does that make you two a capacitor? You bet. How about your automobile (steel) separated from the earth (conductor) by rubber tires? Yup (anybody old enough to remember "grounding straps"?). How about the earth and the moon separated by space? You bet. Going to the other extreme, how about two copper atoms separated by the "nothingness" of a billionth of an inch inside the copper molecule? You got it. One of the first capacitors was the Leyden jar, so named because it was invented by Pieter van Musschenbroek of the University of Leyden, Netherlands in 1745. It consisted of an outer metal shell, a glass jar, and an inner metal plate. Two brass conductors separated by a glass insulator. Because at the time it was thought to "condense" the "vapors of electricity" into a jar, it was originally called a "condenser", a name that was used for this electrical device up until the 1950s when the modern word capacitor became the preferred nomenclature. Page 1 of 16 Benjamin Franklin (late, of Philadelphia) did some experimentation with atmospheric static electricity. Franklin used the static electricity to first attract the small pith ball to the Leyden jar's "bell", and then after it was charged, it was repelled to the "grounding" bell, then reattracted to the jar bell, and so on until the static charge was dissipated. -
Voltaic Battery
Voltaic Battery ON THE CONNECTION OF THE PHYSICAL SCIENCES Pgs. 290 – 297 BY MARY SOMERVILLE Voltaic electricity is of that peculiar kind which is elicited by the force of chemical action. It is connected with one of the most brilliant periods of British science, from the splendid discoveries to which it led Sir Humphry Davy; and it has acquired additional interest since the discovery of the reciprocal action of Voltaic and magnetic currents, which has proved that magnetism is only an effect of electricity, and that it has no existence as a distinct or separate principle. Consequently Voltaic electricity, as immediately connected with the theory of the earth and planets, forms a part of the physical account of their nature. In 1790, while Galvani, Professor of Anatomy in Bologna, was making experiments on electricity, he was surprised to see convulsive motions in the limbs of a dead frog accidentally lying near the machine during an electrical discharge. Though a similar action had been noticed long before his time, he was so much struck with this singular phenomenon, that he examined all the circumstances carefully, and at length found that convulsions take place when the nerve and muscle of a frog are connected by a metallic conductor. This excited the attention of all Europe; and it was not long before Professor Volta of Pavia showed that the mere contact of different bodies is sufficient to disturb electrical equilibrium, and that a current of electricity flows in one direction through a circuit of three conducting substances. From this he was led, by acute reasoning and experiment, to the construction of the Voltaic pile, which, in its early form, consisted of alternate discs of zinc and copper, separated by pieces of wet cloth, the extremities being connected by wires. -
01. Franklin Intro 9/04
Franklin and Electrostatics- Ben Franklin as my Lab Partner A Workshop on Franklin’s Experiments in Electrostatics Developed at the Wright Center for Innovative Science Teaching Tufts University Medford MA 02155 by Robert A. Morse, Ph.D. ©2004 Sept 2004 Benjamin Franklin observing his lightning alarm. Described in Section VII. Engraving after the painting by Mason Chamberlin, R. A. Reproduced from Bigelow, 1904 Vol. VII Franklin and Electrostatics version 1.3 ©2004 Robert A. Morse Wright Center for Science Teaching, Tufts University Section I- page 1 Copyright and reproduction Copyright 2004 by Robert A. Morse, Wright Center for Science Education, Tufts University, Medford, MA. Quotes from Franklin and others are in the public domain, as are images labeled public domain. These materials may be reproduced freely for educational and individual use and extracts may be used with acknowledgement and a copy of this notice.These materials may not be reproduced for commercial use or otherwise sold without permission from the copyright holder. The materials are available on the Wright Center website at www.tufts.edu/as/wright_center/ Acknowledgements Rodney LaBrecque, then at Milton Academy, wrote a set of laboratory activities on Benjamin Franklin’s experiments, which was published as an appendix to my 1992 book, Teaching about Electrostatics, and I thank him for directing my attention to Franklin’s writing and the possibility of using his experiments in teaching. I would like to thank the Fondation H. Dudley Wright and the Wright Center for Innovative Science Teaching at Tufts University for the fellowship support and facilities that made this work possible. -
The Silicon Solar Cell Turns 50
TELLING THE WORLD On April 25, 1954, proud Bell executives held a press conference where they impressed the media with the Bell Solar Battery powering a radio transmitter that was broadcasting voice and music. One journalist thought it important for the public to know that “linked together Daryl Chapin, Calvin Fuller, and Gerald Chapin began work in February 1952, electrically, the Bell solar cells deliver Pearson likely never imagined inventing but his initial research with selenium power from the sun at the rate of a solar cell that would revolutionize the was unsuccessful. Selenium solar cells, 50 watts per square yard, while the photovoltaics industry. There wasn’t the only type on the market, produced atomic cell announced recently by even a photovoltaics industry to revolu- too little power—a mere 5 watts per the RCA Corporation merely delivers tionize in 1952. square meter—converting less than a millionth of a watt” over the same 0.5% of the incoming sunlight into area. An article in U.S. News & World The three scientists were simply trying electricity. Word of Chapin’s problems Report speculated that one day such to solve problems within the Bell tele- came to the attention of another Bell silicon strips “may provide more phone system. Traditional dry cell researcher, Gerald Pearson. The two power than all the world’s coal, oil, batteries, which worked fine in mild scientists had been friends for years. and uranium.” The New York Times climates, degraded too rapidly in the They had attended the same university, probably best summed up what Chapin, tropics and ceased to work when needed. -
Radioactive Batteries
Radioactive Batteries A Battery That Lasts For minimum of 20 Years (1. Joe Jeyaseelan A, [email protected] 2. Mouleeswaran, [email protected]) Abstract: Nuclear batteries run off of the continuous A. Thermionic Converter radioactive decay of certain elements. These incredibly long- lasting batteries are still in the theoretical and developmental stage of existence, but they promise to provide clean, safe, almost endless energy. They have been designed for personal use as well as for civil engineering, aeronautics, and medical treatments. The almost magical production of electricity in nuclear batteries is made possible by the process of betavoltaics. Through this technology, the electrons that radioactive isotopes regularly lose due to decay can be harnessed and directed into a stream of electricity. A semiconductor, possibly made from silicon, catches the flying electrons and directs them into a steady power source. Even a small amount of radioactive material will provide a charge for a very long time before it expires. Index terms: Radioactivity, RTG, Battery, Betavoltaics, Isotopes. I. INTRODUCTION The terms atomic battery, nuclear battery, tritium battery and radioisotope generator are used to describe a device which uses energy from the decay of a radioactive isotope to generate electricity. Like nuclear reactors they generate electricity from atomic energy, but differ in that they do not use a chain reaction. Compared to other batteries they are very costly, but have extremely long life and high energy density, and so they are mainly used as power sources for equipment that must operate unattended for long periods of time, such as spacecraft, pacemakers, underwater systems and automated scientific stations in remote parts of the world. -
Atomic Batteries: a Compact and Long Life Power Source
ATOMIC BATTERIES: A COMPACT AND LONG LIFE POWER SOURCE 1 2 3 Nikhil S. Mane , N. V. Hargude , Vishal P. Patil , 1,2,3Assistant Professor,Department of Mechanical Engg.,PVPIT, Budhgaon ,(India) ABSTRACT The energy demand has been increased tremendously in last few decades, though new renewable technologies are adopted but they are not sufficient to fulfill the demand hence there is a need of new power sources. Nuclear energy drawn attention in last century, most of the nuclear powerplants are now working on the nuclear chain reactions but another method to harvest nuclear power is “Nuclear batteries or Atomic Batteries” does not have attention even though it is much safer and stable than chain reaction. This paper shade light on working, characteristics and advantages of atomic batteries and its applications in various fields. Keywords: Atomic batteries, Radioisotope Generators, Nuclear energy I. INTRODUCTION Atomic batteries are the devices which produce electricity from radioactive material. Even though atomic batteries are producing electricity from radioactive material as in nuclear powerplants their mechanism are much different than the electricity production from nuclear fission reaction. In nuclear fission reaction electricity is produced from steam generated from heat liberation due to chain reactions but atomic batteries work on radiations from radioactive material for the electricity generation. Atomic batteries are also called as nuclear batteries or radioisotope generators. The concept of atomic batteries is known to us from a century when scientists Moseley and Harling found out that the high voltage difference can be achieved by using radioactive material Radium.[1] This study shows that it is possible to produce electricity from the radiations of radioactive materials which motivated many scientist to pursue research on atomic batteries.