Arctosa Sanctaerosae) Along the Hurricane Disturbed Northern Gulf of Mexico Coast

Total Page:16

File Type:pdf, Size:1020Kb

Arctosa Sanctaerosae) Along the Hurricane Disturbed Northern Gulf of Mexico Coast University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2011 Population Biology Of A Coastal Dune-Dwelling Spider (Arctosa Sanctaerosae) Along The Hurricane Disturbed Northern Gulf Of Mexico Coast Robert A. Hataway University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biology Commons Recommended Citation Hataway, Robert A., "Population Biology Of A Coastal Dune-Dwelling Spider (Arctosa Sanctaerosae) Along The Hurricane Disturbed Northern Gulf Of Mexico Coast" (2011). Electronic Theses and Dissertations. 384. https://egrove.olemiss.edu/etd/384 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. POPULATION BIOLOGY OF A COASTAL DUNE-DWELLING SPIDER (ARCTOSA SANCTAEROSAE) ALONG THE HURRICANE DISTURBED NORTHERN GULF OF MEXICO COAST A dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Biology The University of Mississippi by ROBERT ANDREW HATAWAY July 2011 Copyright Robert Andrew Hataway 2011 ALL RIGHTS RESERVED ABSTRACT With the continued increase in the number of tourists visiting the Northern Gulf coast in the last century and the resulting development of this coastline the habitat of Arctosa sanctaerosae has become fragmented; and the sprawl of large cities along the coast has further degraded available habitat. In addition to anthropogenic disturbance to this coastal region, hurricanes are an additional and natural perturbation to the ecosystem. This habitat has seen a number of major tropical storms over the last decade and I have sought to explore the impact of habitat destruction and storm-induced disturbance on a species of spider endemic to the coastal dunes of the Northern Gulf Coast. Arctosa sanctaerosae, family Lycosidae, is a wolf spider endemic to the secondary dunes of the white sandy beaches of the Northern Gulf of Mexico. The data presented here explore the status of populations of this species spanning the entire known range and the factors influencing population demography. These findings demonstrate the significant impact of storms on both disturbed and undisturbed habitat and reveal factors influencing the recovery of the spiders, relating this to ecological factors including the height of the dunes and density of vegetation before and following hurricanes Ivan and Katrina. These results reveal habitat characteristics that appear to play a large role in population persistence and components of human disturbance of habitat that have the greatest impact on populations of spiders. Using microsatellite markers I characterize the current structure of the subpopulations of Arctosa sanctaerosae, and current and historical patterns of interpopulation migration. Contemporary modeling methods compare current and historical levels of gene flow and document the decline in migration due to habitat fragmentation. Since the introduction of dense ii human development along the Northern Gulf of Mexico Coast, Arctosa sanctaerosae has seen what appears to have been a single, contiguous population subdivided and the isolates reduced in size. These results point to the need for further exploration of the status and continued monitoring of the species. iii I would like to dedicate my dissertation work to my family. My wife and parent’s unwavering confidence in my abilities has pushed me to complete this goal and for that I am thankful. My sister and brother-in-law have been there for me throughout the entire doctorate program. I also dedicate this dissertation work to Dr. Ronald Jenkins whose support and guidance made it possible. iv LIST OF ABBREVIATIONS AND SYMBOLS NGC Northern Gulf Coast A. sanctaerosae Arctosa sanctaerosae A. littoralis Arctosa littoralis m Meter mm Millimeter m2 Square meter St. Saint ABM Alabama Beach Mouse et al. Latin et alia, and others AL Alabama FL Florida MS Mississippi Ft. Fort ANOVA Analysis of variance, a statistical method R Growth rate ln Natural logarithm log Logarithm N0 Size at time step zero N1 Size after one time step v dh Dune height gps Global positioning system N Sample size p P-value, a statistical term S.E. Standard error adj Adjusted AIC Akaike Information Criterion w Akaike Information Criterion model weight km Kilometers R2 Regression statistic e.g. Latin exemli grati, for example DNA Deoxyribonucleic acid bp Base pairs SDS Sodium dodecyl sulfate SSC saline-sodium citrate μL Microliter TLE Tris low Ethylenediamine tetra-acetic acid dNTP Deoxyribonucleotide triphosphate MgCl2 Magnesium chloride mg Milligram vi °C Degrees Centigrade No. Number Fis Inbreeding coefficient He Expected heterozygosity Ho Observed heterozygosity x¯ Mean PCR Polymerase chain reaction v. Version ABI Applied Biosystems Incorporated STR Short tandem repeat HWE Hardy-Weinberg equilibrium WSR/PK West Santa Rosa Island/ Perdido Key HSP Henderson State Park sec Seconds min Minutes MCMC Markov chain Monte Carlo, a statistical method K Number of genetically unique subpopulations Fst Fixation index Ar Allelic richness Hs Gene diversity vii M Molar Ne Effective migration rate C.I. Confidence interval ID Identification etc. Latin Et cetera, and so on viii ACKNOWLEDGEMENTS I thank my committee, Dr. David Reed, Dr. Brice Noonan, Dr. Gail Stratton, Dr. Stephen Brewer, Dr. Clifford Ochs, and Dr. Gerard Buskes and everyone who supported and contributed to this work: M. Howell, R. Jenkins, S. Neilson, K Sterling, J. King, A. Teoh, A. Nicholas, F. Hataway, E. Maynard, C. Bertz, B. Piculell, and P. Beerli, and D. Reed. I am grateful to the faculty, staff, and graduate student body of The University of Mississippi Department of Biology for their constant support and guidance. This study was supported by grants from The Lindbergh Foundation and The University of Mississippi Graduate Student Council. ix TABLE OF CONTENTS ABSTRACT ………………………………………………………..…………………………….ii LIST OF ABBREVIATIONS AND SYMBOLS …………….…………………………………..v ACKNOWLEDGEMENTS ……………………………………………………………………...ix LIST OF TABLES ……………………………………………………………………………….xi LIST OF FIGURES ………………………………………..…………………………………...xiii INTRODUCTION………………………………………………………………………………...1 CHAPTER 1: Population biology of a coastal dune-dwelling spider, Arctosa sanctaerosae (Araneae: Lycosidae), along the hurricane disturbed northern Gulf of Mexico coast ………………………………………………………………………………….4 CHAPTER II: Development of 10 microsatellite loci in the wolf spider Arctosa sanctaerosae (Araneae: Lycosidae) …..........................................................................................31 CHAPTER III: Hurricanes and Human Conversion of Habitat Leading to Population Isolation in the costal wolf spider Arctosa sanctaerosae (Araneae: Lycosidae) .....................................................................................................................................36 CHAPTER 4. Bottlenecks and declines in population size of the wolf spider Arctosa sanctaerosae ……………...………………………………………………………………….51 BIBLIOGRAPHY..........................................................................................................................64 VITA..............................................................................................................................................76 x LIST OF TABLES 1. Site location and Ranking of Beach Quality …………………………………………….........16 2. Mean Densities and Growth Rates 2004-2007 ….……………………………………………22 3. Comparison of models describing the proposed factors contributing to proportional population reduction as a result of Hurricane Ivan ……………………………23 4. Comparison of models describing the proposed factors contributing to proportional population reduction as a result of Hurricane Katrina …………..…………….23 5. Comparison of models describing the proposed factors contributing to population growth rate in the year immediately following Hurricane Ivan …………………25 6. Comparison of models describing the proposed factors contributing to population growth rate in the year immediately following Hurricane Katrina ……………...25 7. Within population heterozygosity levels across loci and Fis estimates ...……………………..33 8. Characterization and level of variability at 10 microsatellite loci in 11 populations of Arctosa sanctaerosae ………………………………………………………..35 9. Population cluster assignments and gps data …………………………………………………42 10. Number of individuals (N), mean allelic richness (Ar), gene diversity (Hs), observed heterozygosity (Ho), expected heterozygosity (He) and, the inbreeding coefficient (Fis) for Arctosa sanctaerosae in five population clusters along the Northern Gulf of Mexico Coast……………………………………………………………...44 11. Pairwise Fst scores below diagonal and pairwise geographic distances (km) above the line ………………………………………………………………………………44 xi 12. Comparison of the mean number of effective migrants reaching a population recently (as estimated by BAYESASS) versus the mean number of historically (as estimated by MIGRATE) ……………………………………………………………46 13. Estimates of recent effective population size (Ne) and census population size (Nc)………...60 14. Estimates of Historic effective population size (Ne)…………………………………………60 xii LIST OF FIGURES 1. Complete Dune System Including Primary, Secondary and Tertiary Dunes………………….7 2. County map showing geographic range of A. sanctaerosae. All counties in which A. sanctaerosae was found are shaded.
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Comparison of Reproductive Traits Between Two Salt-Marsh Wolf Spiders (Araneae, Lycosidae) Under Different Habitat Suitability Conditions
    Animal Biology 61 (2011) 127–138 brill.nl/ab Comparison of reproductive traits between two salt-marsh wolf spiders (Araneae, Lycosidae) under different habitat suitability conditions Charlène Puzin1, Anthony Acou2, Dries Bonte3 and Julien Pétillon4,∗ 1 Université de Rennes 1, U.R.U. 420 – Biodiversité et Gestion des territoires, U.F.R. SVE, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France 2 Muséum National d’Histoire Naturelle, U.M.R. 7208 BOREA – Biologie des Organismes et Ecosystèmes Aquatiques, Station Marine de Dinard, BP 70134, 38 rue du Port Blanc, 35800 Dinard, France 3 Ghent University, Terrestrial Ecology Unit (TEREC), Department of Biology, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium 4 University of Antwerp, Evolutionary Ecology Group, Department of Biology, Groenenborgerlaan 171, 2020 Antwerpen, Belgium Abstract Salt-marsh invasions by the grass Elymus athericus (Poaceae) recently transformed usual areas dom- inated by Atriplex portulacoides (Chenopodiaceae) into homogeneous meadows. Two wolf spider species, Pardosa purbeckensis and Arctosa fulvolineata, show contrasting densities and habitat prefer- ences in salt marshes (respectively dominant and co-dominant ground-living spiders) and oppositely respond to the grass invasion. This allowed us to test whether invasive species that alter habitat struc- ture affect reproduction in addition to previously recorded changes in density. Reproductive traits (female mass, cocoon mass, number and volume of eggs, hatched cocoon as a proxy of reproduc- tion date) were studied in both invaded and natural salt marshes during 2007 and 2008 in the Mont St-Michel Bay (France). In both species, reproductive outputs (cocoon mass) were higher in optimal habitats and volume of eggs was found to be independent from female mass, whereas the latter sig- nificantly influenced the number of eggs.
    [Show full text]
  • Notes on Three Poorly Known Arctosa Species from China (Araneae: Lycosidae)
    Zootaxa 3404: 53–68 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Notes on three poorly known Arctosa species from China (Araneae: Lycosidae) LU-YU WANG1, YURI M. MARUSIK2,3 & ZHI-SHENG ZHANG1,4 1Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China 2Institute for Biological Problems of the North of the Russian Academy of Sciences, Portovaya Str. 18, 685000 Magadan, Russia. E-mail: [email protected] 3Zoological Museum, University of Turku, FI-20014, Turku, Finland 4Corresponding author. E-mail: [email protected] Abstract Three species of the genus Arctosa are revised and their relationship with A. cinerea, the type species of the genus, is dis- cussed. Arctosa binalis Yu & Song, 1988 is a junior synonym of A. depectinata (Bösenberg & Strand, 1906). Males of Arctosa gougu Chen & Song, 1999 and Arctosa vaginalis Yu & Song, 1988 are described for the first time. All specimens examined were collected from the Yunnan Province, China. Morphological illustrations, photos, descriptions and SEM photographs of the male bulbus of all species are given. Stridulatory files on chelicerae in Lycosidae are reported for the first time. Key words: Taxonomy, wolf spiders, morphology, redescription, distribution Introduction The wolf spider genus Arctosa C.L. Koch, 1847 with 171 species (Platnick 2012), is one of the largest genera of Lycosidae. The genus has been relatively well revised in Europe (Lugetti & Tongiorgi 1965), the Nearctic (Dondale and Redner 1983) and Japan (Tanaka 2009). In this genus, 78 species are known from only one sex (16 from males and 62 from females).
    [Show full text]
  • 3. Zoo.DIVERSITY
    International Journal of Zoology and Research (IJZR) ISSN(P): 2278-8816; ISSN(E): 2278-8824 Vol. 6, Issue 1, Feb 2016, 15-24 © TJPRC Pvt. Ltd. EXPLORATIVE STUDY ON THE DIVERSITY AND CHARACTERISTICS OF SPIDER FAMILIES VARSHA W WANKHADE & NARENDRA MANWAR Department of Zoology, University of Pune, Pune, Maharashtra, India ABSTRACT The order Aranae deserves a special place in the study of ecology as it acts as a biological indicator. The objectives of the present study were to explore the diversity and characteristics of spider families. The study was conducted at Sawanga-Vithoba lake (Malkhed Project) district Amravati, Maharashtra India. In this study, by observing the diversity of Spiders (Class Arachnida, phylum Arthropoda), efforts were made to evaluate the status of ecosystem of Sawanga-Vithoba Lake (Malkhed Project) district Amravati, Maharashtra. In total 42 species of spiders belonging to 14 families were observed. Araneidae was the most represented family with 15 species. Area surrounding Sawanga-Vithoba lake (Malkhed Project) Dist Amravati, Maharashtra, India represents 23.72 % of the total families recorded in India. The high species diversity of spiders in Sawanga-Vithoba lake region can be attributed to the high diversity of plants and insects. In totality, five different guilds of spiders were observed. 54% of spiders were orb web builders, 24% were foliage runner. Ground runner and Ambusers were 8%, while scattered line weaver were 6%. Sawanga-Vithoba lake region Original Article Article Original could be an important centre of speciation in Pohara forest of tahsil chandur railway dist Amravati. This is the first report of the spider fauna from Sawanga-Vithoba lake region.
    [Show full text]
  • Arachnologische Arachnology
    Arachnologische Gesellschaft E u Arachnology 2015 o 24.-28.8.2015 Brno, p Czech Republic e www.european-arachnology.org a n Arachnologische Mitteilungen Arachnology Letters Heft / Volume 51 Karlsruhe, April 2016 ISSN 1018-4171 (Druck), 2199-7233 (Online) www.AraGes.de/aramit Arachnologische Mitteilungen veröffentlichen Arbeiten zur Faunistik, Ökologie und Taxonomie von Spinnentieren (außer Acari). Publi- ziert werden Artikel in Deutsch oder Englisch nach Begutachtung, online und gedruckt. Mitgliedschaft in der Arachnologischen Gesellschaft beinhaltet den Bezug der Hefte. Autoren zahlen keine Druckgebühren. Inhalte werden unter der freien internationalen Lizenz Creative Commons 4.0 veröffentlicht. Arachnology Logo: P. Jäger, K. Rehbinder Letters Publiziert von / Published by is a peer-reviewed, open-access, online and print, rapidly produced journal focusing on faunistics, ecology Arachnologische and taxonomy of Arachnida (excl. Acari). German and English manuscripts are equally welcome. Members Gesellschaft e.V. of Arachnologische Gesellschaft receive the printed issues. There are no page charges. URL: http://www.AraGes.de Arachnology Letters is licensed under a Creative Commons Attribution 4.0 International License. Autorenhinweise / Author guidelines www.AraGes.de/aramit/ Schriftleitung / Editors Theo Blick, Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt/M. and Callistus, Gemeinschaft für Zoologische & Ökologische Untersuchungen, D-95503 Hummeltal; E-Mail: [email protected], [email protected] Sascha
    [Show full text]
  • 2015-2025 Pennsylvania Wildlife Action Plan
    2 0 1 5 – 2 0 2 5 Species Assessments Appendix 1.1A – Birds A Comprehensive Status Assessment of Pennsylvania’s Avifauna for Application to the State Wildlife Action Plan Update 2015 (Jason Hill, PhD) Assessment of eBird data for the importance of Pennsylvania as a bird migratory corridor (Andy Wilson, PhD) Appendix 1.1B – Mammals A Comprehensive Status Assessment of Pennsylvania’s Mammals, Utilizing NatureServe Ranking Methodology and Rank Calculator Version 3.1 for Application to the State Wildlife Action Plan Update 2015 (Charlie Eichelberger and Joe Wisgo) Appendix 1.1C – Reptiles and Amphibians A Revision of the State Conservation Ranks of Pennsylvania’s Herpetofauna Appendix 1.1D – Fishes A Revision of the State Conservation Ranks of Pennsylvania’s Fishes Appendix 1.1E – Invertebrates Invertebrate Assessment for the 2015 Pennsylvania Wildlife Action Plan Revision 2015-2025 Pennsylvania Wildlife Action Plan Appendix 1.1A - Birds A Comprehensive Status Assessment of Pennsylvania’s Avifauna for Application to the State Wildlife Action Plan Update 2015 Jason M. Hill, PhD. Table of Contents Assessment ............................................................................................................................................. 3 Data Sources ....................................................................................................................................... 3 Species Selection ................................................................................................................................
    [Show full text]
  • Do Really All Wolf Spiders Carry Spiderlings on Their Opisthosomas? the Case of Hygrolycosa Rubrofasciata (Araneae: Lycosidae)
    Arachnologische Mitteilungen 45: 30-35 Karlsruhe, Juni 2013 Do really all wolf spiders carry spiderlings on their opisthosomas? The case of Hygrolycosa rubrofasciata (Araneae: Lycosidae) Petr Dolejš doi: 10.5431/aramit4507 Abstract. Wolf spider females are characterised by carrying cocoons attached to their spinnerets. Emerged spi- derlings are carried on the females’ opisthosomas, with the exception of three Japanese lycosid species who car- ry spiderlings on empty cocoons. Here, the same behaviour is recorded in a European spider: the drumming wolf spider Hygrolycosa rubrofasciata. Spiderlings of this species do not try to climb on the female’s opisthosoma, even when they are adopted by a female of a species with a normal pulli-carrying behaviour. This behaviour occurs in Trechaleidae and four unrelated species of Lycosidae inhabiting wet habitats and is therefore regarded as an adap- tation to the unsuitable environment. Keywords: Cocoons, female abdominal knobbed hairs, humid habitats, pulli-carrying behaviour, spiderling clus- ters Female wolf spiders are known for their care of both ciata) usually remain on the female’s abdomen or on cocoons and spiderlings (Foelix 2011). They carry top of the empty egg sac for a day to chitinise their their cocoons attached onto the spinnerets (cocoon- exoskeleton, after which they disperse”. Thus, this carrying behaviour) and their spiderlings on the species was chosen for the present study to clarify its opisthosoma (pulli-carrying behaviour) (Fujii 1976). pulli-carrying behaviour. All lycosids show cocoon-carrying behaviour, there Hygrolycosa Dahl, 1908 is still of uncertain sub- are, however, three exceptions concerning pulli- familial affinities. It belongs either to Piratinae (Zy- carrying.
    [Show full text]
  • Gattungen Arctosa, Tricca, Trochosa (Arachnida, Araneida: Lycosidae) - Faunistisch-Tiergeographische Übersicht Von Jan Buchar Und Konrad THALER Mit 6 Abbildungen
    ©Naturwissenschaftlicher Verein für Kärnten, Austria, download unter www.biologiezentrum.at Carinthia II 185./1O5. Jahrgang S. 481-498 Klagenfurt 1995 Die Wolfspinnen von Österreich 2: Gattungen Arctosa, Tricca, Trochosa (Arachnida, Araneida: Lycosidae) - Faunistisch-tiergeographische Übersicht Von Jan BucHAR und Konrad THALER Mit 6 Abbildungen Kurzfassung: Mit der Darstellung der Gattungen Arctosa, Tricca und Trochosa setzen wir die Besprechung der Lycosidae von Österreich besonders auf Grund der seit 1955 erarbeiteten Befunde fort. Die 3 Gattungen sind mit insgesamt 12 (7+1+4) „sicher" nachgewiesenen Arten vertreten, dazu kommen eine Unterart (A. alpigena lamperti) und eine nur aus einer alten Aufsammlung unsicher beleg- te Spezies (A. variana). Anhangweise behandelt sind 5 weitere Arten von Arctosa, Hygrolycosa, Trochosa, die teils am N-Rand der Alpen, teils in den Südalpen vorkommen und deren Auftreten im Bundesge- biet verschiedene Wahrscheinlichkeit zukommt. Seit 1955 wurden für Österreich neu genannt: A. a. lamperti, A. renidescens n. sp. (= A. renidens auct., nee SIMON), A. stigmosa, A. variana. Die im Zusammen- hang mit A. a. lamperti und A. renidescens n. sp. stehenden taxonomischen Probleme werden besprochen. Arealschwankungen, Bestandessituation: Lediglich zwei weitverbreitete Trochosa-Arten (T. ruricola, T. terricola) sind in der Agrarlandschaft allgemein verbreitet, regional treten rezedent 4 weitere Formen hinzu. Arctosa-Arten sind mit 1 Ausnahme auf naturnahe Habitate beschränkt und überwiegend selten bis sehr selten, Habitate sind Flußufer (A. cinerea, A. stigmosa, A. variana), Moore (A. a. lamperti), Bachufer, Felsenheide, Zwergstrauchheide und die alpine Stufe. Folgende Verbreitungstypen sind ver- treten (in Klammern die jeweilige Artenzahl): alpin-endemisch (1), arktoalpin verbreitet (1), extrame- diterran (4+?2), mediterran-expansiv (1), paläarktisch (3), holarktisch (1).
    [Show full text]
  • Araneae, Lycosidae)
    1996 . The Journal of Arachnology 24:186—200 PATTERN AND DURATION OF COPULATION IN WOLF SPIDERS (ARANEAE, LYCOSIDAE) Gail E. Stratton'' 4, Eileen A. Hebets 2.5 , Patricia R. Miller3 and Gary L. Miller2: 'Albion College, Albion, Michigan 49221 USA ; University of Mississippi , University, Mississippi 38677 USA ; and Northwest Mississippi Community College , Senatobia, Mississippi 38668 US A ABSTRACT . The temporal patterns of insertion of male palps, expansion of the hematodocha an d duration of copulation are reported for 10 species of Schizocosa Chamberlin 1904, three species of Ra- bidosa Roewer 1955, one species of Gladicosa Brady 1986, one species of Hogna Simon 1885, two species of Isohogna Roewer 1960, one species of Trochosa C.L. Koch 1848, one species of Geolycosa Montgomery 1904, two species of Arctosa C.L. Koch 1848, three species of Alopecosa Simon 1885 and six species of Pardosa C.L. Koch 1847 . In all species of Schizocosa examined so far, males showed a pattern composed of a series of insertions with one palp followed by a switch to the opposite side and a separate series of insertions with the other palp . During each insertion there was a single expansion of the hematodocha . These copulations generally lasted from 1—4 hours . Males of Gladicosa bellamyi (Gertsch Wallace 1937) and Hogna georgicola (Walckenaer 1837) likewise showed a series of insertions on one side followed by insertions on the other side, with a single expansion of the hematodocha wit h each insertion . Males of Arctosa littoralis (Hentz 1844), A. sanctaerosae Gertsch Wallace 1935 and Geolycosa rogersi Wallace 1942 each copulated by alternating palps with a single insertion and singl e expansion of the hematodocha.
    [Show full text]
  • 2002 Annual Report
    2002 Annual Report Inventory and Monitoring of Terrestrial Riparian Resources in the Colorado River corridor of Grand Canyon: An Integrative Approach Cooperative Agreement / Assistance Awards 01 WRAG 0044 (NAU) and 01 WRAG 0034 (HYC) Michael J.C. Kearsley Neil Cobb Northern Arizona University Helen Yard Helen Yard Consulting David Lightfoot Sandra Brantley Geoff Carpenter University of New Mexico Jennifer Frey New Mexico State University Submitted to: Dr. Steve Gloss, COTR Grand Canyon Monitoring and Research Center U.S. Geological Survey 2255 North Gemini Drive Flagstaff, AZ 86001 20 December 2002 1 TABLE OF CONTENTS INTRODUCTION 3 SMALL MAMMALS 7 J.K. Frey AVIFAUNA H. Yard WINTER BIRDS 12 SOUTHWEST WILLOW FLYCATCHER SURVEYS AND NEST SEARCHES 14 BREEDING BIRD ASSESSMENT AND SURVEYS 16 HERPETOFAUNAL SURVEYS 45 G. Carpenter ARTHROPOD SURVEYS 54 D. Lightfoot, S. Brantley, N. Cobb VEGETATION M. Kearsley STRUCTURE AND HABITAT DATA 76 VEGETATION DYNAMICS 86 INTEGRATION AND INTERPRETATION 100 PROBLEMMATIC ISSUES IN 2002 109 APPENDIX Lists of species encountered during monitoring activities in 2001 111 2 Introduction Here we present the results of the Terrestrial Ecosystem Monitoring activities in riparian habitats of the Colorado River corridor of Grand Canyon National Park during 2002. This represents the second year of data collection for this project and the first opportunity to assess changes in the status of vegetation, breeding birds, waterbirds, overwintering birds, small mammals, arthropods and herpetofauna. This has also given us the opportunity to refine our understanding of the interrelationships among the various resource types (Figure 1) and to assess potential problems with our approach to cross-taxon integration and trend assessment in the monitoring data sets.
    [Show full text]
  • Insecta Mundia Journal of World Insect Systematics
    April 24 2020 INSECTA 38 urn:lsid:zoobank. A Journal of World Insect Systematics org:pub:156AD486-3407-41A2- UNDI M 9F85-D3FF9806AE96 0759 Geographic variation in host selection in the spider wasps Entypus unifasciatus (Say) and Tachypompilus ferrugineus (Say) (Hymenoptera: Pompilidae) Frank E. Kurczewski 1188 Converse Drive NE Atlanta, GA 30324 Joseph W. Stoll Department of Geography, Syracuse University Syracuse, NY 13244 Rick C. West 6365 Willowpark Way Sooke, BC, Canada V9Z 1L9 Kelly C. Kissane Biology Department Trinidad State Junior College, Valley Campus Alamosa, CO 81101 Neil Stanley Cobb Merriam-Powell Center for Environmental Research Department of Biological Sciences, Northern Arizona University Flagstaff, AZ 86011-6077 Date of issue: April 24, 2020 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Frank E. Kurczewski, Joseph W. Stoll, Rick C. West, Kelly C. Kissane, and Neil Stanley Cobb Geographic variation in host selection in the spider wasps Entypus unifasciatus (Say) and Tachypompilus ferrugineus (Say) (Hymenoptera: Pompilidae) Insecta Mundi 0759: 1–38 ZooBank Registered: urn:lsid:zoobank.org:pub:156AD486-3407-41A2-9F85-D3FF9806AE96 Published in 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.
    [Show full text]
  • Evolution and Ecology of Spider Coloration
    P1: SKH/ary P2: MBL/vks QC: MBL/agr T1: MBL October 27, 1997 17:44 Annual Reviews AR048-27 Annu. Rev. Entomol. 1998. 43:619–43 Copyright c 1998 by Annual Reviews Inc. All rights reserved EVOLUTION AND ECOLOGY OF SPIDER COLORATION G. S. Oxford Department of Biology, University of York, P.O. Box 373, York YO1 5YW, United Kingdom; e-mail: [email protected] R. G. Gillespie Center for Conservation Research and Training, University of Hawaii, 3050 Maile Way, Gilmore 409, Honolulu, Hawaii 96822; e-mail: [email protected] KEY WORDS: color, crypsis, genetics, guanine, melanism, mimicry, natural selection, pigments, polymorphism, sexual dimorphism ABSTRACT Genetic color variation provides a tangible link between the external phenotype of an organism and its underlying genetic determination and thus furnishes a tractable system with which to explore fundamental evolutionary phenomena. Here we examine the basis of color variation in spiders and its evolutionary and ecological implications. Reversible color changes, resulting from several mechanisms, are surprisingly widespread in the group and must be distinguished from true genetic variation for color to be used as an evolutionary tool. Genetic polymorphism occurs in a large number of families and is frequently sex limited: Sex linkage has not yet been demonstrated, nor have the forces promoting sex limitation been elucidated. It is argued that the production of color is metabolically costly and is principally maintained by the action of sight-hunting predators. Key avenues for future research are suggested. INTRODUCTION Differences in color and pattern among individuals have long been recognized as providing a tractable system with which to address fundamental evolutionary questions (57).
    [Show full text]