The CREATION of SCIENTIFIC EFFECTS

Total Page:16

File Type:pdf, Size:1020Kb

The CREATION of SCIENTIFIC EFFECTS The CREATION of SCIENTIFIC EFFECTS Jed Z. Buchwald is the Bern Dibner Professor of the History of Science at MIT and direc­ tor of the Dibner Institute for the History of Science and Technology, which is based at MIT. He is the author of two books, both published by the University of Chicago Press: From Maxwell to Microphysics: Aspects ofElectromagnetic Theory in the Lost Quarter ofthe Nine­ teenth Century (1985) and The Rise of the Wove Theory of Light: Aspects of Optical Theory and Ex­ periment in the First Third of the Nineteenth Century (1989). The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 1994 by The University of Chicago All rights reserved. Published 1994 Printed in the United States of America 03 02 01 00 99 98 97 96 95 94 1 2 3 4 5 ISBN: 0-226-07887-6 (cloth) 0-226-07888-4 (paper) Library of Congress Cataloging-in-Publication Data Buchwald, Jed Z. The creation of scientific effects: Heinrich Hertz and electric waves I Jed Z. Buchwald. p. cm. Includes bibliographical references and index. 1. Electric waves. 2. Hertz, Heinrich, 1857-1894. 3. Physicists-Germany. I. Title. QC661.B85 1994 537-dc20 93-41783 CIP @ The paper used in this publication meets the minimum requirements of the American Na­ tional Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984. • • • CONTENTS List of Figures vii List of Tables xi Preface xiii ONE Introduction: Heinrich Hertz, Maker of Effects 1 PART ONE: In Helmholtz's Laboratory Two Forms of Electrodynamics 7 THREE Realizing Potentials in the Laboratory 25 PART Tho: Information Direct from Nature FOUR A Budding Career 45 FIVE Devices for Induction 59 SIX Hertz's Early Exploration of Helmholtz's Concepts 75 PART THREE: Berlin's Golden Boy SEVEN Rotating Spheres 95 EIGHT Elastic Interactions 104 NINE Specific Powers in the Laboratory 113 TEN The Cathode Ray as a Vehicle for Success 131 PART FOUR: Studying Books ELEVEN Frustration 177 TWELVE Hertz's Argument 189 ThIRTEEN Assumption X 203 PART FIVE: Electric Waves FOURTEEN A Novel Device 217 FIFTEEN How the Resonator Became an Electric Probe 240 SIXTEEN Electric Propagation Produced 262 SEVENTEEN Electric Waves Manipulated 299 EIGHTEEN Conclusion: Restraint and Reconstruction 325 vi CONTENTS ApPENDIXES 1. Waveguides and Radiators in Maxwellian Electrodynamics 333 2. Helmholtz's Derivation of the Forces from a Potential 340 3. Helmholtz's Energy Argument 348 4. Polarization Currents and Experiment 351 5. Convection in Helmholtz's Electrodynamics 354 6. Instability in the Fechner-Weber Theory 356 7. Hertz's First Use of the General Helmholtz Equations 358 8. Hertz on the Induction of Polarization by Motion 361 9. Hertz on Relatively Moving, Charged Conductors 364 10. Elastic Bodies Pressed Together 366 11. Evaporation's Theoretical Limits 369 12. Hertz's Model for Geissler-Tube Discharge 372 13. Propagation in Helmholtz's Electrodynamics 375 14. Forces in Hertz's Early Experiments 389 15. Hertz's Quasi Field Theory for Narrow Cylindrical Wires 393 16. Considerations regarding the Possible Background to Helmholtz's New Physics 395 17. Poincare and Bertrand 405 18. Difficulties with Charge and Polarization 407 Notes 415 Bibliography 465 Index 479 • • • FIGURES 1. Herwig's apparatus 17 2. Vertical coil 29 3. Horizontal coil 30 4. Wagner hammer 30 5. Helmholtz interrupter 31 6. Ring magnet and circular capacitor 32 7. Cylindrical electromagnet and circular capacitor 33 8. Schiller's experiment 34 9. A Holtz electrostatic generator 35 10. Helmholtzian induction by Gleitstelle 37 11. Rotating capacitor 39 12. Heinrich Hertz's family tree 46 13. Heinrich Hertz 53 14. Hertz's spirals and bridge 65 15. Hertz's commutator 67 16. Detail of the commutator switch 67 17. Double-wound spiral 69 18. Hertz's experiment diagram 70 19. One spiral out of circuit 70 20. Both spirals in circuit 71 21. Spiral replaced with rectilinear circuit 73 22. Hertz's inductive stimulator 80 23. Couplings in the stimulator 80 24. Action on a linear element 82 25. Setup in fig. 24 seen from above 82 26. Action on a circular element 84 27. Hertz's apparatus for detecting rotational effects 86 28. Rotating dielectric disk 91 29. Representation of current flow lines from Hertz's doctoral dissertation 98 30. Helmholtzian interactions realized 102 31. A sample of Kirchoff's corrections 108 32. Hertz's original 109 viii FIGURES 33. Vapor-pressure curve 115 34. Hertz's evaporation system 116 35. Hertz's first evaporation device 118 36. First redesign of the evaporation device 120 37. The second mutation of the evaporation device 123 38. The emended paragraph 126 39. Excerpt from Hertz's manuscript on Geissler-tube discharge 132 40. The discharge tube as reproduced by J. J. Thomson from an article by E. Wiedemann 134 41. Goldstein's illustration showing cathode rays diverging from the path between electrodes 139 42. Circuit diagram for de la Rue and Muller's intermittence detector 144 43. De la Rue and Muller's intermittence detector 145 44. Hertz's bridge for testing intermittence 149 45. Device to find a nonelectromagnetic action by rays on a magnet 152 46. Apparatus for tracing the current lines 155 47. Hertz's current map 156 48. Hertz's ray purifier 159 49. Purifier electrodes 160 50. Hertz's ray purifier 164 51. Perrin's charge-detection device 164 52. Ray displacement 173 53. Boltzmann's capacity device 210 54. Boltzmann's Leyden jars 211 55. Boltzmann's charge alternator 213 56. The Riess, or Knochenhauer, spiral 219 57. Transformation of the spiral into a linear device 220 58. Probing the potential along the discharge circuit with a Riess micrometer 221 59. Bridging the Riess micrometer with a metallic shunt 222 60. Hertz's diagram for demonstrating that resistance does not account for the device's behavior 223 61. Reflections in the Nebenkreis 226 62. Exploring induction effects with a detached Nebenkreis 229 63. The spark-switched oscillator with detached Nebenkreis 232 64. Manipulating harmonics 237 65. The original device with a gap between k and h 242 66. The original device modified by a dielectric bridging the gap 243 FIGURES ix 67. Hertz's depiction of the direction of the force near the oscillator 250 68. Hertz's conjectured force curve 251 69. Representation of Hertz's account of the forces that act on the resonator 253 70. Apparatus for detecting the effect of neighboring conductors on sparking 258 71. Hertz's apparatus for detecting dielectric induction 260 72. Hertz's diagram for mapping wire waves with the resonator 268 73. Hertz's published diagram for his interference experiments 271 74. Hertz's understanding of the resonator's response 272 75. The critical arrangement 290 76. Hertz's diagram for regions where the force directions cannot be determined 296 77. Hertz's direct measurement of a standing air wave 308 78. Hertz's mathematical dipole 312 79. Hertz's field maps 315 80. A Hertzian nomograph for constant speeds 317 81. Hertz's nomograph 319 82. Possible forms of wire waves 323 83. Hertz's electromechanical model for Geissler-tube discharge 373 84. Hertz's resonator, wire, and oscillator 390 85. Spark curves for interfering metal and air waves with different retardations 391 • • • TABLES 1. Chart of interactions 22 2. An ideal scheme for wire-wave sparking in the case of infinite air speed 274 3. Hertz's marks for December 22 282 4. Hertz's marks for December 23 285 5. Hertz's table establishing finite propagation for the direct electrodynamic action 291 6. Experiments to examine the interference between the static and dynamic actions 293 7. Hertz's final table 294 8. The sequence of Hertz's dipole experiments 297 • • • PREFACE In the late spring of 1988 I decided to write a brief article on a peculiar early deduction of "Maxwell's equations" that was produced in 1884 by Heinrich Hertz, later famed for his production of electric waves. I was at the time lectur­ ing at the University of Copenhagen, where I had been invited by their histo­ rian of mathematics, Jesper Lutzen. His perceptively puzzled questions in re­ sponse to my attempted explanations of Hertz's odd deductions eventually forced me to realize that something quite deep underlay them, something that spoke to Hertz's own puzzlement concerning central, but essentially unstated, points in the physics of his day. This book resulted from that realization, and it is, in part, an extended attempt to work through what I came to see as themes that guided Hertz's work throughout his tragically short career. Although my previous two books, especially the second, had paid some at­ tention to experiment, I had there used the laboratory mostly to explore con­ ceptual structures that were bound to the work that was done within it. So, for example, in discussing Fresnel's diffraction experiments in my second book, or the discovery of the Hall effect in my first, I had been concerned rather with what they had to say about Fresnel's developing understanding of waves or about conceptions of fields than with the experimental work per se. The story I tell here is considerably different, because it concentrates directly upon Hertz's wide-ranging experimental work for its own sake and not for its exemplifica­ tion of something else. "Something else" is nevertheless quite markedly present in Hertz's labora­ tory, but it is not precisely the same kind of thing that informed Fresnel's or even Hall's experimenting. Both of them set out to find something that they had reasonably precise theoretical grounds for believing in or at least for sus­ pecting.
Recommended publications
  • Discovery of Radio Waves 1887 Static Electricity
    Heinrich Hertz (1857 - 1894) Discovery of Radio Waves 1887 Static Electricity • Thales of Miletus (624 – 526 BC) – Two pieces of amber rubbed with wool or two pieces of glass rubbed with silk would repel each other. • We now know that the amber removes electrons from the wool and becomes negatively charged. • Similarly, the glass becomes positively charged, having given up electrons to the silk. – Also, the amber would be attracted to the glass and the wool to the silk. Static Electricity Magnetism • Thales of Miletus (624-526 BCE) • Described the lodestone • China in 100 BCE used the magnetic compass. • By convention, the direction of a magnetic field (S -> N) is indicated by a compass needle. Galileo Galilei (1564 – 1642) • One of the earliest “scientists”, dared to “tinker with nature”, rather than merely observing it. • Observed moons of Jupiter, and supported the Copernican hypothesis. Isaac Newton (1642 – 1727) • Invented calculus to describe gravitation. • Demonstrated that white light is a mixture of colours. • Postulated that light is a stream of corpuscles. • Invented the Newtonian telescope. Static Electricity • 1663 – The earliest friction machines rubbed a glass sphere against wool. • 1733 – Charles Francois du Fay (1698 – 1739) postulated that there were two kinds of electrical fluid – vitreous and resinous Static Electricity • 1733 – The Leyden jar invented in Holland could store charges from generators. • Spurred much research into static electricity. Static Electricity • Benjamin Franklin (1705 - 1790) • 1751 - Lightning was static electricity • Arbitrarily defined Vitreous as “positive” • Resinous, “negative” • Theory of charge conservation Static Electricity • Luigi Galvani (1737–1798) • 1770 - Discovered that static electricity from a Leyden jar could make frog’s legs twitch.
    [Show full text]
  • The Stage Is Set
    The Stage Is Set: Developments before 1900 Leading to Practical Wireless Communication Darrel T. Emerson National Radio Astronomy Observatory1, 949 N. Cherry Avenue, Tucson, AZ 85721 In 1909, Guglielmo Marconi and Carl Ferdinand Braun were awarded the Nobel Prize in Physics "in recognition of their contributions to the development of wireless telegraphy." In the Nobel Prize Presentation Speech by the President of the Royal Swedish Academy of Sciences [1], tribute was first paid to the earlier theorists and experimentalists. “It was Faraday with his unique penetrating power of mind, who first suspected a close connection between the phenomena of light and electricity, and it was Maxwell who transformed his bold concepts and thoughts into mathematical language, and finally, it was Hertz who through his classical experiments showed that the new ideas as to the nature of electricity and light had a real basis in fact.” These and many other scientists set the stage for the rapid development of wireless communication starting in the last decade of the 19th century. I. INTRODUCTION A key factor in the development of wireless communication, as opposed to pure research into the science of electromagnetic waves and phenomena, was simply the motivation to make it work. More than anyone else, Marconi was to provide that. However, for the possibility of wireless communication to be treated as a serious possibility in the first place and for it to be able to develop, there had to be an adequate theoretical and technological background. Electromagnetic theory, itself based on earlier experiment and theory, had to be sufficiently developed that 1.
    [Show full text]
  • The Optical Thin-Film Model: Part 2
    qM qMqM Previous Page | Contents |Zoom in | Zoom out | Front Cover | Search Issue | Next Page qMqM Qmags THE WORLD’S NEWSSTAND® The Optical Thin-Film Model: Part 2 Angus Macleod Thin Film Center, Inc., Tucson, AZ Contributed Original Article n part 1 of this account [1] we covered the early attempts to topics but for our present account it is his assembly of electricity Iunderstand the phenomenon of light but heavily weighted and magnetism into a coherent connected theory culminating in towards the optics of thin ilms. Acceptance of the wave theory the prediction of a wave combining electric and magnetic ields and followed the great contributions of Young and Fresnel. We found traveling at the speed of light that most interests us. an almost completely modern account of the fundamentals of Maxwell’s ideas of electromagnetism were much inluenced by optics in Airy’s Mathematical Tracts but omitting any ideas of Michael Faraday (1791-1867). Faraday was born in the south of absorption loss. hus, by the 1830’s multiple beam interference in England to a family with few resources and was essentially self single ilms was well organized with expressions that could be used educated. His apprenticeship with a local bookbinder allowed for accurate calculation in dielectrics. Lacking in all this, however, him access to books and he read voraciously and developed an was an appreciation of the real nature of the light wave. At this interest in science, nourished by his attendance at lectures in the stage the models were mechanical with Fresnel’s ideas of an array Royal Institution of Great Britain.
    [Show full text]
  • Transparent Conductive Oxides – Fundamentals and Applications Agenda
    BuildMoNa Symposium 2019 Transparent Conductive Oxides – Fundamentals and Applications Monday, 23 September to Friday, 27 September 2019 Universität Leipzig, 04103 Leipzig, Linnéstr. 5, Lecture Hall for Theoretical Physics Agenda Monday, 23 September 2019 13:00 Prof. Dr. Marius Grundmann Universität Leipzig, Germany Opening 13:05 Dr. Debdeep Jena* Cornell University, USA Paul Drude Lecture I: The Drude Model Lives On: Its Simplicity and Hidden Powers 13:50 Prof. Vanya Darakchieva* Linköping University, Sweden Paul Drude Lecture II: Optical properties of the electron gas 14:35 Dr. Robert Karsthof University of Oslo, Norway Revisiting the electronic transport in doped nickel oxide *Invited talk 1 14:50 Dr. Petr Novák University of West Bohemia, Plzeň, Czech Republic Important factors influencing the electrical properties of sputtered AZO thin films 15:05 Coffee break (Aula) 15:35 Dr. Andriy Zakutayev* National Renewable Energy Laboratory, USA Wide Band Gap Chalcogenide Semiconductors 16:20 Alexander Koch Universität Jena, Germany Ion Beam Doped Transparent Conductive Oxides for Metasurfaces 16:35 Prof. Chris van de Walle* UC Santa Barbara, USA Fundamental limits on transparency of transparent conducting oxides *Invited talk 2 Tuesday, 24 September 2019 08:15 Excursion BMW Group Plant Leipzig Departure by bus from Leipzig, Linnéstr. 5 09:15 Start Excursion BMW Visitor Center 12:15 Departure by bus from BMW Visitor Center 12:45 Lunch (Aula) 14:30 Prof. Dr. Pedro Barquinha* Universidade Nova de Lisboa, Portugal Towards autonomous flexible electronic systems with zinc-tin oxide thin films and nanostructures 15:15 Dr. Saud Bin Anooz Leibniz Institute for Crystal Growth, Berlin, Germany Optimization of β-Ga2O3 film growth on miscut (100) β-Ga2O3 substrates by MOVPE 15:30 Dr.
    [Show full text]
  • On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
    Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics.
    [Show full text]
  • Weberˇs Planetary Model of the Atom
    Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title E.E. REVIEW COURSE - LECTURE VIII. Permalink https://escholarship.org/uc/item/733807j5 Authors Martinelli, E. Leppard, J. Perl, H. Publication Date 1952-04-21 eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA UCRT. 1888 Radiation Laboratory Berkeley, California ELECTRICAL ENGINEERING REVIEW COURSE LECTURE VIII April 21, 1952 E. Martinelli (Notes by: J. Leppard, H. -Perl) I. MAG1TETIC FIELDS A. Electrostatic Case Coulomb's Law which is given for th~ electrostatic case can be stated thus~ 2 ~ F = f e1 e2 / r in which F is in dynes, r in centimeters, f = 1 (dimensionless}j'l-gives the value of the charge e, in electro­ static units (ESU). B. Magnetic Case The magnetic case has an equivalent which was first determined "experi­ mentally by Ampere. Given two closed loops of wire of length~. Using electromagnetic units (EMU) i is measured in ab amperes = 10 amperes. r is measured in centimeters.· C = 1 (dimensionless). DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • The Meaning of the Constant C in Weber's Electrodynamics
    Proe. Int. conf. "Galileo Back in Italy - II" (Soc. Ed. Androme-:ia, Bologna, 2000), pp. 23-36, R. Monti (editor) The Meaning of the Constant c in Weber's Electrodynamics A. K. T. Assis' Instituto de Fisica 'Gleb Wat.aghin' Universidade Estadual de Campinas - Unicamp 13083-970 Campinas, Sao Paulo, Brasil Abstract In this work it is analysed three basic electromagnetic systems of units utilized during last century by Ampere, Gauss, Weber, Maxwell and all the others: The electrostatic, electrodynamic and electromagnetic ones. It is presented how the basic equations of electromagnetism are written in these systems (and also in the present day international system of units MKSA). Then it is shown how the constant c was introduced in physics by Weber's force. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic Wlits of charge. Weber and Kohlrausch '5 experiment to determine c is presented, emphasizing that they were 'the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff and Weber obtained independently of one another, both working in the framev.-ork of \Veber's electrodynamics, the fact that an electromagnetic signal (of current or potential) propagate at light velocity along a thin wire of negligible resistivity. Key Words: Electromagnetic units, light velocity, wave equation. PACS: O1.55.+b (General physics), 01.65.+g (History of science), 41.20.·q (Electric, magnetic, and electromagnetic fields) ·E-mail: assisOiCLunicamp.br, homepage: www.lCi.unicamp.brrassis AA. VV•.
    [Show full text]
  • HERTZ, HEINRICH RUDOLF (B
    ndsbv3_H 10/2/07 5:38 PM Page 291 Herschel Hertz he and Alexander had lost the physical strength necessary HERTZ, HEINRICH RUDOLF (b. to repolish the mirror. Hamburg, Germany, 22 February 1857; d. Bonn, Ger- Much more is now known about the wealth that Mary many, 1 January 1894), physics, philosophy. For the origi- Pitt brought to their marriage in 1788. Her inheritance nal article on Hertz see DSB, vol. 6. from her late husband, and subsequent legacies from her The centenaries of Hertz’s discovery of radio waves, mother and other members of her family, rendered of his death, and of the publication of The Principles of Herschel’s annual “pension” from the crown insignificant. Mechanics served to invigorate scholarship on the life and Why then did he continue to make telescopes for sale? Part work of Heinrich Hertz. While it was true until 1994 that of the reason seems to lie in the delight he took at his inter- there was no book-length study, the next dozen years pro- national eminence in work so far removed from his profes- duced a 600-page biography, two highly focused mono- sion of music—ambassadors were reduced to writing what graphs, and a collection of essays on Hertz as classical were, in effect, begging letters, for if Herschel refused physicist and modern philosopher. These books appeared them, there was no one else to whom they might turn. But alongside numerous articles and the discovery of new it has been argued that some of his production was des- biographical sources, laboratory notes, correspondence, tined for fellow observers who might, he hoped, confirm and manuscripts.
    [Show full text]
  • The Oldest Translation of the Almagest Made for Al-Maʾmūn by Al-Ḥasan Ibn Quraysh: a Text Fragment in Ibn Al-Ṣalāḥ’S Critique on Al-Fārābī’S Commentary
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 The Oldest Translation of the Almagest Made for al-Maʾmūn by al-Ḥasan ibn Quraysh: A Text Fragment in Ibn al-Ṣalāḥ’s Critique on al-Fārābī’s Commentary Thomann, Johannes DOI: https://doi.org/10.1484/M.PALS-EB.5.120176 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-190243 Book Section Accepted Version Originally published at: Thomann, Johannes (2020). The Oldest Translation of the Almagest Made for al-Maʾmūn by al-Ḥasan ibn Quraysh: A Text Fragment in Ibn al-Ṣalāḥ’s Critique on al-Fārābī’s Commentary. In: Juste, David; van Dalen, Benno; Hasse, Dag; Burnett, Charles. Ptolemy’s Science of the Stars in the Middle Ages. Turnhout: Brepols Publishers, 117-138. DOI: https://doi.org/10.1484/M.PALS-EB.5.120176 The Oldest Translation of the Almagest Made for al-Maʾmūn by al-Ḥasan ibn Quraysh: A Text Fragment in Ibn al-Ṣalāḥ’s Critique on al-Fārābī’s Commentary Johannes Thomann University of Zurich Institute of Asian and Oriental Research [email protected] 1. Life and times of Ibn al-Ṣalāḥ (d. 1154 ce) The first half of the twelfth century was a pivotal time in Western Europe. In that period translation activities from Arabic into Latin became a common enterprise on a large scale in recently conquered territories, of which the centres were Toledo, Palermo and Antioch. This is a well known part of what was called the Renaissance of the Twelfth Century.1 Less known is the situation in the Islamic World during the same period.
    [Show full text]
  • Electromagnetic Theory
    Electromagnetic Theory Electromagnetic Waves come in many varieties, What difference did it make? Maxwell’s new law including radio waves, from the ‘long-wave’ band and Faraday’s law give a wave equation, implying through VHF, UHF and beyond; microwaves; infrared, that any disturbance in the electric and magnetic visible and ultraviolet light; X-rays, gamma rays etc. fields will be self sustaining and travel out in space at the speed of light as an ‘electro-magnetic’ wave. About 1860, James Clerk Maxwell brought together all the known laws of electricity and What happened next? In 1887 Heinrich Hertz used magnetism: a spark-gap transmitter and receiver to demonstrate that these waves actually existed: • Gauss’ law gives the electric field pro- ∇∙D = ρ duced by electric charges • Faraday’s law gives the electric field produced by a changing magnetic field ∇×E = −∂B/∂t • Ampère’s law gave the magnetic field produced by an electric current ∇×H = J • A fourth law states that individual magnetic charges cannot exist ∇∙B = 0 In a metal wire electric charges flow round as a continuous current, while in an insulator they are only displaced by a small distance. Maxwell reasoned that this displacement could still make a current, ∂D/∂t, and so he reformulated Ampère’s law as ∇ ∇×H = J + ∂D/∂t. The spark generator causes a current spike across the gap in the central antenna. The transient pulse of electric field travels outwards at the speed of light. It alternates in direction (red for up, blue for down) making a Maxwell’s equations are essential to the wave, and carries with it a magnetic field and electromagnetic energy.
    [Show full text]