2021 WI DNR Catchable Trout-Fish Stocked Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cytogenetic Analysis of Global Populations of Mugil Cephalus (Striped Mullet) by Different Staining Techniques and Fluorescent in Situ Hybridization
Heredity 76 (1996) 77—82 Received 30 May 1995 Cytogenetic analysis of global populations of Mugil cephalus (striped mullet) by different staining techniques and fluorescent in situ hybridization ANNA RITA ROSSI, DONATELLA CROSETTIt, EKATERINA GORNUNG & LUCIANA SOLA* Department of Animal and Human Biology, University of Rome 7, Via A. Bore/li 50, 00161 Rome and tICRAM, Central Institute for Marine Research, Via L. Respighi 5, 00197 Rome, Italy Thepresent paper reports the results of cytogenetic analysis carried out on several scattered populations of the striped mullet, Mugil cephalus, the most widespead among mugilid species. The karyotype was investigated through Ag-staining, C-banding, fluorochrome-staining (chro- momycin A3/DAPI) and fluorescent in situ hybridization with rDNA genes. All populations showed the same chromosome number and morphology and no changes were detected in heterochromatin and NORs. Therefore, neither population- nor sex-specific marker chromo- somes were identified. In some of the specimens, NOR size heteromorphism was detected. Results are discussed with respect to karyotype and ribosomal cistrons organization and to cytotaxonomic implications. Keywords:cytotaxonomy,FISH, heterochromatin, karyotype, NOR. Although the karyotype of M cephalus is already Introduction known (Table 1), there are no data from differential Thestriped mullet, Mugil cephalus, is the most wide- staining techniques, except for observations on spread among mugilid species, and inhabits the trop- nucleolar organizer regions (NOR5) by Amemiya & ical and subtropical seas of the world. Both the Gold (1986). Moreover, previous studies cover only worldwide distribution, the range discontinuity few localities from the wide species range and speci- (Thomson, 1963) and the coastally-dependent life mens from more than one collecting site have never history have raised questions on the conspecificity of been observed in the same laboratory. -
LF0071 Ch6.Pdf
Figure 6.2: Watersheds (HUC 10) and Sub‐Watersheds (HUC 12) of the Kickapoo River Region. 6‐2 1. OVERVIEW a) Physical Environment This region encompasses both the Kickapoo and La Crosse rivers with a long, large upland ridge running from Norwalk in La Crosse County, south‐southwest to Eastman in Crawford County. On either side of this ridge are numerous narrow hills and valleys that are home to countless headwater creeks. Fed by springs and seeps, these cold waters form some of the most popular trout angling streams in the Driftless Area. Much of the region is covered with deep loess deposits over bedrock (primarily dolostone, sandstone or shale). Soils are primarily silt loams. The region is home to many dry and wet cliffs. The valleys contain stream terraces and floodplains. Streams are high gradient with fast water flow in the headwaters transitioning to meandering low gradient segments as they move toward the Kickapoo and Mississippi Rivers. Groundwater is recharged directly through precipitation. This area has no natural lakes. Figure 6.3: Land cover of the Kickapoo River Region. b) Land Cover and Use The region’s most common land cover is upland forest which blankets most of the hillsides. Crop land is restricted to the uplands and valley floors. The broad, high ridge around Westby and Viroqua is the largest block of upland farmland in the region. The La Crosse River valley floor is also heavily farmed. Very little of the region is prime farmland. c) Terrestrial Habitats This region is especially noteworthy for its current opportunities for the management of big block forests and dry prairie/oak openings near the Mississippi and Kickapoo rivers as well as oak barrens and southern mesic forest in portions of Monroe County. -
Fish Species and for Eggs and Larvae of Larger Fish
BATIQUITOS LAGOON FOUNDATION F I S H Fishes of the Lagoon There were only a few species of fish in Batiquitos Lagoon (just five!) BATIQUITOS LAGOON FOUNDATION before it was opened to the ocean and tides at the end of 1996. High temperatures in the summer, low oxygen levels, and wide ranges of ANCHOVY salinity did not allow the ecosystem to flourish. Since the restoration of tidal action to the lagoon, the fish populations have significantly increased in numbers and diversity and more than sixty-five species have been found. Lagoons serve as breeding and nursery areas for a wide array of coastal fish, provide habitat and food for resident species TOPSMELT and serve as feeding areas for seasonal species. Different areas of the lagoon environment provide specific habitat needs. These include tidal creeks, sandy bottoms, emergent vegetation, submergent vegetation, nearshore shallows, open water, saline pools and brackish/freshwater areas. These habitats are defined by water YELLOWFIN GOBY characteristics including salinity, water temperature, water velocity and water depth. The lagoon bottom varies with the type of substrate such as rock, cobble, gravel, sand, clay, mud and silt. Tidal creeks and channels provide refuges for small fish species and for eggs and larvae of larger fish. Species in tidal creeks include ROUND STINGRAY gobies and topsmelt. Sandy bottoms provide important habitat for bottom-dwelling fish species such as rays, sharks and flatfish. The sandy areas provide important refuges for crustaceans, which are prey to many fish species within the lagoon. The burrows of ghost shrimp are utilized by the arrow goby. -
ADVENTURES in ICHTHYOLOGY Pacific Northwest Fish of the Lewis and Clark Expedition by Dennis D
WashingtonHistory.org ADVENTURES IN ICHTHYOLOGY Pacific Northwest Fish of the Lewis anD Clark ExpeDition By Dennis D. Dauble COLUMBIA The Magazine of Northwest History, Fall 2005: Vol. 19, No. 3 Captains Meriwether Lewis and William Clark and other members of their expedition collecteD anD iDentified nearly 400 species of plants anD animals During their voyage of Discovery. Of this total, 31 species of fish were incluDeD in Burroughs' summary of the natural history of the expedition, incluDing 12 fish consiDered unknown to science at that time. While there is little doubt of the identity of fish for which Lewis and Clark provided detailed descriptions in their daily logs, other species designations were largely conjecture based on later scholars' interpretations of Lewis anD Clark's accounts. Unlike other biological specimens encountered during the expedition, no fish were brought back for study. As a result, the identity of some was never resolveD. Many other fish were reclassified during the past century based on updated scientific methoDs. As Lewis and Clark's party crossed the Continental Divide in August 1805 in search of a water route to the Pacific Ocean, they reacheD the upper Columbia River watersheD anD crosseD the thresholD toward a whole new assemblage of freshwater fish. Their encounters with Native American fishermen and fish were well-documented in some instances. Other accounts were sketchy at best. In aDDition to their Daily log, Lewis anD Clark wrote long passages summarizing life history anD taxonomic features of several fish species while within the rainy confines of Fort Clatsop in March 1806. Many reconstructed notes were of fish encountered several months earlier when the expedition crossed the Rockies. -
Mullet River Watersheds Watershed
Wisconsin Mullet River Watersheds Watershed 2010 Water Quality Management Plan Update Sheboygan River Basin, Wisconsin August, 2010 Executive Summary The intent of this plan is to provide updated information about current water quality conditions known for the major waterways contained within the Mullet River Watershed. In addition, the plan identifi es current watershed issues. It lists opportunities and recommenda- tions for improving waterway and watershed conditions. Five sub- Contents watershed planning areas were Executive Summary . 1 identifi ed in the plan to aff ord an Introduction . 2 increased focus on local conditions Watershed Description . 2 and an improved planning scale. Water Resources . 3 Ecological Landscapes . 4 This plan is an update to information contained in the October, 2001 “State of the She- Rare Species, Natural Communities . 5 boygan River Basin” report, specifi c to the Mullet River watershed. This plan is intended Watershed Issues . 6 to satisfy federal and state watershed planning laws contained in State Administrative Watershed Recommendations . 10 Code NR121 and Section 208 of the Federal Clean Water Act. Comments on the plan Mullet Creek Subwatershed . 11 were solicited from key stakeholders and partners in the watershed area and from the Kettle Moraine Subwatershed . 14 general public. It provides a framework for improving Mullet River watershed conditions La Budde Creek Subwatershed . 18 in the coming years, by addressing the following issues which impact the river: Municipal Plymouth Subwatershed . 20 Lower Mullet Subwatershed . 24 • Lack of water quality inventory, monitoring, and biological assessment data Conclusions . 25 • Polluted runoff from agricultural areas References and Resources . 25 • Polluted runoff from developed areas Contributors: . -
Capture-Based Aquaculture of Mullets in Egypt
109 Capture-based aquaculture of mullets in Egypt Magdy Saleh General Authority for Fish Resources Development Cairo, Egypt E-mail: [email protected] Saleh, M. 2008. Capture-based aquaculture of mullets in Egypt. In A. Lovatelli and P.F. Holthus (eds). Capture-based aquaculture. Global overview. FAO Fisheries Technical Paper. No. 508. Rome, FAO. pp. 109–126. SUMMARY The use of wild-caught mullet seed for the annual restocking of inland lakes has been known in Egypt for more than eight decades. The importance of wild seed collection increased with recent aquaculture developments. The positive experience with wild seed collection and high seed production costs has prevented the development of commercial mullet hatcheries. Mullet are considered very important aquaculture fish in Egypt with 156 400 tonnes produced in 2005 representing 29 percent of the national aquaculture production. Current legislation prohibits wild seed fisheries except under the direct supervision of the relevant authorities. In 2005, 69.4 million mullet fry were caught for both aquaculture and culture-based fisheries. A parallel illegal fishery exists, undermining proper management of the resources. The effect of wild seed fisheries on the wild stocks of mullet is not well studied. The negative effect of the activity is a matter of debate between fish farming and capture fisheries communities. Data on the capture of wild mullet fisheries shows no observable effect of fry collection on the catch during the last 25 years. DESCRIPTION OF THE SPECIES AND USE IN AQUACULTURE Species presentation Mullets are members of the Order Mugiliformes, Family Mugilidae. Mullets are ray- finned fish found worldwide in coastal temperate and tropical waters and, for some species, also in freshwater. -
Status of Lake Sturgeon (Acipenser Fulvescens Rafinesque 1817)
Journal of Applied Ichthyology J. Appl. Ichthyol. 32 (Suppl. 1) (2016), 162–190 Received: August 12, 2016 © 2016 Blackwell Verlag GmbH Accepted: October 19, 2016 ISSN 0175–8659 doi: 10.1111/jai.13240 Status of Lake Sturgeon (Acipenser fulvescens Rafinesque 1817) in North America By R. M. Bruch1, T. J. Haxton2, R. Koenigs1, A. Welsh3 and S. J. Kerr2 1Wisconsin Department of Natural Resources, Oshkosh, WI, USA; 2Ontario Ministry of Natural Resources and Forestry, Peterborough, ON, Canada; 3School of Natural Resources, West Virginia University, Morgantown, WV, USA Summary The species Lake Sturgeon (LS) had been assigned at least Lake Sturgeon is a potamodromous, fluvial-dependent spe- 17 different scientific names during the 19th and 20th cen- cies from the family Acipenseridae, and one of the largest turies due to the variation in color and shape displayed by freshwater fishes within its North American range extending the different life stages and populations (Scott and Cross- to the Great lakes, Mississippi River, and Hudson Bay drai- man, 1973). Eventually LS was recognized as one species nages. Like almost all other sturgeon species, Lake Stur- with the scientific designation Acipenser fulvescens (ful- = geon populations throughout its range suffered mass vescens yellowish or tawny) originally proposed by Con- – declines or extirpation in the late 1800s into the early stantine Samuel Rafinesque (1783 1840). The common name 1900s, due to extensive overexploitation and habitat loss Lake Sturgeon was given due to the abundance of the species and -
Observations on the Spawning of Mullet, Crenimugil Crenilabis (Forskal), at Enewetak, Marshall Islands
Observations on the Spawning of Mullet, Crenimugil crenilabis (Forskal), at Enewetak, Marshall Islands PHILIP HELFRICH International Center for Living Aquatic Resources Management, P.O. Box 3830, Honolulu, Hawaii 96812 PAUL M. ALLEN Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744 Abstract-The spawning of mullet, Crenimugil creni/abis, was observed in close proximity to the R /V ALPHA HELIX in Enewetak lagoon on the night of 25-26 June 1971. Prespawning behavior consisted of a dense school of 500 to 1500 individuals swimming rapidly in a counter-clockwise pattern near the surface in shallow water. This pattern persisted with occasional breaking of the school into two segments between 2030 and 0005 hr, at which time the rnuLiet formed a single school and made a rapid explosive jump ; it appeared as though the entire school broke the surface of the water after which dense clouds of released gametes were observed. The spawning behavior was repeated several times. Seventeen females (mean fork length 425.8 mm) and twenty-four males (mean fork length 389.5 mm) were sampled from the spawning school ; aJI specimens were running ripe. The sex ratio did not differ significantly from the expected 1: 1. Ovaries examined microscopically contained only fully developed ova, with estimated fecundity ranging from 195,000 to 897,000 ova per female. Although mullet form the basis for important fisheries and are widely cultured for food, very little is known of their spawning habits. Oren (1971) has em phasized the importance of completing our understanding of the life cycle of mullet, so that this knowledge may be applied to their mass-propagation under artificial conditions. -
I CHARACTERIZATION of the STRIPED MULLET (MUGIL CEPHALUS) in SOUTHWEST FLORIDA: INFLUENCE of FISHERS and ENVIRONMENTAL FACTORS
i CHARACTERIZATION OF THE STRIPED MULLET (MUGIL CEPHALUS) IN SOUTHWEST FLORIDA: INFLUENCE OF FISHERS AND ENVIRONMENTAL FACTORS ________________________________________________________________________ A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment of the requirements for the degree of Master of Science ________________________________________________________________________ By Charlotte Marin 2018 ii APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Masters of Science ________________________________________ Charlotte A. Marin Approved: 2018 ________________________________________ S. Gregory Tolley, Ph.D. Committee Chair ________________________________________ Richard Cody, Ph.D. ________________________________________ Edwin M. Everham III, Ph.D. The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii ACKNOWLEDGMENTS I would like to dedicate this project to Harvey and Kathryn Klinger, my loving grandparents, to whom I can attribute my love of fishing and passion for the environment. I would like to express my sincere gratitude to my mom, Kathy, for providing a solid educational foundation that has prepared me to reach this milestone and inspired me to continuously learn. I would also like to thank my aunt, Deb, for always supporting my career aspirations and encouraging me to follow my dreams. I would like to thank my in-laws, Carlos and Dora, for their enthusiasm and generosity in babysitting hours and for always wishing the best for me. To my son, Leo, the light of my life, who inspires me every day to keep learning and growing, to set the best example for him. -
Stream Habitat Needs for Brook Trout and Brown Trout in the Driftless Area
Stream Habitat Needs for Brook Trout and Brown Trout in the Driftless Area Douglas J. Dietermana,1 and Matthew G. Mitrob aMinnesota Department of Natural Resources, Lake City, Minnesota, USA; bWisconsin Department of Natural Resources, Madison, Wisconsin, USA This manuscript was compiled on February 5, 2019 1. Several conceptual frameworks have been proposed to organize in Driftless Area streams. Our specific objectives were and describe fish habitat needs. to: (1) summarize information on the basic biology 2. The five-component framework recognizes that stream trout pop- of Brook Trout and Brown Trout in Driftless Area ulations are regulated by hydrology, water quality, physical habi- streams, (2) briefly review conceptual frameworks or- tat/geomorphology, connectivity, and biotic interactions and man- ganizing fish habitat needs, (3) trace the historical agement of only one component will be ineffective if a different com- evolution of studies designed to identify Brook Trout ponent limits the population. and Brown Trout habitat needs in the context of 3. The thermal niche of both Brook Trout Salvelinus fontinalis and these conceptual frameworks, (4) review Brook Trout- Brown Trout Salmo trutta has been well described. Brown Trout interactions and (5) discuss lingering un- 4. Selected physical habitat characteristics such as pool depths and certainties in habitat management for these species. adult cover, have a long history of being manipulated in the Driftless Area leading to increased abundance of adult trout. Brook Trout and Brown Trout Biology 5. Most blue-ribbon trout streams in the Driftless Area probably pro- vide sufficient habitat for year-round needs (e.g., spawning, feeding, Brook Trout. -
Vernon County Multi Hazard Mitigation Plan 2018-2022
VERNON COUNTY WISCONSIN MULTI- HAZARDS MITIGATION PLAN 2018-2022 FOR R A W D J C AC O K L S A O F N F U L B A C N R This plan was prepared by the Mississippi River Regional O MRRPC O N S S R E E Planning Commission through a cooperative cost sharing V T E R O E agreement with the Vernon County Board of Supervisors, the R M N P O E Mississippi River Regional Planning Commission, Wisconsin A M L E N A PI U PE Emergency Management, and the Federal Emergency PI E R C E Management Agency. Vernon County Multi-Hazards Mitigation Plan 2018-2022 ABSTRACT Title: VERNON COUNTY MULTI-HAZARDS MITIGATION PLAN Plan Purpose: This plan’s purpose it to identify goals, projects and actions the county, other local governments and other organizations can undertake to reduce hazard risks to life, health and property. This plan through properly addressing the federal requirements in the Disaster Mitigation Act of 2000 makes the county and other local governments that participated in the planning process eligible for Federal Hazard Mitigation Grant Programs. These programs can assist in planning, relocation and infrastructure projects that reduce and sometimes eliminate losses and damage from hazards. Plan Participants: This plan was prepared under the direction of the County Emergency Management Committee who coordinated their plan development efforts through the County Emergency Management Director. The Mississippi River Regional Planning Commission who wrote a planning grant to fund this plan was contracted with to write the plan and facilitate public meetings. -
The Driftless Area – a Physiographic Setting (Dale K
A Look Back at Driftless Area Science to Plan for Resiliency in an Uncertain Future th Special Publication of the 11 Annual Driftless Area Symposium 1 A Look Back at Driftless Area Science to Plan for Resiliency in an Uncertain Future Special Publication of the 11th Annual Driftless Area Symposium Radisson Hotel, La Crosse, Wisconsin February 5th-6th, 2019 Table of Contents: Preface: A Look Back at Driftless Area Science to Plan for Resiliency in an Uncertain Future (Daniel C. Dauwalter, Jeff Hastings, Marty Melchior, and J. “Duke” Welter) ........................................... 1 The Driftless Area – A Physiographic Setting (Dale K. Splinter) .......................................................... 5 Driftless Area Land Cover and Land Use (Bruce Vondracek)................................................................ 8 Hydrology of the Driftless Area (Kenneth W. Potter) ........................................................................... 15 Geology and Geomorphology of the Driftless Area (Marty Melchior) .............................................. 20 Stream Habitat Needs for Brown Trout and Brook Trout in the Driftless Area (Douglas J. Dieterman and Matthew G. Mitro) ............................................................................................................ 29 Non-Game Species and Their Habitat Needs in the Driftless Area (Jeff Hastings and Bob Hay) .... 45 Climate Change, Recent Floods, and an Uncertain Future (Daniel C. Dauwalter and Matthew G. Mitro) .........................................................................................................................................................