Distillation Technology and Modelling Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Distillation Technology and Modelling Techniques ● DISTILLATION Distillation Technology and Modelling Techniques Commercial distillations Part 1: Concepts in Distillation Instead of the single-stage batch pot still described above, commercial In this review of distillation technology and modelling distillations are typically performed in a continuous manner, with multiple techniques, Konrad Miller and Katherine Shing offer a pot still equivalents (or ‘stages’) used broad survey of the science of distillation, including a to increase separation power. Consider conceptual framework of distillation; distillation column the set-up in Figure 1. Three pot stills are connected in a series of stages; components and, in part two, shortcut distillation design where the vapour from one stage rises methods such as the McCabe Thiele method and the and intermingles with the liquid in the stage above it, and liquid from a stage Fenske Underwood Gilliland algorithm. In part three, drains down to intermingle with the Konrad Miller will apply these principles to the production vapour in the stage below it. Since a series of connected pot processes of a modern brandy distillery. stills is an ineffi cient and needlessly complex design, distillation columns hat is distillation? Think back to water, so imagine your parents were are used industrially to achieve the Wyour childhood, when you fi rst boiling wine for a sauce. Water boils at same results. The internals of a distil- observed a pan of boiling water: you 100°C, but ethyl alcohol (the alcohol in lation column are comprised of a se- watched water vapour rise from the the wine) boils at 78.4°C. The liquid no ries of ‘plates’ or ‘trays’, each of which liquid surface at a temperature of ap- longer boiled at 100°C, but now some- allows for the thorough mixing of proximately 100°C (212°F). If you were where in between these two limiting vapour rising from a stage below and really curious, you might have turned values. As the liquid boils, ethanol, with liquid falling from a stage above. This the power up and noticed the liquid the lower boiling point, preferentially continuous contact promotes mass boil more vigorously with a resulting vaporises over water. The vapour leav- transfer between the phases and the increase in vapour fl ow. Now consider a ing the pan will be richer in ethanol and equilibrium between the liquid and va- pan containing a mixture of two fl uids. the liquid remaining will be richer in pour leaving each stage acts in exactly Throughout this discussion, we will be water. This is the basis of distillation – the same manner as the series of pot exploring the separation of ethanol and and indeed how it was discovered. stills idea shown in Figure 1. Figure 2 30 z Brewer and Distiller International February 2016 www.ibd.org.uk DISTILLATION l Condenser Cooling Water Reux Drum Reux Pump Overhead product Feed Distillation Column Distillation plate Vapor Reboiler Steam Condensate Upowing liquid Bottoms Bottom Downowing liquid product Figure 1: Multiple pot stills operating to- liquid gether as a distillation column. Note the feed and product lines, distillation columns are a Figure 2: Vapour and liquid paths along trays in a distillation column. Note the column itself is continuous, steady-state process divided into two sections: Rectifying (above feed) and Stripping (below) illustrates the vapour and liquid paths conceptual shortcut for thermodynam- Alkane Species ai,n-C4 along the trays in a distillation column: ically well behaved mixtures), there are many instances where a species with C2 250 Relative volatility a higher boiling point is more volatile C3 57 Before we approach the internal work- than a lower boiling point species. i-C4 2.4 n-C4 1 ings of a distillation column in more In binary distillation (such as i-C5 0.4 detail, let us flesh out our notion of ethanol and water for spirits making), n-C5 0.009 distillation and discuss the motivation the ‘split’ of components is obvious: for learning more. Distillation can be ap- the lighter species (ethanol) partitions Table 1: Relative volatility for each species in an alkane feed: n-C4 as HK and i-C4 as LK. plied to separate liquid mixtures when- into the vapour top product known Note that relative volatility compared to n-C4 ever the ‘relative volatility’ of the species as distillate, and the heavier species decreases with increasing carbon count to be separated is greater than 1. (water) partitions into the liquid bot- Relative volatility (aij) of species i tom product known as bottoms. The ity chemical purification, food/flavour (more volatile) and j (less volatile) is situation is more complex for multi- production and of course distilled spir- defined as the ratio of the volatility (ki) component distillation. Separations its. The completeness and rigor with – yi of species i and j, where ki= /xi, where are usually specified between two which distillation is understood allows yi and xi are the mole fractions of spe- ‘key’ components: a ‘Light Key’ (LK), for the design and fabrication of full- cies i in the vapour and liquid phases, and a ‘Heavy Key’ (HK). The LK is the scale distillation columns without the respectively. These values are calcu- least volatile component that is en- need to pilot separations on smaller lated from thermodynamic equations riched in the distillate, or the ‘heavi- columns first, as is often required for outside the scope of this paper, but are est of the lights’; the HK is the most less-understood unit operations such strong functions of temperature, pres- volatile component that is enriched as membrane separations, resin sepa- sure, and composition. in the bottoms, or the ‘lightest of the rations, crystallisation, etc. The relative volatility is an expres- heavies’. This conceptualisation al- Let us return to the components sion of how well two species split lows us to think of a multicomponent of a distillation apparatus. In broad when vaporised: a high relative volatil- distillation as a pseudo-binary distil- terms, a distillation column is com- ity indicates that there is a significant lation between the LK and the HK. prised of three major components: enrichment upon vaporisation, mean- Table 1 provides an example of rela- ing the vapour phase contains more tive volatility values versus N-Butane 1. The column of component i than the liquid phase. for the alkane feed to a distillation The column offers surface area for A relative volatility of 1 indicates that column: mass transfer between the boiling no separation is possible; the volatility (bubble point) liquid streams falling of each component is the same. Pure Robust and well understood down the column and the saturated component boiling points are often So why is distillation useful, and where (dew point) vapour traveling up the used as a proxy for relative volatil- is it applied? Distillation is one of column. As the vapour and liquid make ity, i.e., low boiling species are more the most robust and well understood contact, the more volatile components volatile than high boiling point species. separations technologies, with appli- are enriched in the vapour and the While this is often true (and a handy cation to petroleum refining, commod- less volatile components are enriched www.ibd.org.uk Brewer and Distiller International February 2016 z 31 l DISTILLATION reboiler is a large shell and tube heat vapor exchanger with liquid bottoms on bubble bubble the shell side and steam on the tube caps caps liquid side. Energy drawn from the steam weir to the bottoms liquid drives vapori- liquid sation, which provides the vapour upflow and heat to drive the separa- downcomer tray tion. The most common reboiler is a ‘thermosiphon’ reboiler; fed from panel downcomer vapor the standing pool of liquid at the liquid bottom of the column. The reboiler is on the same level or below as the liquid reservoir at the bottom of the active tray area r column, so head pressure pushes weir liquid liquid from the bottom of the column to the reboiler. As the material in downcome tray r the reboiler flashes off, the level in l the reboiler drops, and more liquid pane surges in, hence the siphoning action vapor downcome of this system. liquid Figure 5 depicts a typical thermo- siphon reboiler. Other reboiler types include kettle reboilers where liquid is pumped into the heat exchanger, Figure 3: Bubble Cap plates in a column. Note the liquid and vapour paths along the column and direct fired reboilers where the in the liquid. Column internals can be down from above to one side of the reboiler is effectively a furnace and divided into two categories: tray, then travels across the tray to fall combustion drives the distillation. Ma- Plates: A distillation plate (also onto the tray below. Weirs are installed terial leaving the reboiler is typically known as a tray) is a flat disk which next to the downcomers to ensure a known as the ‘boilup’, which enables supports a liquid level. Vapour paths minimum liquid level on the tray. the vapour-liquid equilibrium along the in the tray allow the vapour from the Packing: Packing is a more recent height of the column. tray below to rise and bubble through alternative to plates. The liquid/va- the standing liquid. Trays come in pour contacting surface area is not 3. The condenser three major types: Bubble Cap trays broken into discrete trays but rather The condenser is the mirror image have very high efficiency, very high is comprised of a continuous geom- of the reboiler. The reboiler drives turndown, high pressure drop, and etry to promote constant exchange vapour up the column while the are expensive; Valve trays have good between the phases.
Recommended publications
  • Distillation 6
    CHAPTER Energy Considerations in Distillation 6 Megan Jobson School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK CHAPTER OUTLINE 6.1 Introduction to energy efficiency ....................................................................... 226 6.1.1 Energy efficiency: technical issues................................................... 227 6.1.1.1 Heating.................................................................................... 227 6.1.1.2 Coolingdabove ambient temperatures...................................... 229 6.1.1.3 Coolingdbelow ambient temperatures ...................................... 230 6.1.1.4 Mechanical or electrical power.................................................. 232 6.1.1.5 Summarydtechnical aspects of energy efficiency ..................... 233 6.1.2 Energy efficiency: process economics............................................... 233 6.1.2.1 Heating.................................................................................... 233 6.1.2.2 Cooling..................................................................................... 235 6.1.2.3 Summarydprocess economics and energy efficiency ............... 237 6.1.3 Energy efficiency: sustainable industrial development........................ 237 6.2 Energy-efficient distillation ............................................................................... 237 6.2.1 Energy-efficient distillation: conceptual design of simple columns...... 238 6.2.1.1 Degrees of freedom in design ..................................................
    [Show full text]
  • Review of Extractive Distillation. Process Design, Operation
    Review of Extractive Distillation. Process design, operation optimization and control Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, Xinqiang You To cite this version: Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, et al.. Review of Extractive Distillation. Process design, operation optimization and control. Chemical Engineering Research and Design, Elsevier, 2019, 141, pp.229-271. 10.1016/j.cherd.2018.09.020. hal-02161920 HAL Id: hal-02161920 https://hal.archives-ouvertes.fr/hal-02161920 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/239894 Official URL: https://doi.org/10.1016/j.cherd.2018.09.020 To cite this version: Gerbaud, Vincent and Rodríguez-Donis, Ivonne and Hegely, Laszlo and Láng, Péter and Dénes, Ferenc and You, Xinqiang Review of Extractive Distillation. Process design, operation optimization and control. (2018) Chemical Engineering Research and Design, 141.
    [Show full text]
  • Distillation Theory
    Chapter 2 Distillation Theory by Ivar J. Halvorsen and Sigurd Skogestad Norwegian University of Science and Technology Department of Chemical Engineering 7491 Trondheim, Norway This is a revised version of an article published in the Encyclopedia of Separation Science by Aca- demic Press Ltd. (2000). The article gives some of the basics of distillation theory and its purpose is to provide basic understanding and some tools for simple hand calculations of distillation col- umns. The methods presented here can be used to obtain simple estimates and to check more rigorous computations. NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen 28 2.1 Introduction Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A.D. Today distillation is the most important industrial separation technology. It is particu- larly well suited for high purity separations since any degree of separation can be obtained with a fixed energy consumption by increasing the number of equilib- rium stages. To describe the degree of separation between two components in a column or in a column section, we introduce the separation factor: ()⁄ xL xH S = ------------------------T (2.1) ()x ⁄ x L H B where x denotes mole fraction of a component, subscript L denotes light compo- nent, H heavy component, T denotes the top of the section, and B the bottom. It is relatively straightforward to derive models of distillation columns based on almost any degree of detail, and also to use such models to simulate the behaviour on a computer.
    [Show full text]
  • Distillation ­ Accessscience from Mcgraw­Hill Education
    6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Distillation Article by: King, C. Judson University of California, Berkeley, California. Last updated: 2014 DOI: https://doi.org/10.1036/1097­8542.201100 (https://doi.org/10.1036/1097­8542.201100) Content Hide Simple distillations Fractional distillation Vapor­liquid equilibria Distillation pressure Molecular distillation Extractive and azeotropic distillation Enhancing energy efficiency Computational methods Stage efficiency Links to Primary Literature Additional Readings A method for separating homogeneous mixtures based upon equilibration of liquid and vapor phases. Substances that differ in volatility appear in different proportions in vapor and liquid phases at equilibrium with one another. Thus, vaporizing part of a volatile liquid produces vapor and liquid products that differ in composition. This outcome constitutes a separation among the components in the original liquid. Through appropriate configurations of repeated vapor­liquid contactings, the degree of separation among components differing in volatility can be increased manyfold. See also: Phase equilibrium (/content/phase­equilibrium/505500) Distillation is by far the most common method of separation in the petroleum, natural gas, and petrochemical industries. Its many applications in other industries include air fractionation, solvent recovery and recycling, separation of light isotopes such as hydrogen and deuterium, and production of alcoholic beverages, flavors, fatty acids, and food oils. Simple distillations The two most elementary forms of distillation are a continuous equilibrium distillation and a simple batch distillation (Fig. 1). http://www.accessscience.com/content/distillation/201100 1/10 6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education Fig. 1 Simple distillations. (a) Continuous equilibrium distillation.
    [Show full text]
  • Computer Simulation Applied to Studying Continuous Spirit Distillation and Product Quality Control
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food Control 22 (2011) 1592e1603 Contents lists available at ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Computer simulation applied to studying continuous spirit distillation and product quality control Fabio R.M. Batista, Antonio J.A. Meirelles* Laboratory EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas e UNICAMP, Campinas, Brazil article info abstract Article history: This work aims to study continuous spirit distillation by computational simulation, presenting some Received 7 June 2010 strategies of process control to regulate the volatile content. The commercial simulator Aspen (Plus and Received in revised form dynamics) was selected. A standard solution containing ethanol, water and 10 minor components rep- 2 March 2011 resented the wine to be distilled. A careful investigation of the vaporeliquid equilibrium was performed Accepted 8 March 2011 for the simulation of two different industrial plants. The simulation procedure was validated against experimental results collected from an industrial plant for bioethanol distillation. The simulations were Keywords: conducted with and without the presence of a degassing system, in order to evaluate the efficiency of Spirits fi Distillation this system in the control of the volatile content. To improve the ef ciency of the degassing system, fl Simulation a control loop based on a feedback controller was developed. The results showed that re ux ratio and Aspen Plus product flow rate have an important influence on the spirit composition. High reflux ratios and spirit Degassing flow rates allow for better control of spirit contamination.
    [Show full text]
  • Design of Batch Distillation Columns Using Short-Cut Method at Constant Reflux
    Hindawi Publishing Corporation Journal of Engineering Volume 2013, Article ID 685969, 14 pages http://dx.doi.org/10.1155/2013/685969 Research Article Design of Batch Distillation Columns Using Short-Cut Method at Constant Reflux Asteria Narvaez-Garcia,1 Jose del Carmen Zavala-Loria,2 Luis Enrique Vilchis-Bravo,1 and Jose Antonio Rocha-Uribe1 1 Universidad Autonoma de Yucatan, (UADY), Periferico Norte km 33.5, 97203 Merida, YUC, Mexico 2 Universidad Autonoma del Carmen, (UNACAR), Calle 56 No. 4, Colonia Benito Juarez, 24180 Ciudad del Carmen, CAM, Mexico Correspondence should be addressed to Jose Antonio Rocha-Uribe; [email protected] Received 17 December 2012; Revised 12 March 2013; Accepted 20 March 2013 Academic Editor: M. Angela Meireles Copyright © 2013 Asteria Narvaez-Garcia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A short-cut method for batch distillation columns working at constant reflux was applied to solve a problem of four components that needed to be separated and purified to a mole fraction of 0.97 or better. Distillation columns with 10, 20, 30, 40, and 50 theoretical stages were used; reflux ratio was varied between 2 and 20. Three quality indexes were used and compared: Luyben’s capacity factor, total annual cost, and annual profit. The best combinations of theoretical stages and reflux ratio were obtained for each method. It was found that the best combinations always required reflux ratios close to the minimum.
    [Show full text]
  • Optimization and Dynamics of Distillation Column Using Aspen Plus®
    Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 148 ( 2016 ) 978 – 984 4th International Conference on Process Engineering and Advanced Materials Optimization and Dynamics of Distillation Column using Aspen Plus® Syed A. Taqvia , Lemma Dendena Tufaa,*, Shuhaimi Muhadizira aChemical Engineering Department, Universiti Teknologi Petronas, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia Abstract Ever increasing global energy demand necessitates the need to enhance energy generation and efficient utilization. As energy prices continue to rise, energy conservation is the prime concern for every industry. Distillation is probably the most studied unit operation in terms of optimization and control. Since distillation columns are major energy-intensive units in chemical plants and given the recent increase in fuel cost, the plant engineers are obliged to find better operating strategies and control systems. One of the significant sections that can be worked upon is finding the optimum feed tray locations of distillation columns. The energy consumptions during distillation can have a strong impact on overall profitability. Hence, the optimization of a column is aimed towards greater production and an increase in quality. Since a column is multivariable system, disturbance in any parameter can affect the overall performance as well as production loss. This paper shows how an acetone manufacturing process can be conveniently simulated first to get temperature, pressure and composition profile followed by application of optimization techniques to enhance performance. It was performed by the means of using a simulator Aspen Plus®. Rebolier heat duty (MW) and minimum reflux ratio were successfully optimized by manipulating feed stage location and number of stages respectively.
    [Show full text]
  • Workshop 12: Instruction Sequence
    Materials for Participants – Module Instruction Sequence and Problem Statements by Core Course Workshop 12 “Simulators for Design Across the Curriculum” ASEE Summer School, Colorado, August 2002 Workshop Leaders: Daniel R. Lewin (DRL), Dept. of Chemical Engineering, Technion. Warren D. Seider (WDS), Dept. of Chemical Engineering, Penn. Workshop Objective: During the senior year design project, teams of students carry out an integrated process design, determining its technical, environmental, safety, and economic feasibility. Due to the problem scale, this inevitably involves the use of a process simulator to formulate and solve the material and energy balances, with phase and chemical equilibria and chemical kinetics, for cost estimation and economic evaluation. The availability of a reliable process model allows the design team to assess rapidly the economic potential for alternative designs, as well as to derive operating conditions using optimization methods that incorporate economics. To ensure that students are prepared to meet the challenges of the design project, they should be prepared for the competent and critical use of the process simulators. This is best achieved by a gradual exposure to aspects of their use through various exercises in the core courses. This workshop, which is intended for chemical engineering faculty, shows one way to achieve this objective. Contents: This document is an assembly of: (1) suggested instruction sequences, using the multimedia CD-ROM (Using Process Simulators in Chemical Engineering: A Multimedia Guide for the Core Curriculum), henceforth referred to as the multimedia, and (2) problem statements and solutions for class exercises and projects using process simulators to support many of the chemical engineering core courses.
    [Show full text]
  • Batch Processing
    4 Batch Distillation CONTENTS 4.1 Early Theoretical Analysis ........................................... 43 4.1.1 Simple Distillation ............................................. 45 4.1.2Copyrighted Operating Modes ............................................... 46 4.2 Hierarchy of Models .................................................. 53 4.2.1 Rigorous Model ................................................ 53 4.2.2 Low Holdup Semirigorous Model .............................. 53 4.3 Shortcut Model ........................................................ 55 4.4 Optimization and Optimal Control ................................... 58 4.5 Complex Systems ...................................................... 59 4.5.1 Azeotropic Distillation ......................................... 60 4.5.2 Reactive DistillationMaterial........................................... 61 4.6 Computer Aided Design Software ..................................... 62 4.7 Summary .............................................................. 63 Notations .............................................................. 63 - Batch distillation1 is the oldest separation processTaylor and the most widely used unit operation in pharmaceutical and specialty chemical industries. The most outstanding feature of batch distillation is its flexibility. This flexibility allows one to deal with uncertainties in feed stock or product specification. In the distillation process, it is assumed that the vapor& formed within a short pe- riod is in thermodynamic equilibrium with the liquid.
    [Show full text]
  • Batch Distillation Ki-Joo Kim Postdoctoral Researcher, Systems Analysis Branch, U.S
    DK3017_C005.fm Page 107 Wednesday, April 27, 2005 9:24 AM 5 Batch Distillation Ki-Joo Kim Postdoctoral Researcher, Systems Analysis Branch, U.S. Environmental Protection Agency, Cincinnati, OH ([email protected]) Urmila Diwekar Professor, BioEngineering, Chemical, and Industrial Engineering, University of Illinois, Chicago ([email protected]) CONTENTS 5.1 Introduction..............................................................................................108 5.2 Early Theoretical Analysis ......................................................................112 5.2.1 Simple Distillation.......................................................................112 5.2.2 Operating Modes .........................................................................114 5.2.2.1 McCabe–Thiele Graphical Method .............................114 5.2.2.2 Constant Reflux Mode .................................................115 5.2.2.3 Variable Reflux Mode..................................................117 5.2.2.4 Optimal Reflux Mode ..................................................118 5.3 Hierarchy of Models................................................................................120 5.3.1 Rigorous Model...........................................................................121 5.3.2 Low Holdup Semirigorous Model ..............................................124 5.3.3 Shortcut Model and Feasibility Considerations..........................125 5.3.4 Collocation-Based Models ..........................................................127 5.3.5 Model
    [Show full text]
  • Design Concept of Crude Oil Distillation Column Design
    2/16/2015 NPTEL :: Chemical Engineering ­ Petroleum Refinery Engineering Design concept of crude oil distillation column design. Distillation Column Design The design of a distillation can be divided in the following steps. Specify the degree of separation:­ Set product specification. Select the operating conditions:­ Operating pressure. Determine the stage and reflux requirement:­ The number of equilibrium stages. Select type of contacting device:­ Plates or packing. Size the column:­ Diameter, number of real stages. Design the column internals:­ Plates,Distributors,Packing Supports etc. Mechanical design:­ Vessel and Internal fittings. Arrangement of Towers Three types of arrangements ( How heat is removed) 1. Top Tray Reflux : Reflux is only at top tray only Reflux is cooled and sent into the Tower. Heat input: Through Tower bottom. Removal: at the top. Thus requires large tower diameter. Improper reflux and poor quality of fraction. Economic utilization of heat is not possible. 2. Pump back reflux. 3. Pump around Reflux. data:text/html;charset=utf­8,%3Ctable%20width%3D%2280%25%22%20border%3D%220%22%20align%3D%22center%22%20cellpadding%3D%220%22%… 1/24 2/16/2015 NPTEL :: Chemical Engineering ­ Petroleum Refinery Engineering Fig:2.25 Vacuum Distillation Unit Overview [7] Pump back Reflux: Reflux is provided at regular intervals. This helps every plate to act as a true fractionator.( because there is always good amount of liquid). Tower is uniformly loaded, hence uniform and lesser diameter tower will do. Heat from external refluc can be utilised as it is at progressively higher temperatures. However design of such tower is costly, but provides excellet service.
    [Show full text]
  • Redalyc.Operation Parameters of a Small Scale Batch Distillation Column for Hydrous Ethanol Fuel (HEF) Production
    Ingeniería e Investigación ISSN: 0120-5609 [email protected] Universidad Nacional de Colombia Colombia Mayer, F. D.; Schettert, G. F.; Michel Júnior, R. J. S.; Foletto, E. L.; Hoffmann, R. Operation parameters of a small scale batch distillation column for hydrous ethanol fuel (HEF) production Ingeniería e Investigación, vol. 35, núm. 1, abril, 2015, pp. 31-35 Universidad Nacional de Colombia Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=64338498006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative INGENIERÍA E INVESTIGACIÓN VOL. 35 No. 1, APRIL – 2015 (31-35) DOI: http://dx.doi.org/10.15446/ing.investig.v35n1.46969 Operation parameters of a small scale batch distillation column for hydrous ethanol fuel (HEF) production Parámetros de funcionamiento de una columna de destilación diferencial en pequeña escala para la producción de etanol hidratado combustible (EHC) F. D. Mayer1, G. F. Schettert2, R. J. S. Michel Júnior3, E. L. Foletto4 and R. Hoffmann5 ABSTRACT Batch distillation applied to hydrous ethanol fuel (HEF) production on a small scale still requires operating conditions that ensure optimal top product quality and productivity. The aim of this study is to statistically validate a batch still through the employment of response surface methodology (RSM). Operational and productivity parameters were formulated in order to guarantee quality compliance with the legal requirements for the top product concentration, besides providing support information to control the production of HEF on a small scale.
    [Show full text]