The Cambridge Dictionary of Statistics Fourth Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
F:\RSS\Me\Society's Mathemarica
School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Mathematics in the Statistical Society 1883-1933 John Aldrich No. 0919 This paper is available on our website http://www.southampton.ac.uk/socsci/economics/research/papers ISSN 0966-4246 Mathematics in the Statistical Society 1883-1933* John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract This paper considers the place of mathematical methods based on probability in the work of the London (later Royal) Statistical Society in the half-century 1883-1933. The end-points are chosen because mathematical work started to appear regularly in 1883 and 1933 saw the formation of the Industrial and Agricultural Research Section– to promote these particular applications was to encourage mathematical methods. In the period three movements are distinguished, associated with major figures in the history of mathematical statistics–F. Y. Edgeworth, Karl Pearson and R. A. Fisher. The first two movements were based on the conviction that the use of mathematical methods could transform the way the Society did its traditional work in economic/social statistics while the third movement was associated with an enlargement in the scope of statistics. The study tries to synthesise research based on the Society’s archives with research on the wider history of statistics. Key names : Arthur Bowley, F. Y. Edgeworth, R. A. Fisher, Egon Pearson, Karl Pearson, Ernest Snow, John Wishart, G. Udny Yule. Keywords : History of Statistics, Royal Statistical Society, mathematical methods. -
The Orchard Plot: Cultivating a Forest Plot for Use in Ecology, Evolution
1BRIEF METHOD NOTE 2The Orchard Plot: Cultivating a Forest Plot for Use in Ecology, 3Evolution and Beyond 4Shinichi Nakagawa1, Malgorzata Lagisz1,5, Rose E. O’Dea1, Joanna Rutkowska2, Yefeng Yang1, 5Daniel W. A. Noble3,5, and Alistair M. Senior4,5. 61 Evolution & Ecology Research Centre and School of Biological, Earth and Environmental 7Sciences, University of New South Wales, Sydney, NSW 2052, Australia 82 Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland 93 Division of Ecology and Evolution, Research School of Biology, The Australian National 10University, Canberra, ACT, Australia 114 Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, 12Camperdown, NSW 2006, Australia 135 These authors contributed equally 14* Correspondence: S. Nakagawa & A. M. Senior 15e-mail: [email protected] 16email: [email protected] 17Short title: The Orchard Plot 18 1 19Abstract 20‘Classic’ forest plots show the effect sizes from individual studies and the aggregate effect from a 21meta-analysis. However, in ecology and evolution meta-analyses routinely contain over 100 effect 22sizes, making the classic forest plot of limited use. We surveyed 102 meta-analyses in ecology and 23evolution, finding that only 11% use the classic forest plot. Instead, most used a ‘forest-like plot’, 24showing point estimates (with 95% confidence intervals; CIs) from a series of subgroups or 25categories in a meta-regression. We propose a modification of the forest-like plot, which we name 26the ‘orchard plot’. Orchard plots, in addition to showing overall mean effects and CIs from meta- 27analyses/regressions, also includes 95% prediction intervals (PIs), and the individual effect sizes 28scaled by their precision. -
Lecture 12 Robust Estimation
Lecture 12 Robust Estimation Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe Financial Econometrics, Summer Semester 2007 Prof. Dr. Svetlozar Rachev Institute for Statistics and MathematicalLecture Economics 12 Robust University Estimation of Karlsruhe Copyright These lecture-notes cannot be copied and/or distributed without permission. The material is based on the text-book: Financial Econometrics: From Basics to Advanced Modeling Techniques (Wiley-Finance, Frank J. Fabozzi Series) by Svetlozar T. Rachev, Stefan Mittnik, Frank Fabozzi, Sergio M. Focardi,Teo Jaˇsic`. Prof. Dr. Svetlozar Rachev Institute for Statistics and MathematicalLecture Economics 12 Robust University Estimation of Karlsruhe Outline I Robust statistics. I Robust estimators of regressions. I Illustration: robustness of the corporate bond yield spread model. Prof. Dr. Svetlozar Rachev Institute for Statistics and MathematicalLecture Economics 12 Robust University Estimation of Karlsruhe Robust Statistics I Robust statistics addresses the problem of making estimates that are insensitive to small changes in the basic assumptions of the statistical models employed. I The concepts and methods of robust statistics originated in the 1950s. However, the concepts of robust statistics had been used much earlier. I Robust statistics: 1. assesses the changes in estimates due to small changes in the basic assumptions; 2. creates new estimates that are insensitive to small changes in some of the assumptions. I Robust statistics is also useful to separate the contribution of the tails from the contribution of the body of the data. Prof. Dr. Svetlozar Rachev Institute for Statistics and MathematicalLecture Economics 12 Robust University Estimation of Karlsruhe Robust Statistics I Peter Huber observed, that robust, distribution-free, and nonparametrical actually are not closely related properties. -
Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method
TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD by Gregory Stephen Gandenberger BA, Philosophy, Washington University in St. Louis, 2009 MA, Statistics, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Gregory Stephen Gandenberger It was defended on April 14, 2015 and approved by Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences Satish Iyengar, Pittsburgh, Dietrich School of Arts and Sciences John Norton, Pittsburgh, Dietrich School of Arts and Sciences Teddy Seidenfeld, Carnegie Mellon University, Dietrich College of Humanities & Social Sciences James Woodward, Pittsburgh, Dietrich School of Arts and Sciences Dissertation Director: Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences ii Copyright © by Gregory Stephen Gandenberger 2015 iii TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD Gregory Stephen Gandenberger, PhD University of Pittsburgh, 2015 The notion of evidence is of great importance, but there are substantial disagreements about how it should be understood. One major locus of disagreement is the Likelihood Principle, which says roughly that an observation supports a hypothesis to the extent that the hy- pothesis predicts it. The Likelihood Principle is supported by axiomatic arguments, but the frequentist methods that are most commonly used in science violate it. This dissertation advances debates about the Likelihood Principle, its near-corollary the Law of Likelihood, and related questions about statistical practice. -
Outlier Identification.Pdf
STATGRAPHICS – Rev. 7/6/2009 Outlier Identification Summary The Outlier Identification procedure is designed to help determine whether or not a sample of n numeric observations contains outliers. By “outlier”, we mean an observation that does not come from the same distribution as the rest of the sample. Both graphical methods and formal statistical tests are included. The procedure will also save a column back to the datasheet identifying the outliers in a form that can be used in the Select field on other data input dialog boxes. Sample StatFolio: outlier.sgp Sample Data: The file bodytemp.sgd file contains data describing the body temperature of a sample of n = 130 people. It was obtained from the Journal of Statistical Education Data Archive (www.amstat.org/publications/jse/jse_data_archive.html) and originally appeared in the Journal of the American Medical Association. The first 20 rows of the file are shown below. Temperature Gender Heart Rate 98.4 Male 84 98.4 Male 82 98.2 Female 65 97.8 Female 71 98 Male 78 97.9 Male 72 99 Female 79 98.5 Male 68 98.8 Female 64 98 Male 67 97.4 Male 78 98.8 Male 78 99.5 Male 75 98 Female 73 100.8 Female 77 97.1 Male 75 98 Male 71 98.7 Female 72 98.9 Male 80 99 Male 75 2009 by StatPoint Technologies, Inc. Outlier Identification - 1 STATGRAPHICS – Rev. 7/6/2009 Data Input The data to be analyzed consist of a single numeric column containing n = 2 or more observations. -
Primary School Profile 2019-2020
Primary School Profile 2019-2020 The British School in Tokyo (BST) was founded as a charitable In 2010 the decision was taken to expand the school to age 18 trust in 1989 to provide a British-style education in Tokyo. The and in 2012 the first students graduated directly to university. school was established on a site in central Tokyo leased from, and adjacent to the well-respected Japanese private school, The purpose of the school is to provide a world class British Shibuya Kyoiku Gakuen. In the early years, children were from education to English speaking students of the international ages 5 to 10 and the majority were British, in contrast to the community in Tokyo, and to inspire the students to thrive as situation today where the school provides education from age global citizens. 3 to 18 and has over 1,100 students, from over 65 nationalities. The school aims to nurture students with the following The School continued to grow and in particular to attract values: substantial numbers of non-British children, especially from other European countries and from Australia. Therefore, in • Confidence in our ability 2006 the Trustees entered into an agreement with Showa • Excellence in everything we do Women’s University to open a second school in newly • Responsibility to ourselves and others renovated accommodation on their campus. Both schools continued to grow, with parents being attracted by the growing reputation for academic excellence, care for individual student needs and a happy, international environment in which to learn. Curriculum At BST we provide a broad and balanced skill based curriculum, which has its foundations in the English National Curriculum but extends well beyond its boundaries. -
The Top Resources for Learning 13 Statistical Topics
The Analysis Factor Ebook: The Top Resources for Learning 13 Statistical Topics The Top Resources for Learning 11131333 Statistical Topics By Karen Grace-Martin Founder & President © Copyright 2008 Karen Grace-Martin, All rights reserved www.analysisfactor.com 1 The Analysis Factor Ebook: The Top Resources for Learning 13 Statistical Topics About the Author Karen Grace-Martin is the founder and president of The Analysis Factor . She is a professional statistical consultant with Masters degrees in both applied statistics and social psychology. Her career started in psychology research, where her frustration in applying statistics to her data led her to take more and more statistics classes. She soon realized that her favorite part of research was data analysis, leading to a career change. Her background in experimental research and working with real data has been invaluable in understanding the challenges that researchers face in using statistics and has spurred her passion for deciphering statistics for academic researchers. Karen was a professional statistical consultant at Cornell University for seven years before founding The Analysis Factor. Karen has worked with clients from undergraduate honors students on their first research project to tenured Ivy League professors, as well as non-profits and businesses. Her ability to understand what researchers need and to explain technical information at the level of the researcher’s understanding has been one of her strongest assets as a consultant. She treats all clients with respect, and derives genuine satisfaction from the relief she hears in their voices when they realize that someone can help them. Before consulting, Karen taught statistics courses for economics, psychology, and sociology majors at the University of California, Santa Barbara and Santa Barbara City College. -
Education Brochure
A PASSPORT FOR THE FUTURE EDUCATION GUIDE 1 WELCOME. LONDON IS RECOGNISED AS A LEADING GLOBAL CENTRE FOR EDUCATION. RESIDENTS OF CONCORD COURT AT CHISWICK GATE HAVE EASY ACCESS TO MANY EXCELLENT EDUCATIONAL INSTITUTIONS, CLOSE BY AND FURTHER AFIELD. London is internationally recognised as a centre of learning, and Chiswick has some of the best educational facilities of all. Many of London’s leading schools, colleges and universities are within easy reach of Concord Court. Young children can enjoy making friends in the welcoming local primary schools nearby, where caring staff will ensure that their individual personalities and talents are nurtured. As they grow older, they can take advantage of superb secondary schools. Educational standards are high, and there is a focus on achievement and on equipping young people for successful and enriching lives. As they become young adults, the educational opportunities continue. London’s colleges provide opportunity for every interest and aptitude, while London universities offer some of the finest further education in the world. 3 THE BEST STARTING POINT London is not simply the hub of the UK’s cultural, commercial and financial sectors. It provides some of the finest schools, colleges and universities in the world – and a sound starting point for rewarding careers and stimulating lives. CITY OF THE CANARY RIVER CHISWICK HOUSE LONDON SHARD WHARF THAMES & GARDENS 7.8 MILES 8.5 MILES 11.3 MILES 0.2 MILES 0.4 MILES CONTENTS PRIMARY SCHOOLS P6 TURNHAM GREEN UNDERGROUND 0.8 MILES SECONDARY SCHOOLS P12 COLLEGES & UNIVERSITIES P18 CHISWICK STATION RICHMOND PARK 0.8 MILES 3 MILES 4 5 All distances are approximate only and taken from google.co.uk/maps. -
Outlier Impact and Accommodation on Power Hongjing Liao Beijing Foreign Studies University, [email protected]
Journal of Modern Applied Statistical Methods Volume 16 | Issue 1 Article 15 5-1-2017 Outlier Impact and Accommodation on Power Hongjing Liao Beijing Foreign Studies University, [email protected] Yanju Li Western Carolina University, Cullowhee, NC, [email protected] Gordon P. Brooks Ohio University, [email protected] Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Liao, H., Yanju, Li., & Brooks, G. P. (2017). Outlier impact and accommodation on power. Journal of Modern Applied Statistical Methods, 16(1), 261-278. doi: 10.22237/jmasm/1493597640 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Outlier Impact and Accommodation on Power Cover Page Footnote This research was supported by School of English for Specific urP poses, Beijing Foreign Studies University, grant ZJ1513 This regular article is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/vol16/ iss1/15 Journal of Modern Applied Statistical Methods Copyright © 2017 JMASM, Inc. May 2017, Vol. 16, No. 1, 261-278. ISSN 1538 − 9472 doi: 10.22237/jmasm/1493597640 Outlier Impact and Accommodation on Power Hongjing Liao Yanju Li Gordon P. Brooks Beijing Foreign Studies University Western Carolina University Ohio University Beijing, China Cullowhee, NC Athens, OH The outliers’ influence on power rates in ANOVA and Welch tests at various conditions was examined and compared with the effectiveness of nonparametric methods and Winsorizing in minimizing the impact of outliers. -
Elect New Council Members
Volume 43 • Issue 3 IMS Bulletin April/May 2014 Elect new Council members CONTENTS The annual IMS elections are announced, with one candidate for President-Elect— 1 IMS Elections 2014 Richard Davis—and 12 candidates standing for six places on Council. The Council nominees, in alphabetical order, are: Marek Biskup, Peter Bühlmann, Florentina Bunea, Members’ News: Ying Hung; 2–3 Sourav Chatterjee, Frank Den Hollander, Holger Dette, Geoffrey Grimmett, Davy Philip Protter, Raymond Paindaveine, Kavita Ramanan, Jonathan Taylor, Aad van der Vaart and Naisyin Wang. J. Carroll, Keith Crank, You can read their statements starting on page 8, or online at http://www.imstat.org/ Bani K. Mallick, Robert T. elections/candidates.htm. Smythe and Michael Stein; Electronic voting for the 2014 IMS Elections has opened. You can vote online using Stephen Fienberg; Alexandre the personalized link in the email sent by Aurore Delaigle, IMS Executive Secretary, Tsybakov; Gang Zheng which also contains your member ID. 3 Statistics in Action: A If you would prefer a paper ballot please contact IMS Canadian Outlook Executive Director, Elyse Gustafson (for contact details see the 4 Stéphane Boucheron panel on page 2). on Big Data Elections close on May 30, 2014. If you have any questions or concerns please feel free to 5 NSF funding opportunity e [email protected] Richard Davis contact Elyse Gustafson . 6 Hand Writing: Solving the Right Problem 7 Student Puzzle Corner 8 Meet the Candidates 13 Recent Papers: Probability Surveys; Stochastic Systems 15 COPSS publishes 50th Marek Biskup Peter Bühlmann Florentina Bunea Sourav Chatterjee anniversary volume 16 Rao Prize Conference 17 Calls for nominations 19 XL-Files: My Valentine’s Escape 20 IMS meetings Frank Den Hollander Holger Dette Geoffrey Grimmett Davy Paindaveine 25 Other meetings 30 Employment Opportunities 31 International Calendar 35 Information for Advertisers Read it online at Kavita Ramanan Jonathan Taylor Aad van der Vaart Naisyin Wang http://bulletin.imstat.org IMSBulletin 2 . -
Best-Practice Recommendations for Defining, Identifying, and Handling
Article Organizational Research Methods 16(2) 270-301 ª The Author(s) 2013 Best-Practice Reprints and permission: sagepub.com/journalsPermissions.nav Recommendations for DOI: 10.1177/1094428112470848 orm.sagepub.com Defining, Identifying, and Handling Outliers Herman Aguinis1, Ryan K. Gottfredson1, and Harry Joo1 Abstract The presence of outliers, which are data points that deviate markedly from others, is one of the most enduring and pervasive methodological challenges in organizational science research. We provide evidence that different ways of defining, identifying, and handling outliers alter substantive research conclusions. Then, we report results of a literature review of 46 methodological sources (i.e., journal articles, book chapters, and books) addressing the topic of outliers, as well as 232 organizational science journal articles mentioning issues about outliers. Our literature review uncovered (a) 14 unique and mutually exclusive outlier defi- nitions, 39 outlier identification techniques, and 20 different ways of handling outliers; (b) inconsistencies in how outliers are defined, identified, and handled in various methodological sources; and (c) confusion and lack of transparency in how outliers are addressed by substantive researchers. We offer guidelines, including decision-making trees, that researchers can follow to define, identify, and handle error, inter- esting, and influential (i.e., model fit and prediction) outliers. Although our emphasis is on regression, structural equation modeling, and multilevel modeling, our general framework forms the basis for a research agenda regarding outliers in the context of other data-analytic approaches. Our recommenda- tions can be used by authors as well as journal editors and reviewers to improve the consistency and transparency of practices regarding the treatment of outliers in organizational science research. -
Interpreting Subgroups and the STAMPEDE Trial
“Thursday’s child has far to go” -- Interpreting subgroups and the STAMPEDE trial Melissa R Spears MRC Clinical Trials Unit at UCL, London Nicholas D James Institute of Cancer and Genomic Sciences, University of Birmingham Matthew R Sydes MRC Clinical Trials Unit at UCL STAMPEDE is a multi-arm multi-stage randomised controlled trial protocol, recruiting men with locally advanced or metastatic prostate cancer who are commencing long-term androgen deprivation therapy. Opening to recruitment with five research questions in 2005 and adding in a further five questions over the past six years, it has reported survival data on six of these ten RCT questions over the past two years. [1-3] Some of these results have been of practice-changing magnitude, [4, 5] but, in conversation, we have noticed some misinterpretation, both over-interpretation and under-interpretation, of subgroup analyses by the wider clinical community which could impact negatively on practice. We suspect, therefore, that such problems in interpretation may be common. Our intention here is to provide comment on interpretation of subgroup analysis in general using examples from STAMPEDE. Specifically we would like to highlight some possible implications from the misinterpretation of subgroups and how these might be avoided, particularly where these contravene the very design of the research question. In this, we would hope to contribute to the conversation on subgroup analyses. [6-11] For each comparison in STAMPEDE, or indeed virtually any trial, the interest is the effect of the research treatment under investigation on the primary outcome measure across the whole population. Upon reporting the primary outcome measure, the consistency of effect across pre-specified subgroups, including stratification factors at randomisation, is presented; these are planned analyses.