Adherens Junctions on the Move—Membrane Trafficking of E-Cadherin

Total Page:16

File Type:pdf, Size:1020Kb

Adherens Junctions on the Move—Membrane Trafficking of E-Cadherin Downloaded from http://cshperspectives.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Adherens Junctions on the Move—Membrane Trafficking of E-Cadherin Lena Bru¨ser1 and Sven Bogdan1,2 1Institut fu¨r Neurobiologie, Universita¨tMu¨nster, Badestraße 9, 48149 Mu¨nster, Germany 2Institut fu¨r Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universita¨t Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany Correspondence: [email protected] Cadherin-based adherens junctions are conserved structuresthat mediate epithelial cell–cell adhesion in invertebrates andvertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and under- goes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed con- served, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling. he ability of epithelial cells to organize into Classical cadherins such as E-cadherin are Tmonolayered sheets is a prerequisite for single-pass membrane proteins with character- multicellularity, thereby providing tissue in- istic extracellular cadherin (EC) repeat do- tegrity, barrier function, and tissue polarity in mains that mediate trans-homophilic interac- metazoan organisms. Adherens junctions (AJs) tions between neighboring cells. While the are conserved key structures that mediate cell– numbers of ECs vary between different species, cell adhesion in invertebrates and vertebrates. In their intracellular domains are highly con- many polarized epithelial sheets, AJs form a served from flies to humans and form a com- continuous adhesive belt at the apical–lateral plex with catenins that link AJs to the actin interfaces of cell–cell contacts, the zonula ad- cytoskeleton. The juxtamembrane domain of herens. The structural and functional core com- the cadherin intracellular tail interacts with ponents of epithelial AJs are clusters of dimeric p120 catenin, whereas the carboxy-terminal E-cadherin, a calcium-dependent, homophilic part directly binds b-catenin, which, in turn, cell–cell adhesion receptor (Fig. 1). High-reso- binds a-catenin mediating a dynamic linkage lution microscopy analyses, however, recently to the actin cytoskeleton (Fig. 1) (Drees et al. revealed that E-cadherin clusters also accumu- 2005; Gates and Peifer 2005; Yamada et al. late throughout the lateral junctions below the 2005). This dynamic interaction between AJs zonula adherens (Wu et al. 2014; Yap et al. and the actin cytoskeleton is tightly linked to 2015). junctional maintenance, dynamics, and plastic- Editors: Carien M. Niessen and Alpha S. Yap Additional Perspectives on Cell–Cell Junctions available at www.cshperspectives.org Copyright # 2017 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a029140 Cite this article as Cold Spring Harb Perspect Biol 2017;9:a029140 1 Downloaded from http://cshperspectives.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press L. Bru¨ser and S. Bogdan O-mannosylation N-glycosylation PM LL Y p120 p120 Src kinases SUMOylation β-Catenin β-Catenin AP-2 clathrin adaptor Uniquitin ligases (e.g., Hakai) α-Catenin α-Catenin Figure 1. The core E-cadherin/catenin complex at adherens junctions (AJs). The stability and turnover of the core E-cadherin/catenin complex is regulated by different molecules and posttranslational modifications, for further details see main text. ity in developing and differentiated tissues like Drosophila have led to the identification of (Michael and Yap 2013). conserved molecules and the underlying regu- The dual properties of stability and plastic- latory mechanisms driving cadherin trafficking ity of AJs were first observed in calcium chela- in a large variety of morphogenetic and devel- tion experiments (Kartenbeck et al. 1982). De- opmental processes. Here, we review our cur- pletion of extracellular calcium results in a rapid rent knowledge about the proteins and the disruption of cell–cell adhesion in cultured ep- mechanisms controlling endocytosis, sorting ithelial monolayers because of the endocytic in- and recycling of E-cadherin. ternalization of cadherins from AJs (Kartenbeck et al. 1982, 1991). The significance of cadherin E-CADHERIN IS CONSTANTLY internalization under physiological conditions INTERNALIZED FROM THE CELL SURFACE is now well established. Over the last three de- cades, numerous studies showed that junctional Dynamic changes in cell shape within tissues proteins such as E-cadherin are dynamically require a constant remodeling of cell junctions. turned over at the cell surface and this is funda- Initial metabolic labeling experiments in cul- mental for tissue remodeling during morpho- tured Madin–Darby canine kidney (MDCK) genesis and tissue homeostasis (Kowalczyk and epithelial cells showed a half-life of endogenous Nanes 2012; Takeichi 2014). Mammalian cell E-cadherin at the cell surface of 5–10 h culture studies combined with in vivo models (McCrea and Gumbiner 1991; Troxell et al. 2 Cite this article as Cold Spring Harb Perspect Biol 2017;9:a029140 Downloaded from http://cshperspectives.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Membrane Trafficking of E-Cadherin 1999). Recent fluorescence recovery after photo- (Miranda et al. 2001; Miyashita and Ozawa bleaching (FRAP) and photoconversion exper- 2007a,b). iments in living epithelial layers of the Droso- The budding of clathrin-coated vesicles re- phila embryo confirmed a relatively slow quires the core endocytic machinery including biosynthetic turnover of E-cadherin clusters of the GTPases Dynamin and Rab5. Reduction of about 1 h in vivo (Cavey et al. 2008). Thus, the these core components results in an increase of comparatively slow transcriptional regulation of E-cadherin at the plasma membrane. Dynamin E-cadherin cannot account for all rapid changes is a large, multidomain GTPase that assembles in cell adhesion strength during fast cellular into helical structures along invaginating mem- movements and tissue remodeling. Instead, branes and drives the scission of endocytic ves- cadherins are constantly removed from the plas- icles through a cycle of oligomerization and ma membrane through endocytosis and recy- GTP hydrolysis (Fig. 2) (Schmid and Frolov cled back by exocytosis. Depending on the cel- 2011; Kirchhausen et al. 2014). Dynamin-medi- lular context, E-cadherin can be internalized ated endocytosis is required for E-cadherin re- through different endocytic pathways. Most distribution at mature AJs of MDCK and MCF7 studies analyzed clathrin-mediated endocytosis cells, but also plays an important role in AJ turn- of E-cadherin (Le et al. 1999; Palacios et al. 2002; over during Drosophila epithelial morphogene- Paterson et al. 2003). However, growth-factor- sis (Classen et al. 2005; Georgiou et al. 2008; induced non-clathrin-mediated pathways of Leibfried et al. 2008; de Beco et al. 2009; Levayer E-cadherin, including Rac1-dependent macro- et al. 2011). A key observation of the Drosophila pinocytosis, have been reported (Braga et al. in vivo studies is that E-cadherin endocytosis is 1997, 1999; Akhtar and Hotchin 2001; Lu locally enhanced along the planar axis or along et al. 2003; Bryant et al. 2007). the apico-basal axis of epithelial cells and that this local E-cadherin turnover has an instructive role in tissue morphogenesis. For example, po- LOCAL REMOVAL OF E-CADHERIN FROM larized endocytosis of E-cadherin is crucial for THE PLASMA MEMBRANE BY CLATHRIN- cell intercalations in the elongating Drosophila MEDIATED ENDOCYTOSIS embryo whereby epithelial cells change neigh- Unlike macropinocytosis, clathrin-mediated bors through the shrinkage of planar polarized endocytosis allows a spatially controlled inter- junctions along the dorsoventral axis. Blocking nalization. Since clathrin does not bind directly of clathrin-mediated endocytosis causes the loss to cargo receptors, selection of cargo relies on of E-cadherin planar polarization and a block of adaptor proteins that recognize internalization cell intercalations (Levayer et al. 2011). Similar motifs within the cytoplasmic region of trans- observations were made in Drosophila pupal ep- membrane receptors (Kelly and Owen 2011). E- ithelia (Classen et al. 2005; Georgiou et al. 2008; cadherin associates with several endocytic Leibfried et al. 2008; de Beco et al. 2009). Wing adaptors including AP-2, Dab-2, and Numb epithelial cells become hexagonally packed (Ling et al. 2007; Miyashita and Ozawa 2007b; through the shrinkage of individual AJ by po- Yang et al. 2007; Sato et al. 2011). A central larized E-cadherin turnover (Classen et al. 2005; adaptor in clathrin-mediated endocytosis is Warrington et al. 2013). Consistently, loss of AP-2, which forms a tetrameric complex that E-cadherin or dynamin function disrupts the directly binds clathrin and recruits several clas- planar polarized organization of the wing ses of receptors bearing an acidic dileucine in- epithelium (Classen et al. 2005; Fricke et al. ternalization signal in their cytoplasmic tail 2009). Polarized
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Dynamics of the Linc Complex
    DYNAMICS OF THE LINC COMPLEX Loic Gazquez University of Manchester School of Biological Sciences 2017 A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health TABLE OF CONTENTS Table of Contents .................................................................................................................................... 2 Abstract.................................................................................................................................................... 4 Declaration .............................................................................................................................................. 5 Copyright statement ................................................................................................................................ 5 Acknowledgements ................................................................................................................................. 6 I. Introduction .................................................................................................................................. 7 Nuclear Envelope and the LINC complex ................................................................................... 7 I. 1.1. The first LINC component: the SUN ................................................................................ 8 I. 1.2. The second LINC component: the KASH ........................................................................ 8 I. 1.1. Structure
    [Show full text]
  • RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
    G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1].
    [Show full text]
  • Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations
    Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations by Jelena Perovanovic M.S. in Molecular Biology and Physiology, September 2009, University of Belgrade M.Phil. in Molecular Medicine, August 2013, The George Washington University A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation directed by Eric P. Hoffman Professor of Integrative Systems Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Jelena Perovanovic has passed the Final Examination for the degree of Doctor of Philosophy as of May 5, 2015. This is the final and approved form of the dissertation. Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations Jelena Perovanovic Dissertation Research Committee: Eric P. Hoffman, Professor of Integrative Systems Biology, Dissertation Director Anamaris Colberg-Poley, Professor of Integrative Systems Biology, Committee Member Robert J. Freishtat, Associate Professor of Pediatrics, Committee Member Vittorio Sartorelli, Senior Investigator, National Institutes of Health, Committee Member ii © Copyright 2015 by Jelena Perovanovic All rights reserved iii Acknowledgments I am deeply indebted to countless individuals for their support and encouragement during the past five years of graduate studies. First and foremost, I would like to express my gratitude to my mentor, Dr. Eric P. Hoffman, for his unwavering support and guidance, and keen attention to my professional development. This Dissertation would not have been possible without the critical input he provided and the engaging environment he created.
    [Show full text]
  • Table S1. Identified Proteins with Exclusive Expression in Cerebellum of Rats of Control, 10Mg F/L and 50Mg F/L Groups
    Table S1. Identified proteins with exclusive expression in cerebellum of rats of control, 10mg F/L and 50mg F/L groups. Accession PLGS Protein Name Group IDa Score Q3TXS7 26S proteasome non-ATPase regulatory subunit 1 435 Control Q9CQX8 28S ribosomal protein S36_ mitochondrial 197 Control P52760 2-iminobutanoate/2-iminopropanoate deaminase 315 Control Q60597 2-oxoglutarate dehydrogenase_ mitochondrial 67 Control P24815 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1 84 Control Q99L13 3-hydroxyisobutyrate dehydrogenase_ mitochondrial 114 Control P61922 4-aminobutyrate aminotransferase_ mitochondrial 470 Control P10852 4F2 cell-surface antigen heavy chain 220 Control Q8K010 5-oxoprolinase 197 Control P47955 60S acidic ribosomal protein P1 190 Control P70266 6-phosphofructo-2-kinase/fructose-2_6-bisphosphatase 1 113 Control Q8QZT1 Acetyl-CoA acetyltransferase_ mitochondrial 402 Control Q9R0Y5 Adenylate kinase isoenzyme 1 623 Control Q80TS3 Adhesion G protein-coupled receptor L3 59 Control B7ZCC9 Adhesion G-protein coupled receptor G4 139 Control Q6P5E6 ADP-ribosylation factor-binding protein GGA2 45 Control E9Q394 A-kinase anchor protein 13 60 Control Q80Y20 Alkylated DNA repair protein alkB homolog 8 111 Control P07758 Alpha-1-antitrypsin 1-1 78 Control P22599 Alpha-1-antitrypsin 1-2 78 Control Q00896 Alpha-1-antitrypsin 1-3 78 Control Q00897 Alpha-1-antitrypsin 1-4 78 Control P57780 Alpha-actinin-4 58 Control Q9QYC0 Alpha-adducin 270 Control Q9DB05 Alpha-soluble NSF attachment protein 156 Control Q6PAM1 Alpha-taxilin 161
    [Show full text]
  • Cadherin-Mediated Adhesion Is Essential for Myofibril Continuity Across the Plasma Membrane but Not for Assembly of the Contract
    Research Article 1471 Cadherin-mediated adhesion is essential for myofibril continuity across the plasma membrane but not for assembly of the contractile apparatus Yang Luo and Glenn L. Radice* Center for Research on Reproduction and Women’s Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA *Author for correspondence (e-mail: [email protected]) Accepted 23 December 2002 Journal of Cell Science 116, 1471-1479 © 2003 The Company of Biologists Ltd doi:10.1242/jcs.00339 Summary The strong coordinated contraction of heart muscle is however, alignment of the myofibrils through regions of dependent on the correct alignment and connection of the cell-cell contact was lost, resulting in their random myofibrils across the plasma membrane. Previous studies orientation. Gap junctions were perturbed in the N- indicate that N-cadherin is involved in cardiac myocyte cadherin-null myocytes. By contrast, focal contacts adhesion and myofibrillogenesis. To investigate whether N- appeared normal in the mutant cells. Furthermore, E- cadherin is specifically required for normal myocyte cadherin restored normal cell morphology and behavior structure and function, we cultured myocytes from wild- to the N-cadherin-deficient myocytes, including proper type, N-cadherin-null and mutant embryos expressing the alignment of the myofibrils. We conclude that a different epithelial cadherin E-cadherin. In contrast to previous adhesive system, most probably integrin, is responsible for studies in chicken using N-cadherin-perturbing antibodies, myofibrillogenesis in the N-cadherin-null myocytes. our in vitro studies with mouse cells demonstrate that N- cadherin is not required for myofibrillogenesis, but is critical for myofibril organization.
    [Show full text]
  • Major Differences Between Human Atopic Dermatitis and Murine Models As Determined by Global Transcriptomic Profiling
    Downloaded from orbit.dtu.dk on: Jul 09, 2018 Major differences between human atopic dermatitis and murine models as determined by global transcriptomic profiling Ewald, David Adrian; Noda, Shinji; Oliva, Margeaux; Litman, Thomas; Nakajima, Saeko; Li, Xuan; Xu, Hui; Scheipers, Peter; Svitacheva, Naila; Labuda, Tord; Krueger, James G.; Suárez-Fariñas, Mayte; Kabashima, Kenji; Guttman-Yassky, Emma Published in: Journal of Allergy and Clinical Immunology Link to article, DOI: 10.1016/j.jaci.2016.08.029 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Ewald, D. A., Noda, S., Oliva, M., Litman, T., Nakajima, S., Li, X., ... Guttman-Yassky, E. (2017). Major differences between human atopic dermatitis and murine models as determined by global transcriptomic profiling. Journal of Allergy and Clinical Immunology, 139(2), 562-571. DOI: 10.1016/j.jaci.2016.08.029 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • KIF13A Mediates the Activity-Dependent Transport of ESCRT-0 Proteins in Axons
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.044818; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. KIF13A mediates the activity-dependent transport of ESCRT-0 proteins in axons Veronica Birdsall1, Yuuta Imoto2, Shigeki Watanabe2,3, Clarissa L. Waites4,5 1. Neurobiology and Behavior PhD program, Columbia University, New York, NY 10027 2. Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205 3. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, MD 21205, USA 4. Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 5. Department of Neuroscience, Columbia University, New York, NY 10027 Correspondence to: Clarissa Waites, Ph.D., Departments of Pathology & Cell Biology and Neuroscience, 650 W. 168th St., Black Building 1210B, New York, NY 10032, USA; Tel. 212-305-6025; e-mail: [email protected] Running title: Activity-dependent transport of ESCRT-0 proteins bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.044818; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy, functional synapses in neurons. Our previous work showed that the degradation of SV proteins is mediated by the endosomal sorting complex required for transport (ESCRT) pathway in an activity-dependent manner. Here, we characterize the axonal transport dynamics of ESCRT-0 proteins Hrs and STAM1, the first components of the ESCRT pathway critical for initiating SV protein degradation.
    [Show full text]
  • The Kinesin Superfamily Handbook Transporter, Creator, Destroyer
    The Kinesin Superfamily Handbook Transporter, Creator, Destroyer Edited by Claire T. Friel First edition published 2020 ISBN: 978-1-138-58956-8 (hbk) ISBN: 978-0-429-49155-9 (ebk) 4 The Kinesin-3 Family Long-Distance Transporters Nida Siddiqui and Anne Straube CC BY-NC-ND 4.0 The Kinesin Superfamily Handbook The Kinesin-3 Family 4 Long-Distance Transporters Nida Siddiqui and Anne Straube CONTENTS 4.1 Example Family Members .............................................................................. 41 4.2 Structural Information .................................................................................... 41 4.3 Functional Properties ...................................................................................... 43 4.3.1 Autoinhibition of Kinesin-3 Motors and Their Activation .................45 4.4 Physiological Roles .........................................................................................46 4.4.1 Preference for Subsets of Microtubule Tracks .................................... 47 4.5 Involvement in Disease ...................................................................................48 Acknowledgements ..................................................................................................49 References ................................................................................................................49 The Kinesin-3s are a family of cargo transporters. They typically display highly processive plus-end-directed motion, either as dimers or in teams, formed via interaction with
    [Show full text]
  • BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons To
    BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to Generate Recycling Endosomes Cédric Delevoye, PSL Research University Xavier Heiligenstein, PSL Research University Léa Ripoll, PSL Research University Floriane Gilles-Marsens, PSL Research University Megan K. Dennis, Children’s Hospital of Philadelphia Ricardo A. Linares, Children's Hospital of Philadelphia Laura Derman, PSL Research University Avanti Gokhale, Emory University Etienne Morel, Institut Necker Enfants-Malades (INEM) Université Victor Faundez, Emory University Only first 10 authors above; see publication for full author list. Journal Title: Current Biology Volume: Volume 26, Number 1 Publisher: Elsevier (Cell Press) | 2016-01-11, Pages 1-13 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1016/j.cub.2015.11.020 Permanent URL: https://pid.emory.edu/ark:/25593/rwjsc Final published version: http://dx.doi.org/10.1016/j.cub.2015.11.020 Copyright information: © 2016 Elsevier Ltd. Published by Elsevier Inc. Accessed September 27, 2021 7:05 AM EDT HHS Public Access Author manuscript Author Manuscript Author ManuscriptCurr Biol Author Manuscript. Author manuscript; Author Manuscript available in PMC 2017 January 11. Published in final edited form as: Curr Biol. 2016 January 11; 26(1): 1–13. doi:10.1016/j.cub.2015.11.020. BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes Cédric Delevoye1,2,*, Xavier Heiligenstein1,§, Léa Ripoll1,§, Floriane Gilles-Marsens1, Megan K. Dennis3,4, Ricardo A. Linares3,4, Laura Derman1, Avanti Gokhale5, Etienne Morel6, Victor Faundez5, Michael S. Marks3,4, and Graça Raposo1,2 1Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, F-75005, Paris, France 2Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France 3Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia 4Depts.
    [Show full text]
  • Regulated Assembly of Tight Junctions by Protein Kinase C ROBERT 0
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6072-6076, June 1995 Cell Biology Regulated assembly of tight junctions by protein kinase C ROBERT 0. STUART AND SANJAY K. NIGAM* Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 Communicated by Carl W. Gottschalk, University of North Carolina, Chapel Hill, NC, March 14, 1995 (received for review December 7, 1994) ABSTRACT We have previously shown that protein phos- We have previously observed localized changes in intracel- phorylation plays an important role in the sorting and assembly lular calcium at sites of cell-cell contact as MDCK cells of tight junctions. We have now examined in detail the role of establish intercellular junctions and hypothesized a role for this protein kinases in intercellular junction biogenesis by using a ion in signaling relevant to intercellular-junction formation (4, combination of highly specific and broad-spectrum inhibitors 6). In addition, previous studies have suggested a role for that act by independent mechanisms. Our data indicate that phosphorylation in the assembly of tight junctions and sorting protein kinase C (PKC) is required for the proper assembly of of tight-junction proteins, zona occludens 1 (ZO-1) and cin- tight junctions. Low concentrations of the specific inhibitor of gulin, to the tight junction (3, 7). Using a combination of highly PKC, calphostin C, markedly inhibited development oftransepi- specific, as well as broad-spectrum, inhibitors of protein ki- thelial electrical resistance, a functional measure of tight- nases, we now detect apparent selective regulation of the junction biogenesis. The effect of PKC inhibitors on the devel- biogenesis oftightjunctions by protein kinase C (PKC) without opment of tight junctions, as measured by resistance, was par- immunocytochemical evidence of an effect on desmosome and alleled by a delay in the sorting ofthe tight-junction protein, zona adherens junction biogenesis.
    [Show full text]