Flexivirga Alba Gen. Nov., Sp. Nov., an Actinobacterial Taxon in the Family

Total Page:16

File Type:pdf, Size:1020Kb

Flexivirga Alba Gen. Nov., Sp. Nov., an Actinobacterial Taxon in the Family The Journal of Antibiotics (2011) 64, 613–616 & 2011 Japan Antibiotics Research Association All rights reserved 0021-8820/11 $32.00 www.nature.com/ja ORIGINAL ARTICLE Flexivirga alba gen. nov., sp. nov., an actinobacterial taxoninthefamilyDermacoccaceae Kozue Anzai1, Tomoyasu Sugiyama2, Mayuko Sukisaki1, Yayoi Sakiyama1, Misa Otoguro1 and Katsuhiko Ando1 A novel actinobacterial strain ST13T isolated from soil near wastewater treatment facilities of an electroplating plant was subjected to a polyphasic taxonomic study. Cells of this organism were non-sporulating, and were irregular coccoid to comma shaped. The peptidoglycan of strain ST13T contained glutamic acid, serine, alanine, glycine and lysine, and represented the peptidoglycan type A4a. The whole-cell sugars contained ribose, glucose, galactose, rhamnose and mannose. The predominant menaquinone was MK-8(H4). The major fatty acid was iso-C16:0. The polar lipid contained phosphatidylglycerol. The DNA G+C content was 67.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ST13T fell within the radius of the family Dermacoccaceae, and its closest neighbor was Luteipulveratus mongoliensis MN07-A0370T (95.1%). However, strain ST13T did not make a coherent clade with members of the recognized organisms. On the basis of the phylogenetic and phenotypic characteristics of this actinobacterium, a novel genus and species, Flexivirga alba gen. nov., sp. nov., is proposed. The type strain of F. alba is ST13T (¼NBRC 107580T¼DSM 24460T). The Journal of Antibiotics (2011) 64, 613–616; doi:10.1038/ja.2011.62; published online 3 August 2011 Keywords: actinobacteria; Dermacoccaceae; Flexivirga alba gen. nov., sp. nov.; new genus INTRODUCTION incubated at 281 C for 1 week. The strain ST13T was obtained after three The family Dermacoccaceae was first proposed by Stackebrandt and successive transfers on yeast extract-soluble starch medium (YS medium; 2 g À1 Schumann,1 and its pattern of 16S rRNA signature nucleotides was yeast extract, 10 g soluble starch and 15 g l agar; pH 7.3) and maintained as emended by Zhi et al.2 At the time of writing, the family Dermacocca- pure culture at room temperature until used. For long-term preservation, strain T 1 ceae comprised of six recognized genera: Dermacoccus,3 Demetria,4 ST13 was suspended in 10% glycerol solution and stored at À80 C. Kytococcus,3 Luteipulveratus,5 Yimella6 and Branchiibius.7 The organisms belonging to these genera are Gram-positive, aerobic, non-halophilic, Morphological and physiological characteristics The cultural characteristics of strain ST13T were observed on ISP media at coccoid actinobacteria, and their peptidoglycan type is variation A4a. 281 C for 5 days. Morphological features were observed under a scanning Isolates assigned to this family are typically associated with terrestrial electron microscope (JSM-6060; JEOL, Tokyo, Japan).13 Cell motility was tested 8–11 habitats, notably, cured meat products, skin, human blood and soil. under a light microscope by observing cells suspended in phosphate buffer 14 The recently described Branchiibius hedensis was isolated from the (1 mM; pH 7.0). Gram staining was performed using Hucker’s modification. branchia of a codfish.7 During a study of aerobic bacteria from soil Growth under anaerobic conditions was determined by incubating in an T samples, we isolated a novel actinobacterium, designated ST13 ,from anaerobic chamber with an O2-absorbing and CO2-generating agent (Anae- soil near wastewater treatment facilities of an electroplating plant in ro-Pack; Mitsubishi Gas Chemical Company, INC., Tokyo, Japan). Growth tests Seki, Gifu prefecture, Japan. Phylogenetic analysis based on 16S rRNA for pH range were carried out by using media adjusted to pH 3–12 with 4 M gene sequence of strain ST13T revealed that the isolate was a member of HCl or 5 M KOH after sterilization, and NaCl tolerance was examined on YS the suborder Micrococcineae. The aim of this study was to determine the medium supplemented with 1–10% NaCl (w/v) after 1–5 days of incubation at 281 C. The optimum temperature and temperature range for growth were taxonomic position of strain ST13T by using a polyphasic approach. determined by incubating at 5, 10,15, 20, 25, 28, 37, 45 and 501 C. ISP medium 8 was used to test for nitrate reduction.15 Decomposition of urea was MATERIALS AND METHODS determined on Christensen urea agar containing 2.0% urea.16 Degradation of Isolation and cultivation casein and other compounds (final concentration 0.5%) was determined using The soil sample was collected from a depth of B2 cm from the surface near nutrient agar as the basal medium.16 Catalase activity was determined by the wastewater treatment facilities of an electroplating plant in Seki, Gifu production of bubbles after the addition of a drop of 3.0% H2O2. Oxidase prefecture, Japan. The sample was dried at room temperature for several days activity was examined using cytochrome oxidase paper (Nissui Pharmaceutical and suspended in 10 ml sterile water. The sample was vortexed, allowed to settle CO., Tokyo, Japan). Other physiological and biochemical characteristics were for 1 min, and 100 ml of the resultant solution was further diluted and spread determined by using API ZYM, API Coryne and API 50CH systems (bioMe´r- onto International Streptomyces Project (ISP) medium 2.12 The plates were ieux, Marcy l’Etoile, France) according to the manufacturer’s instructions. 1NITE Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan and 2Tokyo University of Technology, Tokyo, Japan Correspondence: Dr M Otoguro, NITE Biological Resource Center, National Institute of Technology and Evaluation, Kazusakamatari 2-5-8, Kisarazu, Chiba 292-0818, Japan. E-mail: [email protected] Received 11 January 2011; revised 31 May 2011; accepted 15 June 2011; published online 3 August 2011 Flexivirga alba gen. nov., sp. nov. KAnzaiet al 614 Chemotaxonomic analysis Strain ST13T was subjected to chemotaxonomic analysis for its classification in the family Dermacoccaceae, including menaquinones,13 polar lipids,17 whole- cell sugars18 and DNA G+C content.19 Analysis of cellular fatty acids was carried out using the Microbial Identification System version 4.02 (MIDI, Inc., Newark, DE, USA),20 and the results were compared with the ACTINO library in the Microbial Identification System. Cell-wall amino acids were analyzed by using the method described by Tamura et al.,13 and the amino acid isomers in cell-wall peptidoglycan were analyzed using the method described by Nozawa et al.21 Biomass for chemotaxonomic studies was obtained by cultivation in shaken flasks containing YG broth (10 g glucose, 10 g yeast extract and 15 g lÀ1 agar; pH 7.3) for 24–72 h at 28 1C.22 Phylogenetic analysis DNA extraction from strain ST13T and PCR amplification of the 16S rRNA gene were performed as described by Tamura and Hatano.23 PCR product was directly sequenced using a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and an automatic DNA sequencer (ABI Prism 3730 Genetic Analyzer; Applied Biosystems). The CLUSTAL_X program24 was used to align the 16S rRNA gene sequences with related sequences (available in the GenBank/EMBL/DDBJ databases) from all of the type strains of the family Dermacoccaceae.Phylogenetictreeswere constructed by the neighbor-joining25 and maximum-likelihood26 methods using MEGA (Molecular Evolutionary Genetics Analysis) version 3.1.27 The topology of the tree was evaluated by means of bootstrap analysis based on 1000 replicates.28 Figure 1 Scanning electron micrographs of irregular coccoid or comma- shaped cells from 1-week-old cultures of strain ST13T grown on 1/2 ISP2 (a) and ISP2 (b). 0.01 Branchiibius hedensis Mer 29717T (AB520822) 85 T 77 Demetria terragena HKI 0089 (Y14152) Yimella lutea YIM 45900T (FJ528304) Luteipulveratus mongoliensis MN07-A0370T (AB468971) Flexivirga alba ST13T (AB539735) 82 Dermacoccus abyssi MT1.1T(AY894323) 100 Dermacoccus profundi MT2.2T(AY894329) 65 T 100 Dermacoccus barathri MT2.1 (AY894328) Dermacoccus nishinomiyaensis DSM20448T(X87757) Kytococcus schroeteri DSM 13884T(AJ297722) 100 Kytococcus sedentarius DSM 20547T(X87755) Streptomyces griseus subsp.griseusNBRC 12875T(AB184211) Figure 2 Phylogenetic tree based on 16S rRNA gene sequences constructed with the neighbor-joining algorithm showing the relationships between strain ST13T and members of the family Dermacoccaceae. Numbers at branch points are confidence limits estimated with bootstrap analysis based on 1000 replicates; only values of 50% are presented. Solid circles indicated that the corresponding nodes were also recovered in maximum-likelihood algorithms. Bar, 0.01 Knuc in nucleotide sequences. The Journal of Antibiotics Flexivirga alba gen. nov., sp. nov. KAnzaiet al 615 RESULTS AND DISCUSSION Morphological and physiological characteristics ) er Strain ST13T formed moist, smooth and white colonies on ISP 4 medium 2 and YS medium. The cells were aerobic, Gram-positive, 7 ), MK-8(H catalase-negative, oxidase-negative, non-sporulating and non-motile. 2 c9 c9 0.9 T 16:0 Mycelia had not developed. Strain ST13 exhibited good growth in  17:1 18:1 C C iso-C NaCl concentrations of up to 5.0% and weak growth at 6.0%. Good Rib, growth was observed at 15–37 1C, and no growth at 5 1Cand501C. The optimum temperature for growth was 25 1C. The pH range for , data from reference. growth was 5.0–9.0 and the optimum was 7.0–8.0. The strain grew well on ISP medium 2, 3, 5, 6 and 7, but grew weakly on ISP medium . Branchiibius 6 4. Scanning electron microscopy revealed near-coccoid cells (0.6– 1.3–1.8 0.7 15:0 17:0 )MK-8(H  1.2 mm in diameter) with buds on 1/2 ISP medium 2 (2 g yeast 4 15:0 extract, 5 g malt extract, 2 g dextrose and 15 g lÀ1 agar; pH 7.3) iso-C anteiso-C anteiso-C (Figure 1a).
Recommended publications
  • Method for Producing Methacrylic Acid And/Or Ester Thereof
    (19) TZZ _T (11) EP 2 894 224 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 15.07.2015 Bulletin 2015/29 C12P 7/62 (2006.01) C12N 15/09 (2006.01) (21) Application number: 13835104.4 (86) International application number: PCT/JP2013/005359 (22) Date of filing: 10.09.2013 (87) International publication number: WO 2014/038216 (13.03.2014 Gazette 2014/11) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SATO, Eiji GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Yokohama-shi PL PT RO RS SE SI SK SM TR Kanagawa 227-8502 (JP) Designated Extension States: • YAMAZAKI, Michiko BA ME Yokohama-shi Kanagawa 227-8502 (JP) (30) Priority: 10.09.2012 JP 2012198840 • NAKAJIMA, Eiji 10.09.2012 JP 2012198841 Yokohama-shi 31.01.2013 JP 2013016947 Kanagawa 227-8502 (JP) 30.07.2013 JP 2013157306 • YU, Fujio 01.08.2013 JP 2013160301 Yokohama-shi 01.08.2013 JP 2013160300 Kanagawa 227-8502 (JP) 20.08.2013 JP 2013170404 • FUJITA, Toshio Yokohama-shi (83) Declaration under Rule 32(1) EPC (expert Kanagawa 227-8502 (JP) solution) • MIZUNASHI, Wataru Yokohama-shi (71) Applicant: Mitsubishi Rayon Co., Ltd. Kanagawa 227-8502 (JP) Tokyo 100-8253 (JP) (74) Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB Arabellastraße 30 81925 München (DE) (54) METHOD FOR PRODUCING METHACRYLIC ACID AND/OR ESTER THEREOF (57) To provide a method for directly and efficiently producing methacrylic acid in a single step from renew- able raw materials and/or biomass arising from the utili- zation of the renewable raw materials.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Microbiology in Shale: Alternatives for Enhanced Gas Recovery
    Graduate Theses, Dissertations, and Problem Reports 2015 Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Tucker, Yael Tarlovsky, "Microbiology in Shale: Alternatives for Enhanced Gas Recovery" (2015). Graduate Theses, Dissertations, and Problem Reports. 6834. https://researchrepository.wvu.edu/etd/6834 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Jianbo Yao, Ph.D., Chair James Kotcon, Ph.D.
    [Show full text]
  • Transcriptome Analysis of Gene Expression in Dermacoccus Abyssi HZAU 226 Under Lysozyme Stress
    microorganisms Article Transcriptome Analysis of Gene Expression in Dermacoccus abyssi HZAU 226 under Lysozyme Stress Xinshuai Zhang 1, Yao Ruan 1, Wukang Liu 1, Qian Chen 1, Lihong Gu 1 and Ailing Guo 1,2,* 1 College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; [email protected] (X.Z.); [email protected] (Y.R.); [email protected] (W.L.); [email protected] (Q.C.); [email protected] (L.G.) 2 National Research and Development Center for Egg Processing, Wuhan 430000, China * Correspondence: [email protected]; Tel.: +86-1534-224-1896 Received: 13 April 2020; Accepted: 8 May 2020; Published: 11 May 2020 Abstract: Lysozyme acts as a kind of cationic antimicrobial protein and effectively hydrolyzes bacterial peptidoglycan to have a bactericidal effect, which also plays an important role in protecting eggs from microbial contamination. Dermacoccus abyssi HZAU 226, a Gram-positive bacterium isolated from spoiled eggs, has egg white and lysozyme tolerance, but its survival mechanism is unknown, especially from a transcriptomics point of view. In this study, the high lysozyme tolerance of D. abyssi HZAU 226 was characterized by three independent experiments, and then the Illumina RNA-seq was used to compare the transcriptional profiles of this strain in Luria–Bertani (LB) medium with and without 5 mg/mL lysozyme to identify differentially expressed genes (DEGs); 1024 DEGs were identified by expression analysis, including 544 up-regulated genes and 480 down-regulated genes in response to lysozyme treatment. The functional annotation analysis results of DEGs showed that these genes were mainly involved in glutathione biosynthesis and metabolism, ion transport, energy metabolism pathways, and peptidoglycan biosynthesis.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Streptosporangium Roseum Type Strain (NI 9100T)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Streptosporangium roseum type strain (NI 9100). Permalink https://escholarship.org/uc/item/7g79w47k Journal Standards in genomic sciences, 2(1) ISSN 1944-3277 Authors Nolan, Matt Sikorski, Johannes Jando, Marlen et al. Publication Date 2010-01-28 DOI 10.4056/sigs.631049 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:29-37 DOI:10.4056/sigs.631049 Complete genome sequence of Streptosporangium T roseum type strain (NI 9100 ) Matt Nolan1, Johannes Sikorski2, Marlen Jando2, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Feng Chen1, Hope Tice1, Sam Pitluck1, Jan-Fang Cheng1, Olga Chertkov1,3, David Sims1,3, Linda Meincke1,3, Thomas Brettin1,3, Cliff Han1,3, John C. Detter1,3, David Bruce1,3, Lynne Goodwin1,3, Miriam Land1,4, Loren Hauser1,4, Yun-Juan Chang1,4, Cynthia D. Jeffries1,4, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amy Chen5, Krishna Pala- niappan5, Patrick Chain1,3, Manfred Rohde6, Markus Göker2, Jim Bristow1, Jonathan A. Ei- sen1,7, Victor Markowitz5, Philip Hugenholtz1, Nikos C. Kyrpides1, and Hans-Peter Klenk2* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: sporangia, vegetative and aerial mycelia, aerobic, non-motile, non-motile spores, Gram-positive, Streptosporangiaceae, S.
    [Show full text]
  • Processing of Metals and Metalloids by Actinobacteria: Cell Resistance Mechanisms and Synthesis of Metal(Loid)-Based Nanostructures
    microorganisms Review Processing of Metals and Metalloids by Actinobacteria: Cell Resistance Mechanisms and Synthesis of Metal(loid)-Based Nanostructures Alessandro Presentato 1,* , Elena Piacenza 1 , Raymond J. Turner 2 , Davide Zannoni 3 and Martina Cappelletti 3 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; [email protected] 2 Department of Biological Sciences, Calgary University, Calgary, AB T2N 1N4, Canada; [email protected] 3 Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; [email protected] (D.Z.); [email protected] (M.C.) * Correspondence: [email protected] Received: 6 December 2020; Accepted: 16 December 2020; Published: 18 December 2020 Abstract: Metal(loid)s have a dual biological role as micronutrients and stress agents. A few geochemical and natural processes can cause their release in the environment, although most metal-contaminated sites derive from anthropogenic activities. Actinobacteria include high GC bacteria that inhabit a wide range of terrestrial and aquatic ecological niches, where they play essential roles in recycling or transforming organic and inorganic substances. The metal(loid) tolerance and/or resistance of several members of this phylum rely on mechanisms such as biosorption and extracellular sequestration by siderophores and extracellular polymeric substances (EPS), bioaccumulation, biotransformation, and metal efflux processes, which overall contribute to maintaining metal homeostasis. Considering the bioprocessing potential of metal(loid)s by Actinobacteria, the development of bioremediation strategies to reclaim metal-contaminated environments has gained scientific and economic interests. Moreover, the ability of Actinobacteria to produce nanoscale materials with intriguing physical-chemical and biological properties emphasizes the technological value of these biotic approaches.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Of Bergey's Manual
    BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B Michael Goodfellow, Peter Kämpfer, Hans-Jürgen Busse, Martha E. Trujillo, Ken-ichiro Suzuki, Wolfgang Ludwig and William B. Whitman EDITORS, VOLUME FIVE William B. Whitman DIRECTOR OF THE EDITORIAL OFFICE Aidan C. Parte MANAGING EDITOR EDITORIAL BOARD Fred A. Rainey, Chairman, Peter Kämpfer, Vice Chairman, Paul De Vos, Jongsik Chun, Martha E. Trujillo and William B. Whitman WITH CONTRIBUTIONS FROM 116 COLLEAGUES William B. Whitman Bergey’s Manual Trust Department of Microbiology 527 Biological Sciences Building University of Georgia Athens, GA 30602-2605 USA ISBN 978-0-387-95043-3 ISBN 978-0-387-68233-4 (eBook) DOI 10.1007/978-0-387-68233-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2012930836 © 2012, 1984–1989 Bergey’s Manual Trust Bergey’s Manual is a registered trademark of Bergey’s Manual Trust. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]