Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method

Total Page:16

File Type:pdf, Size:1020Kb

Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD by Gregory Stephen Gandenberger BA, Philosophy, Washington University in St. Louis, 2009 MA, Statistics, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Gregory Stephen Gandenberger It was defended on April 14, 2015 and approved by Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences Satish Iyengar, Pittsburgh, Dietrich School of Arts and Sciences John Norton, Pittsburgh, Dietrich School of Arts and Sciences Teddy Seidenfeld, Carnegie Mellon University, Dietrich College of Humanities & Social Sciences James Woodward, Pittsburgh, Dietrich School of Arts and Sciences Dissertation Director: Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences ii Copyright © by Gregory Stephen Gandenberger 2015 iii TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD Gregory Stephen Gandenberger, PhD University of Pittsburgh, 2015 The notion of evidence is of great importance, but there are substantial disagreements about how it should be understood. One major locus of disagreement is the Likelihood Principle, which says roughly that an observation supports a hypothesis to the extent that the hy- pothesis predicts it. The Likelihood Principle is supported by axiomatic arguments, but the frequentist methods that are most commonly used in science violate it. This dissertation advances debates about the Likelihood Principle, its near-corollary the Law of Likelihood, and related questions about statistical practice. Chapter2 provides a new axiomatic proof of the Likelihood Principle that avoids influential responses to previous proofs. Chapter3 exhibits the close connection between the Likelihood Principle and the Law of Likelihood and responds to three purported counterexamples to them. Chapter4 presents a new counterexample that is more difficult to avoid but argues that it does not speak against those principles in typical applications. The next two chapters turn to implications. It is motivated by tension among three desiderata for a method of evaluating hypotheses in light of data. We would like such a method to (1) respect the evidential meaning of data, (2) provide direct guidance for belief or action, and (3) avoid inputs that are not grounded in evidence. Unfortunately, frequentist methods violate (1) by violating the Likelihood Principle, likelihoodist methods violate (2) by directly addressing only questions about the evidential meaning of data, and Bayesian methods violate (3) by using prior probabilities. Chapter5 sharpens this tension by arguing that no method that satisfies likelihoodist strictures can provide a genuine rival to iv frequentist and Bayesian methodologies. Chapter6 argues that many frequentist violations of the Likelihood Principle are not required by basic frequentist commitments. Those that are may be permissible for the sake of enabling progress in the presence of highly indefinite prior beliefs, but they are not mandatory or even strongly motivated. These considerations support more widespread use of Bayesian methods despite difficulties in specifying prior probability distributions. v TABLE OF CONTENTS PREFACE ......................................... xiv 1.0 INTRODUCTION .................................1 1.1 Evidence and the Norms of Scientific Research................1 1.2 Statistical Inference and Scientific Inference.................5 1.3 The Likelihood Principle and Its Bearing on Methodology......... 10 1.4 The Contributions Made by This Dissertation................ 11 2.0 A NEW PROOF OF THE LIKELIHOOD PRINCIPLE ......... 13 2.1 Introduction................................... 13 2.2 The New Proof................................. 17 2.3 How the New Proof Addresses Proposals to Restrict Birnbaum's Premises. 30 2.4 A Response to Arguments that the Proofs are Fallacious.......... 36 2.5 Conclusion.................................... 39 3.0 NEW RESPONSES TO THREE COUNTEREXAMPLES TO THE LIKELIHOOD PRINCIPLE ........................... 41 3.1 Introduction................................... 41 3.2 Why a counterexample to the Law of Likelihood is a prima facie counterex- ample to the Likelihood Principle....................... 42 3.3 Response to Fitelson's counterexample.................... 44 3.3.1 Objection 1: Response conflicts with constraints on evidential favoring 46 3.3.2 Objection 2: Response fails to address tacking paradox........ 48 3.3.2.1 Response 1: Bite the bullet................... 49 3.3.2.2 Response 2: Regard Law as explicating \r-favoring"..... 50 vi 3.3.2.3 Response 3: Restrict Law of Likelihood to structurally iden- tical alternatives......................... 51 3.3.3 Objection 3: Response excludes cases of scientific interest...... 52 3.3.3.1 Cases involving competing causal claims............ 52 3.3.3.2 Cases involving nested models................. 54 3.4 Response to Armitage's counterexample................... 57 3.4.1 Two problems for attempts to use the Weak Repeated Sampling Prin- ciple as an objection to the Law of Likelihood............. 58 3.4.1.1 Problem 1: The Weak Repeated Sampling Principle is unrea- sonably strong.......................... 58 3.4.1.2 Problem 2: The Law of Likelihood itself cannot conflict with the Weak Repeated Sampling Principle............ 60 3.4.2 Why Armitage's example is no threat to the Law of Likelihood... 61 3.5 Response to Stein's counterexample...................... 63 3.6 Conclusion.................................... 68 4.0 A COUNTEREXAMPLE TO THE LAW OF LIKELIHOOD FOR PROBABILITY-ZERO HYPOTHESES ................... 69 4.1 Introduction................................... 69 4.2 A Counterexample to the Law of Likelihood for Probability-Zero Hypotheses 70 4.3 Responses to Worries About the Counterexample.............. 71 4.3.1 Worry 1: Each hypothesis omits two points on the relevant great circle 73 4.3.2 Worry 2: The likelihood ratio is small................. 73 4.3.3 Worry 3: Real measurement techniques have finite precision..... 74 4.3.4 Worry 4: The hypotheses belong to different models......... 74 4.3.5 Worry 5: No limiting operation is specified.............. 78 4.4 A No-Go Result for Addressing the Counterexample Through an Alternative Theory of Conditional Probability....................... 79 4.5 Addressing the Counterexample Within Existing Theories of Conditional Probability................................... 84 4.5.1 Restricting the Law of Likelihood.................... 85 vii 4.5.2 Regarding Evidential Favoring as Either Relative or Indeterminate. 89 4.6 Conclusion.................................... 92 5.0 WHY I AM NOT A METHODOLOGICAL LIKELIHOODIST ..... 93 5.1 Introduction................................... 93 5.2 Methodological Likelihoodism......................... 94 5.3 An Overview of My Argument Against Methodological Likelihoodism... 96 5.4 Claim 1: An adequate methodology provides a good norm of commitment. 97 5.5 Claim 2: A good purely likelihood-based norm of commitment would have a particular form................................ 99 5.5.1 Objection: A good norm of commitment could allow withholding judg- ment.................................... 101 5.5.2 Reply: Allowing withholding judgment does not help......... 102 5.6 Claim 3: A good norm of commitment would allow one to prefer chance hypotheses to maximally likely alternatives.................. 103 5.7 Claim 4: A good norm of commitment would treat alike pairs consisting of a hypothesis and its negation that are logically equivalent given one's evidence106 5.7.1 Objection 1: H1 and H2 Are Not Mutually Exclusive......... 107 5.7.2 Reply to Objection 1........................... 108 5.7.3 Objection 2: H1 and H2 are not statistical hypotheses........ 108 5.7.4 Reply to Objection 2........................... 108 5.8 Claim 5: A good norm of commitment would allow one both to obey a highly plausible disjunction rule and to treat pairs of logically equivalent hypotheses alike................................. 109 5.8.1 Objection: This argument relies on a strict notion of neutrality that is not clearly appropriate........................ 112 5.8.2 Reply: Making the notion of neutrality less strict does not result in a successful theory............................. 112 5.9 Conclusion.................................... 113 6.0 WHY FREQUENTIST VIOLATIONS OF THE LIKELIHOOD PRIN- CIPLE ARE PERMISSIBLE AT BEST ................... 115 viii 6.1 Introduction................................... 115 6.2 How Standard Frequentist Practice Conforms to Likelihoodist Principles Within Component Experiments........................ 117 6.3 How Standard Frequentist Practice Violates Likelihoodist Principles Across Component Experiments........................... 120 6.3.1 Frequentists generally use a common Type I error rate across experi- ments................................... 120 6.3.2 Frequentists Generally Adjust Their Standards on Individual Tests to Control \Familywise" Error Rates................... 124 6.3.3 Frequentists Generally Require That Hypotheses Be Predesignated. 126 6.4 Why Violating the Likelihoodist Principles Is Incompatible With Maximiz- ing Expected Utility.............................. 127 6.5 How Thinking of Frequentist Considerations as Tie-Breakers
Recommended publications
  • F:\RSS\Me\Society's Mathemarica
    School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Mathematics in the Statistical Society 1883-1933 John Aldrich No. 0919 This paper is available on our website http://www.southampton.ac.uk/socsci/economics/research/papers ISSN 0966-4246 Mathematics in the Statistical Society 1883-1933* John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract This paper considers the place of mathematical methods based on probability in the work of the London (later Royal) Statistical Society in the half-century 1883-1933. The end-points are chosen because mathematical work started to appear regularly in 1883 and 1933 saw the formation of the Industrial and Agricultural Research Section– to promote these particular applications was to encourage mathematical methods. In the period three movements are distinguished, associated with major figures in the history of mathematical statistics–F. Y. Edgeworth, Karl Pearson and R. A. Fisher. The first two movements were based on the conviction that the use of mathematical methods could transform the way the Society did its traditional work in economic/social statistics while the third movement was associated with an enlargement in the scope of statistics. The study tries to synthesise research based on the Society’s archives with research on the wider history of statistics. Key names : Arthur Bowley, F. Y. Edgeworth, R. A. Fisher, Egon Pearson, Karl Pearson, Ernest Snow, John Wishart, G. Udny Yule. Keywords : History of Statistics, Royal Statistical Society, mathematical methods.
    [Show full text]
  • 5. Completeness and Sufficiency 5.1. Complete Statistics. Definition 5.1. a Statistic T Is Called Complete If Eg(T) = 0 For
    5. Completeness and sufficiency 5.1. Complete statistics. Definition 5.1. A statistic T is called complete if Eg(T ) = 0 for all θ and some function g implies that P (g(T ) = 0; θ) = 1 for all θ. This use of the word complete is analogous to calling a set of vectors v1; : : : ; vn complete if they span the whole space, that is, any v can P be written as a linear combination v = ajvj of these vectors. This is equivalent to the condition that if w is orthogonal to all vj's, then w = 0. To make the connection with Definition 5.1, let's consider the discrete case. Then completeness means that P g(t)P (T = t; θ) = 0 implies that g(t) = 0. Since the sum may be viewed as the scalar prod- uct of the vectors (g(t1); g(t2);:::) and (p(t1); p(t2);:::), with p(t) = P (T = t), this is the analog of the orthogonality condition just dis- cussed. We also see that the terminology is somewhat misleading. It would be more accurate to call the family of distributions p(·; θ) complete (rather than the statistic T ). In any event, completeness means that the collection of distributions for all possible values of θ provides a sufficiently rich set of vectors. In the continuous case, a similar inter- pretation works. Completeness now refers to the collection of densities f(·; θ), and hf; gi = R fg serves as the (abstract) scalar product in this case. Example 5.1. Let's take one more look at the coin flip example.
    [Show full text]
  • The Likelihood Principle
    1 01/28/99 ãMarc Nerlove 1999 Chapter 1: The Likelihood Principle "What has now appeared is that the mathematical concept of probability is ... inadequate to express our mental confidence or diffidence in making ... inferences, and that the mathematical quantity which usually appears to be appropriate for measuring our order of preference among different possible populations does not in fact obey the laws of probability. To distinguish it from probability, I have used the term 'Likelihood' to designate this quantity; since both the words 'likelihood' and 'probability' are loosely used in common speech to cover both kinds of relationship." R. A. Fisher, Statistical Methods for Research Workers, 1925. "What we can find from a sample is the likelihood of any particular value of r [a parameter], if we define the likelihood as a quantity proportional to the probability that, from a particular population having that particular value of r, a sample having the observed value r [a statistic] should be obtained. So defined, probability and likelihood are quantities of an entirely different nature." R. A. Fisher, "On the 'Probable Error' of a Coefficient of Correlation Deduced from a Small Sample," Metron, 1:3-32, 1921. Introduction The likelihood principle as stated by Edwards (1972, p. 30) is that Within the framework of a statistical model, all the information which the data provide concerning the relative merits of two hypotheses is contained in the likelihood ratio of those hypotheses on the data. ...For a continuum of hypotheses, this principle
    [Show full text]
  • C Copyright 2014 Navneet R. Hakhu
    c Copyright 2014 Navneet R. Hakhu Unconditional Exact Tests for Binomial Proportions in the Group Sequential Setting Navneet R. Hakhu A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2014 Reading Committee: Scott S. Emerson, Chair Marco Carone Program Authorized to Offer Degree: Biostatistics University of Washington Abstract Unconditional Exact Tests for Binomial Proportions in the Group Sequential Setting Navneet R. Hakhu Chair of the Supervisory Committee: Professor Scott S. Emerson Department of Biostatistics Exact inference for independent binomial outcomes in small samples is complicated by the presence of a mean-variance relationship that depends on nuisance parameters, discreteness of the outcome space, and departures from normality. Although large sample theory based on Wald, score, and likelihood ratio (LR) tests are well developed, suitable small sample methods are necessary when \large" samples are not feasible. Fisher's exact test, which conditions on an ancillary statistic to eliminate nuisance parameters, however its inference based on the hypergeometric distribution is \exact" only when a user is willing to base decisions on flipping a biased coin for some outcomes. Thus, in practice, Fisher's exact test tends to be conservative due to the discreteness of the outcome space. To address the various issues that arise with the asymptotic and/or small sample tests, Barnard (1945, 1947) introduced the concept of unconditional exact tests that use exact distributions of a test statistic evaluated over all possible values of the nuisance parameter. For test statistics derived based on asymptotic approximations, these \unconditional exact tests" ensure that the realized type 1 error is less than or equal to the nominal level.
    [Show full text]
  • School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK
    School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Professor A L Bowley’s Theory of the Representative Method John Aldrich No. 0801 This paper is available on our website http://www.socsci.soton.ac.uk/economics/Research/Discussion_Papers ISSN 0966-4246 Key names: Arthur L. Bowley, F. Y. Edgeworth, , R. A. Fisher, Adolph Jensen, J. M. Keynes, Jerzy Neyman, Karl Pearson, G. U. Yule. Keywords: History of Statistics, Sampling theory, Bayesian inference. Professor A. L. Bowley’s Theory of the Representative Method * John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract Arthur. L. Bowley (1869-1957) first advocated the use of surveys–the “representative method”–in 1906 and started to conduct surveys of economic and social conditions in 1912. Bowley’s 1926 memorandum for the International Statistical Institute on the “Measurement of the precision attained in sampling” was the first large-scale theoretical treatment of sample surveys as he conducted them. This paper examines Bowley’s arguments in the context of the statistical inference theory of the time. The great influence on Bowley’s conception of statistical inference was F. Y. Edgeworth but by 1926 R. A. Fisher was on the scene and was attacking Bayesian methods and promoting a replacement of his own. Bowley defended his Bayesian method against Fisher and against Jerzy Neyman when the latter put forward his concept of a confidence interval and applied it to the representative method. * Based on a talk given at the Sample Surveys and Bayesian Statistics Conference, Southampton, August 2008.
    [Show full text]
  • Ancillary Statistics Largest Possible Reduction in Dimension, and Is Analo- Gous to a Minimal Sufficient Statistic
    provides the largest possible conditioning set, or the Ancillary Statistics largest possible reduction in dimension, and is analo- gous to a minimal sufficient statistic. A, B,andC are In a parametric model f(y; θ) for a random variable maximal ancillary statistics for the location model, or vector Y, a statistic A = a(Y) is ancillary for θ if but the range is only a maximal ancillary in the loca- the distribution of A does not depend on θ.Asavery tion uniform. simple example, if Y is a vector of independent, iden- An important property of the location model is that tically distributed random variables each with mean the exact conditional distribution of the maximum θ, and the sample size is determined randomly, rather likelihood estimator θˆ, given the maximal ancillary than being fixed in advance, then A = number of C, can be easily obtained simply by renormalizing observations in Y is an ancillary statistic. This exam- the likelihood function: ple could be generalized to more complex structure L(θ; y) for the observations Y, and to examples in which the p(θˆ|c; θ) = ,(1) sample size depends on some further parameters that L(θ; y) dθ are unrelated to θ. Such models might well be appro- priate for certain types of sequentially collected data where L(θ; y) = f(yi ; θ) is the likelihood function arising, for example, in clinical trials. for the sample y = (y1,...,yn), and the right-hand ˆ Fisher [5] introduced the concept of an ancillary side is to be interpreted as depending on θ and c, statistic, with particular emphasis on the usefulness of { } | = using the equations ∂ log f(yi ; θ) /∂θ θˆ 0and an ancillary statistic in recovering information that c = y − θˆ.
    [Show full text]
  • Frequentist and Bayesian Statistics
    Faculty of Life Sciences Frequentist and Bayesian statistics Claus Ekstrøm E-mail: [email protected] Outline 1 Frequentists and Bayesians • What is a probability? • Interpretation of results / inference 2 Comparisons 3 Markov chain Monte Carlo Slide 2— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics What is a probability? Two schools in statistics: frequentists and Bayesians. Slide 3— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Frequentist school School of Jerzy Neyman, Egon Pearson and Ronald Fischer. Slide 4— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Bayesian school “School” of Thomas Bayes P(D|H) · P(H) P(H|D)= P(D|H) · P(H)dH Slide 5— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Frequentists Frequentists talk about probabilities in relation to experiments with a random component. Relative frequency of an event, A,isdefinedas number of outcomes consistent with A P(A)= number of experiments The probability of event A is the limiting relative frequency. Relative frequency 0.0 0.2 0.4 0.6 0.8 1.0 020406080100 n Slide 6— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Frequentists — 2 The definition restricts the things we can add probabilities to: What is the probability of there being life on Mars 100 billion years ago? We assume that there is an unknown but fixed underlying parameter, θ, for a population (i.e., the mean height on Danish men). Random variation (environmental factors, measurement errors, ...) means that each observation does not result in the true value. Slide 7— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics The meta-experiment idea Frequentists think of meta-experiments and consider the current dataset as a single realization from all possible datasets.
    [Show full text]
  • Sequential Monte Carlo Methods for Inference and Prediction of Latent Time-Series
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Sequential Monte Carlo Methods for Inference and Prediction of Latent Time-series A Dissertation presented by Iñigo Urteaga to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering Stony Brook University August 2016 Stony Brook University The Graduate School Iñigo Urteaga We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Petar M. Djuri´c,Dissertation Advisor Professor, Department of Electrical and Computer Engineering Mónica F. Bugallo, Chairperson of Defense Associate Professor, Department of Electrical and Computer Engineering Yue Zhao Assistant Professor, Department of Electrical and Computer Engineering Svetlozar Rachev Professor, Department of Applied Math and Statistics This dissertation is accepted by the Graduate School. Nancy Goroff Interim Dean of the Graduate School ii Abstract of the Dissertation Sequential Monte Carlo Methods for Inference and Prediction of Latent Time-series by Iñigo Urteaga Doctor of Philosophy in Electrical Engineering Stony Brook University 2016 In the era of information-sensing mobile devices, the Internet- of-Things and Big Data, research on advanced methods for extracting information from data has become extremely critical. One important task in this area of work is the analysis of time-varying phenomena, observed sequentially in time. This endeavor is relevant in many applications, where the goal is to infer the dynamics of events of interest described by the data, as soon as new data-samples are acquired.
    [Show full text]
  • Identification of Spikes in Time Series Arxiv:1801.08061V1 [Stat.AP]
    Identification of Spikes in Time Series Dana E. Goin1 and Jennifer Ahern1 1 Division of Epidemiology, School of Public Health, University of California, Berkeley, California January 25, 2018 arXiv:1801.08061v1 [stat.AP] 24 Jan 2018 1 Abstract Identification of unexpectedly high values in a time series is useful for epi- demiologists, economists, and other social scientists interested in the effect of an exposure spike on an outcome variable. However, the best method to identify spikes in time series is not known. This paper aims to fill this gap by testing the performance of several spike detection methods in a sim- ulation setting. We created simulations parameterized by monthly violence rates in nine California cities that represented different series features, and randomly inserted spikes into the series. We then compared the ability to detect spikes of the following methods: ARIMA modeling, Kalman filtering and smoothing, wavelet modeling with soft thresholding, and an iterative outlier detection method. We varied the magnitude of spikes from 10-50% of the mean rate over the study period and varied the number of spikes inserted from 1 to 10. We assessed performance of each method using sensitivity and specificity. The Kalman filtering and smoothing procedure had the best over- all performance. We applied Kalman filtering and smoothing to the monthly violence rates in nine California cities and identified spikes in the rate over the 2005-2012 period. 2 List of Tables 1 ARIMA models and parameters by city . 21 2 Average sensitivity of spike identification methods for spikes of magnitudes ranging from 10-50% increase over series mean .
    [Show full text]
  • Statistical Inference a Work in Progress
    Ronald Christensen Department of Mathematics and Statistics University of New Mexico Copyright c 2019 Statistical Inference A Work in Progress Springer v Seymour and Wes. Preface “But to us, probability is the very guide of life.” Joseph Butler (1736). The Analogy of Religion, Natural and Revealed, to the Constitution and Course of Nature, Introduction. https://www.loc.gov/resource/dcmsiabooks. analogyofreligio00butl_1/?sp=41 Normally, I wouldn’t put anything this incomplete on the internet but I wanted to make parts of it available to my Advanced Inference Class, and once it is up, you have lost control. Seymour Geisser was a mentor to Wes Johnson and me. He was Wes’s Ph.D. advisor. Near the end of his life, Seymour was finishing his 2005 book Modes of Parametric Statistical Inference and needed some help. Seymour asked Wes and Wes asked me. I had quite a few ideas for the book but then I discovered that Sey- mour hated anyone changing his prose. That was the end of my direct involvement. The first idea for this book was to revisit Seymour’s. (So far, that seems only to occur in Chapter 1.) Thinking about what Seymour was doing was the inspiration for me to think about what I had to say about statistical inference. And much of what I have to say is inspired by Seymour’s work as well as the work of my other professors at Min- nesota, notably Christopher Bingham, R. Dennis Cook, Somesh Das Gupta, Mor- ris L. Eaton, Stephen E. Fienberg, Narish Jain, F. Kinley Larntz, Frank B.
    [Show full text]
  • STAT 517:Sufficiency
    STAT 517:Sufficiency Minimal sufficiency and Ancillary Statistics. Sufficiency, Completeness, and Independence Prof. Michael Levine March 1, 2016 Levine STAT 517:Sufficiency Motivation I Not all sufficient statistics created equal... I So far, we have mostly had a single sufficient statistic for one parameter or two for two parameters (with some exceptions) I Is it possible to find the minimal sufficient statistics when further reduction in their number is impossible? I Commonly, for k parameters one can get k minimal sufficient statistics Levine STAT 517:Sufficiency Example I X1;:::; Xn ∼ Unif (θ − 1; θ + 1) so that 1 f (x; θ) = I (x) 2 (θ−1,θ+1) where −∞ < θ < 1 I The joint pdf is −n 2 I(θ−1,θ+1)(min xi ) I(θ−1,θ+1)(max xi ) I It is intuitively clear that Y1 = min xi and Y2 = max xi are joint minimal sufficient statistics Levine STAT 517:Sufficiency Occasional relationship between MLE's and minimal sufficient statistics I Earlier, we noted that the MLE θ^ is a function of one or more sufficient statistics, when the latter exists I If θ^ is itself a sufficient statistic, then it is a function of others...and so it may be a sufficient statistic 2 2 I E.g. the MLE θ^ = X¯ of θ in N(θ; σ ), σ is known, is a minimal sufficient statistic for θ I The MLE θ^ of θ in a P(θ) is a minimal sufficient statistic for θ ^ I The MLE θ = Y(n) = max1≤i≤n Xi of θ in a Unif (0; θ) is a minimal sufficient statistic for θ ^ ¯ ^ n−1 2 I θ1 = X and θ2 = n S of θ1 and θ2 in N(θ1; θ2) are joint minimal sufficient statistics for θ1 and θ2 Levine STAT 517:Sufficiency Formal definition I A sufficient statistic
    [Show full text]
  • Carver Award: Lynne Billard We Are Pleased to Announce That the IMS Carver Medal Committee Has Selected Lynne CONTENTS Billard to Receive the 2020 Carver Award
    Volume 49 • Issue 4 IMS Bulletin June/July 2020 Carver Award: Lynne Billard We are pleased to announce that the IMS Carver Medal Committee has selected Lynne CONTENTS Billard to receive the 2020 Carver Award. Lynne was chosen for her outstanding service 1 Carver Award: Lynne Billard to IMS on a number of key committees, including publications, nominations, and fellows; for her extraordinary leadership as Program Secretary (1987–90), culminating 2 Members’ news: Gérard Ben Arous, Yoav Benjamini, Ofer in the forging of a partnership with the Bernoulli Society that includes co-hosting the Zeitouni, Sallie Ann Keller, biannual World Statistical Congress; and for her advocacy of the inclusion of women Dennis Lin, Tom Liggett, and young researchers on the scientific programs of IMS-sponsored meetings.” Kavita Ramanan, Ruth Williams, Lynne Billard is University Professor in the Department of Statistics at the Thomas Lee, Kathryn Roeder, University of Georgia, Athens, USA. Jiming Jiang, Adrian Smith Lynne Billard was born in 3 Nominate for International Toowoomba, Australia. She earned both Prize in Statistics her BSc (1966) and PhD (1969) from the 4 Recent papers: AIHP, University of New South Wales, Australia. Observational Studies She is probably best known for her ground-breaking research in the areas of 5 News from Statistical Science HIV/AIDS and Symbolic Data Analysis. 6 Radu’s Rides: A Lesson in Her research interests include epidemic Humility theory, stochastic processes, sequential 7 Who’s working on COVID-19? analysis, time series analysis and symbolic 9 Nominate an IMS Special data. She has written extensively in all Lecturer for 2022/2023 these areas, publishing over 250 papers in Lynne Billard leading international journals, plus eight 10 Obituaries: Richard (Dick) Dudley, S.S.
    [Show full text]