Batch Processing

Total Page:16

File Type:pdf, Size:1020Kb

Batch Processing 4 Batch Distillation CONTENTS 4.1 Early Theoretical Analysis ........................................... 43 4.1.1 Simple Distillation ............................................. 45 4.1.2Copyrighted Operating Modes ............................................... 46 4.2 Hierarchy of Models .................................................. 53 4.2.1 Rigorous Model ................................................ 53 4.2.2 Low Holdup Semirigorous Model .............................. 53 4.3 Shortcut Model ........................................................ 55 4.4 Optimization and Optimal Control ................................... 58 4.5 Complex Systems ...................................................... 59 4.5.1 Azeotropic Distillation ......................................... 60 4.5.2 Reactive DistillationMaterial........................................... 61 4.6 Computer Aided Design Software ..................................... 62 4.7 Summary .............................................................. 63 Notations .............................................................. 63 - Batch distillation1 is the oldest separation processTaylor and the most widely used unit operation in pharmaceutical and specialty chemical industries. The most outstanding feature of batch distillation is its flexibility. This flexibility allows one to deal with uncertainties in feed stock or product specification. In the distillation process, it is assumed that the vapor& formed within a short pe- riod is in thermodynamic equilibrium with the liquid. Hence,Francis the vapor composition y is related to the liquid composition x by an equilibrium relation of the functional form y = f(x). The exact relationship for a particular mixture may be obtained from a thermodynamic analysis and is also dependent upon temperature and pres- sure. Figure 4.1 shows an example equilibrium curve for a system consisting of CS2 and CCl4 at 1 atmosphere pressure. Simple distillation is the simplest form of batch distillation. In this type of dis- tillation, a still is initially filled with a feed mixture, which evaporates after heating and leaves the still in the vapor form. This vapor which is richer in the more volatile component is collected in the condenser at the top. This simple distillation is often referred to as Rayleigh distillation because of Rayleigh’s pioneering theoretical work [35]. The concept of reflux and the use of accessories such as plates and packing ma- terials to increase the mass transfer converts this simple still into a batch distillation column as shown in Figure 4.2a. Because this batch column essentially performs the rectifying operation, it is often called a batch rectifier. The basic difference between batch distillation (rectifier) and continuous distilla- 1This chapter is based on the book by [7]. 41 42 Batch Processes: Modeling and Design 1 1 0.8 0.8 0.6 0.6 y 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 Copyrighted x FIGURE 4.1 Equilibrium curve for the CS2 and CCl4 mixture at 1 atmosphere pressure tion is that in continuous distillation (Figure 4.2b) the feed is continuously entering the column, while in batch distillationMaterial the feed is charged into the reboiler at the beginning of the operation. This feed is heated to form vapor. This vapor is passed through packing or plates where it meets the liquid coming from top (refluxed back) from the condenser at the top. Mass transfer takes place in contact and one gets a distillate which is richer in the more volatile component. The reboiler in batch dis- tillation gets depleted over time. The process- has an unsteady-state nature. Reflux ratio, which is a ratio of liquid reflux to distillateTaylor is an important operating parame- ter on which operating condition depends. If reflux ratio is kept constant throughout the operation this results in variable product composition. On the other hand, in order to keep the key composition constant, reflux ratio needs to be varied. There is a third policy of operation known as the optimal reflux& policy that is neither the constant reflux policy nor the variable reflux policy. Instead,Francis this operating policy exploits the difference between the two operating modes. Thus, the optimal reflux policy is essentially a trade-off between the two operating modes, and is based on the ability of the process to yield the most profitable operation. Thus, there are three operating conditions for batch distillation. Constant reflux and variable product composition, • Variable reflux and constant product composition of the key component, and • Optimal reflux and optimal product composition. • The flexible and transient nature of batch distillation allows to configure the column in a number of different ways, some of which are shown in Figure 4.3 [36]. The column in Figure 4.3a, as explained, is a conventional batch distillation column with the reboiler at the bottom and the condenser at the top. A single column can be used to separate several products using the multi-fraction operation of batch distillation presented in Figure 4.3b. Some cuts may be desired and others may be intermediate products. These intermediate fractions can be recycled to maximize profits and/or minimize waste generation. Figure 4.3c shows a periodic operation Batch Distillation 43 (a) condenser (b) condenser distillate distillate reflux reflux section rectifying feed rectifying section reboil section stripping stripping Copyrighted bottom product reboiler reboiler FIGURE 4.2 Types of distillation processes:Material (a) batch distillation and (b) continuous dis- tillation. in which each charge consists of a fresh feed- stock mixed with the recycled off- specification material from the previous charge.Taylor Figure 4.3d represents a stripping column for separating a heavy component as the bottom product where the liquid feed is initially charged into the top. In 1994, Davidyan et al. [37] presented a batch distillation column that has both stripping and rectifying& sections embedded in it (Figure 4.3e). This column is called the middle vessel column. Although this column has not been investigated completely, recent studies demonstratedFrancis that it provides added flexibility for the batch distillation operation. Recently [38] described a new column configuration called a multivessel column (Figure 4.3f) and showed that the column can obtain purer products at the end of a total reflux operation. These emerging column designs play an important role in separation of complex systems such as azeotropic, extractive, and reactive batch distillation systems. Although all these column configurations are important, we will focus on the conventional batch column in this chapter. 4.1 Early Theoretical Analysis This section presents early theoretical analysis of simple distillation, which was first analyzed by [35]. 44 Batch Processes: Modeling and Design 2 3 2 3 Copyrighted 1 1 (a) (b) (c) Material - Taylor & Francis (d) (e) (f) FIGURE 4.3 Various configurations of batch distillation column. Batch Distillation 45 4.1.1 Simple Distillation The analysis of simple distillation presented by Rayleigh in 1902 marks the earliest theoretical work on batch distillation. Simple distillation, also called Rayleigh distil- lation or differential distillation, is the most elementary example of batch distillation. In this distillation system, the vapor is removed from the still during each time in- terval and is condensed in the condenser. The vapor is richer in the more volatile component than the liquid remaining in the still. Over time, the liquid remaining in the still begins to experience a decline in the concentration of the more volatile component, while the distillate collected in the condenser becomes enriched in the more volatile component. No reflux is returned to the still, and no plates or packing materials are provided inside the column. Therefore, various operating policies are not applicable to this distillation system. The earlyCopyrighted analysis of this process for a binary system, proposed by Rayleigh, is given below. Let F be the initial binary feed to the still (moles), and xF be the mole fraction of the more volatile component A in the feed. Let B be the amount of compounds remaining in the still, xB the mole fraction of component A in the still, and xD the mole fraction of component A in the vapor phase. The differential material balance for component A can then be written as: xD dB = d(B xB ) = B dxB + xB dB, (4.1) Material giving: B dB xB dx = B , (4.2) B xD xB ZF ZxF − or: B xB dx ln = - B . (4.3) F xTaylorD xB ZxF − In this simple distillation process, it is assumed that the vapor formed within a short period is in thermodynamic equilibrium with the liquid. Hence, the vapor composition xD is related to the liquid composition xB&by an equilibrium relation of the form xD = f(xB ). The exact relationship for a particular mixture may be obtained from a thermodynamic analysis depending on temperatureFrancis and pressure. For a system following the ideal behavior given by Raoult’s law, the equilibrium relationship between the vapor composition y (or xD) and liquid composition x (or xB ) of the more volatile component in a binary mixture can be approximated using the concept of constant relative volatility (α), and is given by: αx y = (4.4) ()α 1 x + 1 − Substitution of the above equation in Equation 4.3 results in: B 1 xB (1 xF ) 1 xF ln = ln − + ln − (4.5) F α 1 x1F ( xB ) 1 xB − − − Although the analysis of simple distillation historically represents the theoret- ical start of batch distillation
Recommended publications
  • Distillation 6
    CHAPTER Energy Considerations in Distillation 6 Megan Jobson School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK CHAPTER OUTLINE 6.1 Introduction to energy efficiency ....................................................................... 226 6.1.1 Energy efficiency: technical issues................................................... 227 6.1.1.1 Heating.................................................................................... 227 6.1.1.2 Coolingdabove ambient temperatures...................................... 229 6.1.1.3 Coolingdbelow ambient temperatures ...................................... 230 6.1.1.4 Mechanical or electrical power.................................................. 232 6.1.1.5 Summarydtechnical aspects of energy efficiency ..................... 233 6.1.2 Energy efficiency: process economics............................................... 233 6.1.2.1 Heating.................................................................................... 233 6.1.2.2 Cooling..................................................................................... 235 6.1.2.3 Summarydprocess economics and energy efficiency ............... 237 6.1.3 Energy efficiency: sustainable industrial development........................ 237 6.2 Energy-efficient distillation ............................................................................... 237 6.2.1 Energy-efficient distillation: conceptual design of simple columns...... 238 6.2.1.1 Degrees of freedom in design ..................................................
    [Show full text]
  • Simulation Study of a Reactive Distillation Process for the Ethanol Production
    613 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 DOI: 10.3303/CET1869103 Simulation Study of a Reactive Distillation Process for the Ethanol Production J. Carlos Cárdenas-Guerraa,*, Susana Figueroa-Gerstenmaiera, J. Antonio Reyes- a b Aguilera , Salvador Hernández aDepartamento de Ingenierías Química, Electrónica y Biomédica, Universidad de Guanajuato, Loma del Bosque No. 103, León, Gto., 37150, México bDepartamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto., 36050, México [email protected] A simulation study of the effects of design and operating parameters under which optimal-stable steady states may occur in a reactive distillation process for synthesis of ethanol has been presented. The conceptual design of the reactive separation process is based on the element concept where the reactive driving force approach is employed. To validate the proposed design, steady state simulations using ASPEN PLUS® software package were accomplished, and a sensitivity analysis was done to establish the operating conditions of the process. The analysed parameters were as follows: i) the operating pressure and ii) the reflux ratio. The results showed that a new energy-efficient design with minimal energy requirements may be considered a viable technological alternative for ethanol synthesis. Also, this reaction-separation process allows to satisfy the design and operating constrains. This is, a novel reactive distillation process capable to increase the purity of the ethanol from a dilute solution, i.e., up to 30% ethanol in water under optimal operating conditions.
    [Show full text]
  • Review of Extractive Distillation. Process Design, Operation
    Review of Extractive Distillation. Process design, operation optimization and control Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, Xinqiang You To cite this version: Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, et al.. Review of Extractive Distillation. Process design, operation optimization and control. Chemical Engineering Research and Design, Elsevier, 2019, 141, pp.229-271. 10.1016/j.cherd.2018.09.020. hal-02161920 HAL Id: hal-02161920 https://hal.archives-ouvertes.fr/hal-02161920 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/239894 Official URL: https://doi.org/10.1016/j.cherd.2018.09.020 To cite this version: Gerbaud, Vincent and Rodríguez-Donis, Ivonne and Hegely, Laszlo and Láng, Péter and Dénes, Ferenc and You, Xinqiang Review of Extractive Distillation. Process design, operation optimization and control. (2018) Chemical Engineering Research and Design, 141.
    [Show full text]
  • Taking Reactive Distillation to the Next Level of Process Intensification, Chemical Engineering Transactions, 69, 553-558 DOI: 10.3303/CET1869093 554
    553 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 DOI: 10.3303/CET1869093 Taking Reactive Distillation to the Next Level of Process Intensification Anton A. Kissa,b,*, Megan Jobsona a The University of Manchester, School of Chemical Engineering and Analytical Science, Centre for Process Integration, Sackville Street, The Mill, Manchester M13 9PL, United Kingdom b University of Twente, Sustainable Process Technology, PO Box 217, 7500 AE Enschede, The Netherlands [email protected] Reactive distillation (RD) is an efficient process intensification technique that integrates catalytic chemical reaction and distillation in a single apparatus. The process is also known as catalytic distillation when a solid catalyst is used. RD technology has many key advantages such as reduced capital investment and significant energy savings, as it can surpass equilibrium limitations, simplify complex processes, increase product selectivity and improve the separation efficiency. But RD is also constrained by thermodynamic requirements (related to volatility differences and heat of reaction), overlapping of the reaction and distillation operating conditions, and the availability of catalysts that are active, selective and with sufficient longevity. This paper is the first to provide insights into novel reactive distillation technologies that combine RD principles with other intensified distillation technologies – e.g. dividing-wall columns, cyclic distillation, HiGee distillation, and heat integrated distillation column – potentially leading to new processes and applications. 1. Introduction Reactive distillation (RD) is one of the best success stories of process intensification technology – developed since the early 1920s – that made a strong positive impact in the chemical process industry (CPI).
    [Show full text]
  • Computer Simulation of a Multicomponent, Multistage Batch Distillation Process
    COMPUTER SIMULATION OF A MULTICOMPONENT, MULTISTAGE BATCH DISTILLATION PROCESS By BRUCE EARL BAUGHER /J Bachelor of Science in Chemical Engineering Oklahoma State University Stillwater, Oklahoma 1985 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1988 \\,~s~ ~ \'\~~ B~~~to'­ <:.o?. ·;)._, ~ r COMPUTER SIMULATION OF A MULTICOMPONENT, MULTISTAGE BATCH DISTILLATION PROCESS Thesis Approved: Thesis Advisor U.bJ ~~- ~MJYl~ Dean of the GradU~te College ABSTRACT The material and energy balance equations for a batch distillation column were derived and a computer simulation was developed to solve these equations. The solution follows a modified Newton-Raphson approach for inverting and solving the matrices of material and energy balance equations. The model is unique in that it has been designed to handle hypothetical hydrocarbon components. The simulation can handle columns up to 50 trays and systems of up to 100 components. The model has been used to simulate True Boiling Point (TBP) diagrams for a variety of crude oils. This simulation is also applicable to simple laboratory batch distillations. The model was designed to accurately combine data files to simulate actual crude blending procedures. The model will combine files and calculate the results quickly and easily. The simulation involves removing material from the column at steady-state. The removal fraction is made small enough to approach continuity. This simulation can be adapted for use on microcomputers, although it will require extensive computation time. ACKNOWLEDGMENTS It has been a great pleasure to work with my thesis advisor, Dr.
    [Show full text]
  • Distillation Theory
    Chapter 2 Distillation Theory by Ivar J. Halvorsen and Sigurd Skogestad Norwegian University of Science and Technology Department of Chemical Engineering 7491 Trondheim, Norway This is a revised version of an article published in the Encyclopedia of Separation Science by Aca- demic Press Ltd. (2000). The article gives some of the basics of distillation theory and its purpose is to provide basic understanding and some tools for simple hand calculations of distillation col- umns. The methods presented here can be used to obtain simple estimates and to check more rigorous computations. NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen 28 2.1 Introduction Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A.D. Today distillation is the most important industrial separation technology. It is particu- larly well suited for high purity separations since any degree of separation can be obtained with a fixed energy consumption by increasing the number of equilib- rium stages. To describe the degree of separation between two components in a column or in a column section, we introduce the separation factor: ()⁄ xL xH S = ------------------------T (2.1) ()x ⁄ x L H B where x denotes mole fraction of a component, subscript L denotes light compo- nent, H heavy component, T denotes the top of the section, and B the bottom. It is relatively straightforward to derive models of distillation columns based on almost any degree of detail, and also to use such models to simulate the behaviour on a computer.
    [Show full text]
  • Distillation ­ Accessscience from Mcgraw­Hill Education
    6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Distillation Article by: King, C. Judson University of California, Berkeley, California. Last updated: 2014 DOI: https://doi.org/10.1036/1097­8542.201100 (https://doi.org/10.1036/1097­8542.201100) Content Hide Simple distillations Fractional distillation Vapor­liquid equilibria Distillation pressure Molecular distillation Extractive and azeotropic distillation Enhancing energy efficiency Computational methods Stage efficiency Links to Primary Literature Additional Readings A method for separating homogeneous mixtures based upon equilibration of liquid and vapor phases. Substances that differ in volatility appear in different proportions in vapor and liquid phases at equilibrium with one another. Thus, vaporizing part of a volatile liquid produces vapor and liquid products that differ in composition. This outcome constitutes a separation among the components in the original liquid. Through appropriate configurations of repeated vapor­liquid contactings, the degree of separation among components differing in volatility can be increased manyfold. See also: Phase equilibrium (/content/phase­equilibrium/505500) Distillation is by far the most common method of separation in the petroleum, natural gas, and petrochemical industries. Its many applications in other industries include air fractionation, solvent recovery and recycling, separation of light isotopes such as hydrogen and deuterium, and production of alcoholic beverages, flavors, fatty acids, and food oils. Simple distillations The two most elementary forms of distillation are a continuous equilibrium distillation and a simple batch distillation (Fig. 1). http://www.accessscience.com/content/distillation/201100 1/10 6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education Fig. 1 Simple distillations. (a) Continuous equilibrium distillation.
    [Show full text]
  • Computer Simulation Applied to Studying Continuous Spirit Distillation and Product Quality Control
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food Control 22 (2011) 1592e1603 Contents lists available at ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Computer simulation applied to studying continuous spirit distillation and product quality control Fabio R.M. Batista, Antonio J.A. Meirelles* Laboratory EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas e UNICAMP, Campinas, Brazil article info abstract Article history: This work aims to study continuous spirit distillation by computational simulation, presenting some Received 7 June 2010 strategies of process control to regulate the volatile content. The commercial simulator Aspen (Plus and Received in revised form dynamics) was selected. A standard solution containing ethanol, water and 10 minor components rep- 2 March 2011 resented the wine to be distilled. A careful investigation of the vaporeliquid equilibrium was performed Accepted 8 March 2011 for the simulation of two different industrial plants. The simulation procedure was validated against experimental results collected from an industrial plant for bioethanol distillation. The simulations were Keywords: conducted with and without the presence of a degassing system, in order to evaluate the efficiency of Spirits fi Distillation this system in the control of the volatile content. To improve the ef ciency of the degassing system, fl Simulation a control loop based on a feedback controller was developed. The results showed that re ux ratio and Aspen Plus product flow rate have an important influence on the spirit composition. High reflux ratios and spirit Degassing flow rates allow for better control of spirit contamination.
    [Show full text]
  • Batch Distillation of Spirits: Experimental Study and Simulation
    Research article Received: 5 April 2018 Revised: 11 January 2019 Accepted: 15 January 2019 Published online in Wiley Online Library (wileyonlinelibrary.com) DOI 10.1002/jib.560 Batch distillation of spirits: experimental study and simulation of the behaviour of volatile aroma compounds Adrien Douady,1 Cristian Puentes,1 Pierre Awad1,2 and Martine Esteban-Decloux1* This paper focuses on the behaviour of volatile compounds during batch distillation of wine or low wine, in traditional Charentais copper stills, heated with a direct open flame at laboratory (600 L) and industrial (2500 L) scale. Sixty-nine volatile compounds plus ethanol were analysed during the low wine distillation in the 600 L alembic still. Forty-four were quantified and classified according to their concentration profile in the distillate over time and compared with previous studies. Based on the online re- cording of volume flow, density and temperature of the distillate with a Coriolis flowmeter, distillation was simulated with ProSim® BatchColumn software. Twenty-six volatile compounds were taken into account, using the coefficients of the ‘Non- Random Two Liquids’ model. The concentration profiles of 18 compounds were accurately represented, with slight differences in the maximum concentration for seven species together with a single compound that was poorly represented. The distribution of the volatile compounds in the four distillate fractions (heads, heart, seconds and tails) was well estimated by simulation. Fi- nally, data from wine and low wine distillations in the large-scale alembic still (2500 L) were correctly simulated, suggesting that it was possible to adjust the simulation parameters with the Coriolis flowmeter recording and represent the concentration pro- files of most of the quantifiable volatile compounds.
    [Show full text]
  • Entrainer-Enhanced Reactive Distillation
    ENTRAINER-ENHANCED REACTIVE DISTILLATION Alexandre C. DIMIAN, Florin OMOTA and Alfred BLIEK Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands Correspondent: [email protected] ABSTRACT The paper presents the use of a Mass Separation Agent (entrainer) in reactive distillation processes. This can help to overcome limitations due to distillation boundaries, and in the same time increase the degrees of freedom in design. The catalytic esterification of fatty acids with light alcohols C2-C4 is studied as application example. Because the alcohol and water distillate in top simultaneously, another separation is needed to recover and recycle the alcohol. The problem can be solved elegantly by means of an entrainer that can form a minimum boiling ternary heterogeneous azeotrope. Water can be removed quantitatively by decanting, or by an additional simple stripping column. The use of entrainer has beneficial effect on the reaction rate, by increasing the amount of alcohol recycled to the reaction space. The paper discusses in more detail the design of a process for the esterification of the lauric acid with 1-propanol. The following aspects are investigated: chemical and phase equilibrium, entrainer selection, kinetic design, and optimisation. Minimum and maximum solvent ratio has been identified. A significant reduction of the amount of catalyst can be obtained compared with the situation without entrainer. INTRODUCTION Reactive Distillation (RD) is considered a promising technique for innovative processes, because the reaction and separation could be brought together in the same equipment, with significant saving in equipment and operation costs. However, ensuring compatibility between reaction and separation conditions is problematic.
    [Show full text]
  • Modelling and Control of Reactive Distillation Processes
    Modelling and Control of Reactive Distillation Processes Nicholas C. T. Biller A thesis submitted for the degree of Doctor of Philosophy of the University of London Department of Chemical Engineering University College London London WCIE 7JE September 2003 ProQuest Number: 10014376 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10014376 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 A bstract Reactive distillation has been applied successfully in industry where large capital and energy savings have been made through the integration of reaction and distillation into one system. Operating in batch mode, in either tray or packed columns, offers the flexibihty required by pharmaceutical and hne chemical industries for producing low volume/high value products with varying specifications. However, regular packed or tray columns may not be suitable for high vacuum operations due to the pressure drop across the column section and short path distillation may be more applicable. The objective of this thesis is to investigate the control of reactive distillation in batch columns, tray and packed, and in short path columns.
    [Show full text]
  • Dynamic Modelling of Batch Distillation Columns Chemical
    Dynamic Modelling of Batch Distillation Columns Maria Nunes de Almeida Viseu Thesis to obtain the Master of Science Degree in Chemical Engineering Supervisors: Prof. Dr Carla Isabel Costa Pinheiro Dr Charles Brand Examination Committee Chairperson: Prof. Dr Sebastião Manuel Tavares da Silva Alves Supervisor: Prof. Dr Carla Isabel Costa Pinheiro Members of the Committee: Prof. Dr João Miguel Alves da Silva November 2014 Page intentionally left blank ii Para os meus pais, Com amor. iii Page intentionally left blank iv Abstract atch distillation is becoming increasingly important in specialty product industries in which flexibility is a B key performance factor. Because high added value chemical compounds are produced in these industries with uncertain demands and lifetimes, mathematical models that predict separation times and product purities thereby facilitating plant scheduling are required. The primary purpose of this study is thus to develop a batch multi-staged distillation model based on mass and energy balances, equilibrium stages and tray hydraulic relations. The mathematical model was implemented in gPROMS ModelBuilder®, an industry- leading custom modelling and flowsheet environment software. Preliminary steps were undertaken prior to implementing the dynamic multi-staged model: batch distillation operating policies as well as modelling and tray hydraulic considerations were covered in a broad background review; a theoretical separation example of an equimolar benzene/toluene mixture was used to validate a simpler Rayleigh distillation model comprising only one equilibrium stage; tray hydraulic correlations encompassing column diameter, tray holdup and tray pressure drop estimations were tested in a methanol/water continuous separation case study. The multi-staged batch model was validated for a methanol/water separation using literature data from an experimental pilot plant and from theoretical results given by a model implemented in Fortran language and by commercial simulator Batchsim of Pro/II.
    [Show full text]