Molecular and Cellular Approaches Toward Understanding Dynein-Driven Motility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Piano • Vocal • Guitar • Folk Instruments • Electronic Keyboard • Instrumental • Drum ADDENDUM Table of Contents
MUsic Piano • Vocal • Guitar • Folk Instruments • Electronic Keyboard • Instrumental • Drum ADDENDUM table of contents Sheet Music ....................................................................................................... 3 Jazz Instruction ....................................................................................... 48 Fake Books........................................................................................................ 4 A New Tune a Day Series ......................................................................... 48 Personality Folios .............................................................................................. 5 Orchestra Musician’s CD-ROM Library .................................................... 50 Songwriter Collections ..................................................................................... 16 Music Minus One .................................................................................... 50 Mixed Folios .................................................................................................... 17 Strings..................................................................................................... 52 Best Ever Series ...................................................................................... 22 Violin Play-Along ..................................................................................... 52 Big Books of Music ................................................................................. 22 Woodwinds ............................................................................................ -
Dynamics of the Linc Complex
DYNAMICS OF THE LINC COMPLEX Loic Gazquez University of Manchester School of Biological Sciences 2017 A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health TABLE OF CONTENTS Table of Contents .................................................................................................................................... 2 Abstract.................................................................................................................................................... 4 Declaration .............................................................................................................................................. 5 Copyright statement ................................................................................................................................ 5 Acknowledgements ................................................................................................................................. 6 I. Introduction .................................................................................................................................. 7 Nuclear Envelope and the LINC complex ................................................................................... 7 I. 1.1. The first LINC component: the SUN ................................................................................ 8 I. 1.2. The second LINC component: the KASH ........................................................................ 8 I. 1.1. Structure -
Marygold Manor DJ List
Page 1 of 143 Marygold Manor 4974 songs, 12.9 days, 31.82 GB Name Artist Time Genre Take On Me A-ah 3:52 Pop (fast) Take On Me a-Ha 3:51 Rock Twenty Years Later Aaron Lines 4:46 Country Dancing Queen Abba 3:52 Disco Dancing Queen Abba 3:51 Disco Fernando ABBA 4:15 Rock/Pop Mamma Mia ABBA 3:29 Rock/Pop You Shook Me All Night Long AC/DC 3:30 Rock You Shook Me All Night Long AC/DC 3:30 Rock You Shook Me All Night Long AC/DC 3:31 Rock AC/DC Mix AC/DC 5:35 Dirty Deeds Done Dirt Cheap ACDC 3:51 Rock/Pop Thunderstruck ACDC 4:52 Rock Jailbreak ACDC 4:42 Rock/Pop New York Groove Ace Frehley 3:04 Rock/Pop All That She Wants (start @ :08) Ace Of Base 3:27 Dance (fast) Beautiful Life Ace Of Base 3:41 Dance (fast) The Sign Ace Of Base 3:09 Pop (fast) Wonderful Adam Ant 4:23 Rock Theme from Mission Impossible Adam Clayton/Larry Mull… 3:27 Soundtrack Ghost Town Adam Lambert 3:28 Pop (slow) Mad World Adam Lambert 3:04 Pop For Your Entertainment Adam Lambert 3:35 Dance (fast) Nirvana Adam Lambert 4:23 I Wanna Grow Old With You (edit) Adam Sandler 2:05 Pop (slow) I Wanna Grow Old With You (start @ 0:28) Adam Sandler 2:44 Pop (slow) Hello Adele 4:56 Pop Make You Feel My Love Adele 3:32 Pop (slow) Chasing Pavements Adele 3:34 Make You Feel My Love Adele 3:32 Pop Make You Feel My Love Adele 3:32 Pop Rolling in the Deep Adele 3:48 Blue-eyed soul Marygold Manor Page 2 of 143 Name Artist Time Genre Someone Like You Adele 4:45 Blue-eyed soul Rumour Has It Adele 3:44 Pop (fast) Sweet Emotion Aerosmith 5:09 Rock (slow) I Don't Want To Miss A Thing (Cold Start) -
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1]. -
Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations
Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations by Jelena Perovanovic M.S. in Molecular Biology and Physiology, September 2009, University of Belgrade M.Phil. in Molecular Medicine, August 2013, The George Washington University A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation directed by Eric P. Hoffman Professor of Integrative Systems Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Jelena Perovanovic has passed the Final Examination for the degree of Doctor of Philosophy as of May 5, 2015. This is the final and approved form of the dissertation. Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations Jelena Perovanovic Dissertation Research Committee: Eric P. Hoffman, Professor of Integrative Systems Biology, Dissertation Director Anamaris Colberg-Poley, Professor of Integrative Systems Biology, Committee Member Robert J. Freishtat, Associate Professor of Pediatrics, Committee Member Vittorio Sartorelli, Senior Investigator, National Institutes of Health, Committee Member ii © Copyright 2015 by Jelena Perovanovic All rights reserved iii Acknowledgments I am deeply indebted to countless individuals for their support and encouragement during the past five years of graduate studies. First and foremost, I would like to express my gratitude to my mentor, Dr. Eric P. Hoffman, for his unwavering support and guidance, and keen attention to my professional development. This Dissertation would not have been possible without the critical input he provided and the engaging environment he created. -
Table S1. Identified Proteins with Exclusive Expression in Cerebellum of Rats of Control, 10Mg F/L and 50Mg F/L Groups
Table S1. Identified proteins with exclusive expression in cerebellum of rats of control, 10mg F/L and 50mg F/L groups. Accession PLGS Protein Name Group IDa Score Q3TXS7 26S proteasome non-ATPase regulatory subunit 1 435 Control Q9CQX8 28S ribosomal protein S36_ mitochondrial 197 Control P52760 2-iminobutanoate/2-iminopropanoate deaminase 315 Control Q60597 2-oxoglutarate dehydrogenase_ mitochondrial 67 Control P24815 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1 84 Control Q99L13 3-hydroxyisobutyrate dehydrogenase_ mitochondrial 114 Control P61922 4-aminobutyrate aminotransferase_ mitochondrial 470 Control P10852 4F2 cell-surface antigen heavy chain 220 Control Q8K010 5-oxoprolinase 197 Control P47955 60S acidic ribosomal protein P1 190 Control P70266 6-phosphofructo-2-kinase/fructose-2_6-bisphosphatase 1 113 Control Q8QZT1 Acetyl-CoA acetyltransferase_ mitochondrial 402 Control Q9R0Y5 Adenylate kinase isoenzyme 1 623 Control Q80TS3 Adhesion G protein-coupled receptor L3 59 Control B7ZCC9 Adhesion G-protein coupled receptor G4 139 Control Q6P5E6 ADP-ribosylation factor-binding protein GGA2 45 Control E9Q394 A-kinase anchor protein 13 60 Control Q80Y20 Alkylated DNA repair protein alkB homolog 8 111 Control P07758 Alpha-1-antitrypsin 1-1 78 Control P22599 Alpha-1-antitrypsin 1-2 78 Control Q00896 Alpha-1-antitrypsin 1-3 78 Control Q00897 Alpha-1-antitrypsin 1-4 78 Control P57780 Alpha-actinin-4 58 Control Q9QYC0 Alpha-adducin 270 Control Q9DB05 Alpha-soluble NSF attachment protein 156 Control Q6PAM1 Alpha-taxilin 161 -
Major Differences Between Human Atopic Dermatitis and Murine Models As Determined by Global Transcriptomic Profiling
Downloaded from orbit.dtu.dk on: Jul 09, 2018 Major differences between human atopic dermatitis and murine models as determined by global transcriptomic profiling Ewald, David Adrian; Noda, Shinji; Oliva, Margeaux; Litman, Thomas; Nakajima, Saeko; Li, Xuan; Xu, Hui; Scheipers, Peter; Svitacheva, Naila; Labuda, Tord; Krueger, James G.; Suárez-Fariñas, Mayte; Kabashima, Kenji; Guttman-Yassky, Emma Published in: Journal of Allergy and Clinical Immunology Link to article, DOI: 10.1016/j.jaci.2016.08.029 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Ewald, D. A., Noda, S., Oliva, M., Litman, T., Nakajima, S., Li, X., ... Guttman-Yassky, E. (2017). Major differences between human atopic dermatitis and murine models as determined by global transcriptomic profiling. Journal of Allergy and Clinical Immunology, 139(2), 562-571. DOI: 10.1016/j.jaci.2016.08.029 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Universidade Estadual De Campinas Instituto De Artes
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE ARTES NYCHOLAS MAIA Um Modelo Computacional de Mixagem Automática para Música Comercial A Computational Model for Automatic Mixing for Pop Music Campinas 2018 NYCHOLAS MAIA Um Modelo Computacional de Mixagem Automática para Música Comercial A Computational Model for Automatic Mixing for Pop Music Dissertação apresentada ao Instituto de Artes da Universidade Estadual de Campinas para obtenção do título de Mestre em Música, na área de Música: Teoria, Criação e Prática Dissertation presented to the Institute of Arts of the State University of Campinas to obtain the degree of Master of Music in the field of Music: Theory, Creation, and Pratice Orientador: Prof. Dr. José Eduardo Fornari Novo Junior ESTE TRABALHO CORRESPONDE A VERSAO FINAL DA DISSERTACAO DEFENDIDA PELO ALUNO NYCHOLAS MAIA, E ORIENTADO PELO PROF. DR. JOSÉ EDUARDO FORNARI NOVO JUNIOR. Campinas 2018 Agência(s) de fomento e nº(s) de processo(s): Não se aplica. ORCID: https://orcid.org/0000-0002-8109-7304 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Artes Silvia Regina Shiroma - CRB 8/8180 Maia, Nycholas, 1989- M28m MaiUm Modelo Computacional de Mixagem Automática para Música Comercial / Nycholas Maia. – Campinas, SP : [s.n.], 2018. MaiOrientador: José Eduardo Fornari Novo Junior. MaiDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Artes. Mai1. Gravação musical. 2. Percepção musical. 3. Música e tecnologia. I. Novo Junior, José Eduardo Fornari, 1966-. II. Universidade Estadual -
KIF13A Mediates the Activity-Dependent Transport of ESCRT-0 Proteins in Axons
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.044818; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. KIF13A mediates the activity-dependent transport of ESCRT-0 proteins in axons Veronica Birdsall1, Yuuta Imoto2, Shigeki Watanabe2,3, Clarissa L. Waites4,5 1. Neurobiology and Behavior PhD program, Columbia University, New York, NY 10027 2. Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205 3. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, MD 21205, USA 4. Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 5. Department of Neuroscience, Columbia University, New York, NY 10027 Correspondence to: Clarissa Waites, Ph.D., Departments of Pathology & Cell Biology and Neuroscience, 650 W. 168th St., Black Building 1210B, New York, NY 10032, USA; Tel. 212-305-6025; e-mail: [email protected] Running title: Activity-dependent transport of ESCRT-0 proteins bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.044818; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy, functional synapses in neurons. Our previous work showed that the degradation of SV proteins is mediated by the endosomal sorting complex required for transport (ESCRT) pathway in an activity-dependent manner. Here, we characterize the axonal transport dynamics of ESCRT-0 proteins Hrs and STAM1, the first components of the ESCRT pathway critical for initiating SV protein degradation. -
The Kinesin Superfamily Handbook Transporter, Creator, Destroyer
The Kinesin Superfamily Handbook Transporter, Creator, Destroyer Edited by Claire T. Friel First edition published 2020 ISBN: 978-1-138-58956-8 (hbk) ISBN: 978-0-429-49155-9 (ebk) 4 The Kinesin-3 Family Long-Distance Transporters Nida Siddiqui and Anne Straube CC BY-NC-ND 4.0 The Kinesin Superfamily Handbook The Kinesin-3 Family 4 Long-Distance Transporters Nida Siddiqui and Anne Straube CONTENTS 4.1 Example Family Members .............................................................................. 41 4.2 Structural Information .................................................................................... 41 4.3 Functional Properties ...................................................................................... 43 4.3.1 Autoinhibition of Kinesin-3 Motors and Their Activation .................45 4.4 Physiological Roles .........................................................................................46 4.4.1 Preference for Subsets of Microtubule Tracks .................................... 47 4.5 Involvement in Disease ...................................................................................48 Acknowledgements ..................................................................................................49 References ................................................................................................................49 The Kinesin-3s are a family of cargo transporters. They typically display highly processive plus-end-directed motion, either as dimers or in teams, formed via interaction with