Murder at the Observatory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Template for Two-Page Abstracts in Word 97 (PC)
GEOLOGIC MAPPING OF THE LUNAR SOUTH POLE QUADRANGLE (LQ-30). S.C. Mest1,2, D.C. Ber- man1, and N.E. Petro2, 1Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719-2395 ([email protected]); 2Planetary Geodynamics Laboratory, Code 698, NASA GSFC, Greenbelt, MD 20771. Introduction: In this study we use recent image, the surface [7]. Impact craters display morphologies spectral and topographic data to map the geology of the ranging from simple to complex [7-9,24] and most lunar South Pole quadrangle (LQ-30) at 1:2.5M scale contain floor deposits distinct from surrounding mate- [1-7]. The overall objective of this research is to con- rials. Most of these deposits likely consist of impact strain the geologic evolution of LQ-30 (60°-90°S, 0°- melt; however, some deposits, especially on the floors ±180°) with specific emphasis on evaluation of a) the of the larger craters and basins (e.g., Antoniadi), ex- regional effects of impact basin formation, and b) the hibit low albedo and smooth surfaces and may contain spatial distribution of ejecta, in particular resulting mare. Higher albedo deposits tend to contain a higher from formation of the South Pole-Aitken (SPA) basin density of superposed impact craters. and other large basins. Key scientific objectives in- Antoniadi Crater. Antoniadi crater (D=150 km; clude: 1) Determining the geologic history of LQ-30 69.5°S, 172°W) is unique for several reasons. First, and examining the spatial and temporal variability of Antoniadi is the only lunar crater that contains both a geologic processes within the map area. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Catholic Christian Christian
Religious Scientists (From the Vatican Observatory Website) https://www.vofoundation.org/faith-and-science/religious-scientists/ Many scientists are religious people—men and women of faith—believers in God. This section features some of the religious scientists who appear in different entries on these Faith and Science pages. Some of these scientists are well-known, others less so. Many are Catholic, many are not. Most are Christian, but some are not. Some of these scientists of faith have lived saintly lives. Many scientists who are faith-full tend to describe science as an effort to understand the works of God and thus to grow closer to God. Quite a few describe their work in science almost as a duty they have to seek to improve the lives of their fellow human beings through greater understanding of the world around them. But the people featured here are featured because they are scientists, not because they are saints (even when they are, in fact, saints). Scientists tend to be creative, independent-minded and confident of their ideas. We also maintain a longer listing of scientists of faith who may or may not be discussed on these Faith and Science pages—click here for that listing. Agnesi, Maria Gaetana (1718-1799) Catholic Christian A child prodigy who obtained education and acclaim for her abilities in math and physics, as well as support from Pope Benedict XIV, Agnesi would write an early calculus textbook. She later abandoned her work in mathematics and physics and chose a life of service to those in need. Click here for Vatican Observatory Faith and Science entries about Maria Gaetana Agnesi. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
{PDF EPUB} Agnes Mary Clerke and the Rise of Astrophysics by MT
Read Ebook {PDF EPUB} Agnes Mary Clerke and the Rise of Astrophysics by M. T. Brück "This first full-length biography of Clerke, a woman historian of astronomy of the last half of the 19th century, also details a significangt period in the rise of modern astrophysics with the development of larger and better telescopes, the use of photography in the mapping of the skies, and the invention of the spectroheliograph.5/5(2)Amazon.com: Agnes Mary Clerke and the Rise of Astrophysics ...https://www.amazon.com/Agnes- Mary-Clerke-Rise..."This first full-length biography of Clerke, a woman historian of astronomy of the last half of the 19th century, also details a significangt period in the rise of modern astrophysics with the development of …5/5(2)[PDF]and the Rise of Astrophysicscatdir.loc.gov/catdir/samples/cam033/2001043451.pdfBrück, M. T. (Mary T.) Agnes Mary Clerke and the rise of astrophysics / M. T. Brück p. cm. Includes bibliographical references and index. isbn0521808448 1. Clerke, Agnes M. (Agnes Mary), 1842–1907. 2. Astronomers – Ireland – Biography. 3. Astronomy – History – 19th century. I. Title. qb36.c57 b78 2002 520′.92– dc21 [b] 2001043451Cited by: 9Publish Year: 2002Author: M. T. BrückPeople also askWhen did Agnes Mary Clerke write her book?When did Agnes Mary Clerke write her book?In 2002, the retired astronomy lecturer Mary Brück wrote a book on her, Agnes Mary Clerke and the Rise of Astrophysics.Agnes Mary Clerke - Wikipedia May 09, 2002 · "This first full-length biography of Clerke, a woman historian of astronomy of the last half of the 19th century, also details a significangt period in the rise of modern astrophysics with the development of larger and better telescopes, the use of photography in the mapping of the skies, and the invention of the spectroheliograph.Price: $117.85Availability: In stockAgnes Mary Clerke and the Rise of Astrophysics - NASA/ADShttps://ui.adsabs.harvard.edu/abs/2002amcr.book.....BMay 01, 2002 · Agnes Mary Clerke and the Rise of Astrophysics .. -
12-Inch Alvan Clark Telescope Restoration
12-Inch Alvan Clark Telescope Restoration: Summary of Research and Final Recommendations Deborah Culmer and Hannah Johnson September, 2011 Introduction The first telescope installed at Lick Observatory was a second-hand purchase, with the telescope and its optic made by the premier telescope makers of the time, Alvan Clark and Sons of Cambridge, MA. The dome that housed it was the first structure built on Mt. Hamilton, from bricks fired in a kiln on location. That dome still stands; and until the 1970’s, the 12-inch refracting telescope was in operation, but without its original driver clock and gears (replaced with an electronic drive, perhaps in the 1950’s). Since it was decommissioned, the 12-inch has been in storage. The Lick Instrument Lab has retrieved it, and it is currently on location at UC Santa Cruz in anticipation of total restoration. In the summer of 2011, a research project was launched to determine to what era and condition the telescope should be restored. In recent years, there has been great interest in historical restoration of Alvan Clark telescopes (and others, to be sure). As a result of that interest, we had a pool of organizations and institutions from which to glean information. Two we visited in person; many more we contacted via email and conference calls. Based on our research and interviews, we offer our recommendations on the restoration of this historically important telescope. 1. Research In beginning this project, it was very important to understand the history of the 12-inch Alvan Clark, especially since it was the first telescope set up on Mt. -
No. 3 an Independent Miscellany of Astronomy John Hadley's Reflecting
No. 3 An Independent Miscellany of Astronomy 4 February 2019 In 1672, when Isaac Newton read of the enigmatic Monsieur him, that such projects are of little moment till they be put in Cassegrain’s design for a reflecting telescope, he expressed practise.’ Subsequently, the Gregorian design was predom- his opinions in a letter to Henry Oldenburg, Secretary of the inant throughout the eighteenth century, while Newtonian Royal Society. After extensive adverse criticism, the letter telescopes became very popular with the introduction of concludes: ‘You see therefore, that the advantages of this silver-on-glass mirrors in the late 1850s. If Newton could be design are none, but the disadvantages so great and unav- informed that the Cassegrainian design is now incorporated oidable, that I fear it will never be put in practise with good in many instruments, it is probable that he would respond in effect ... I could wish therefore, Mr Cassegrain had tryed a characteristic manner with an acerbic comment. his design before he divulged it. But if, for further satisfaction he please hereafter to try it, I believe the success will inform Bob Marriott _____________________________________________________________________________ John Hadley’s reflecting telescope its thin section parallel with the longitudinal axis of the tele- scope in order to minimise or obviate optical effects, while After the efforts of Gregory, Reive, Newton, Cox, Hooke, and the other end of this brass arm was attached to a sliding Cassegrain from the mid-1660s until around 1704, develop- unit which fitted into wide grooves along the length of a ment of the reflecting telescope remained quiescent until rectangular aperture in the side of the tube. -
POLYGONAL IMPACT CRATERS on CHARON. C.B. Beddingfield1,2, R
51st Lunar and Planetary Science Conference (2020) 1241.pdf POLYGONAL IMPACT CRATERS ON CHARON. C.B. Beddingfield1,2, R. Beyer1,2, R.J. Cartwright1,2, K. Singer3, S. Robbins3, S.A. Stern3, V. Bray4, J.M. Moore2, K. Ennico2, C.B. Olkin3, J.R. Spencer3, H.A. Weaver5, L.A. Young3, A.Verbiscer6, J. Parker3, and the New Horizons Geology, Geophysics, and Imaging (GGI) Team; 1SETI In- stitute, Mountain View, CA, 2NASA Ames Research Center, Mountain View, CA ([email protected]), 3Southwest Research Institute, Boulder, CO, 4University of Arizona, Tucson, AZ, 5John Hopkins University Applied Physics Laboratory, Laurel, MD, 6University of Virginia, Charlottesville, VA. Introduction: Polygonal impact craters (PICs) re- flect pre-existing extensional and strike-slip faults and fractures in the target material [e.g. 1-9]. PIC straight rim segments therefore can provide important infor- mation for deciphering the tectonic histories of plane- tary bodies [e.g. 8]. The only known PIC formation mechanism is the presence of pre-existing sub-vertical structures within the target material [e.g. 5, 7, 11-13]. In contrast, circular impact craters (CICs) are in- ferred to result from impact events in non-tectonized target material. CICs can also form in pre-fractured tar- get material if the fractures are widely or closely spaced, if the fracture system is highly complex, or if the target material is covered by a thick layer of non-cohesive sed- iment that limits interactions between the impactor and the underlying bedrock/ice [e.g. 14]. Consequently, PICs and CICs are useful tools to distinguish between Fig. -
The Maunder Minimum and the Variable Sun-Earth Connection
The Maunder Minimum and the Variable Sun-Earth Connection (Front illustration: the Sun without spots, July 27, 1954) By Willie Wei-Hock Soon and Steven H. Yaskell To Soon Gim-Chuan, Chua Chiew-See, Pham Than (Lien+Van’s mother) and Ulla and Anna In Memory of Miriam Fuchs (baba Gil’s mother)---W.H.S. In Memory of Andrew Hoff---S.H.Y. To interrupt His Yellow Plan The Sun does not allow Caprices of the Atmosphere – And even when the Snow Heaves Balls of Specks, like Vicious Boy Directly in His Eye – Does not so much as turn His Head Busy with Majesty – ‘Tis His to stimulate the Earth And magnetize the Sea - And bind Astronomy, in place, Yet Any passing by Would deem Ourselves – the busier As the Minutest Bee That rides – emits a Thunder – A Bomb – to justify Emily Dickinson (poem 224. c. 1862) Since people are by nature poorly equipped to register any but short-term changes, it is not surprising that we fail to notice slower changes in either climate or the sun. John A. Eddy, The New Solar Physics (1977-78) Foreword By E. N. Parker In this time of global warming we are impelled by both the anticipated dire consequences and by scientific curiosity to investigate the factors that drive the climate. Climate has fluctuated strongly and abruptly in the past, with ice ages and interglacial warming as the long term extremes. Historical research in the last decades has shown short term climatic transients to be a frequent occurrence, often imposing disastrous hardship on the afflicted human populations. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Secondary Craters on Europa and Implications for Cratered Surfaces
Vol 437|20 October 2005|doi:10.1038/nature04069 LETTERS Secondary craters on Europa and implications for cratered surfaces Edward B. Bierhaus1, Clark R. Chapman2 & William J. Merline2 For several decades, most planetary researchers have regarded the craters were typically not spatially random, but instead appeared in impact crater populations on solid-surfaced planets and smaller clumps and clusters16 even at distances far (several hundred kilo- bodies as predominantly reflecting the direct (‘primary’) impacts metres) from the nearest large primary crater. This clustered spatial of asteroids and comets1. Estimates of the relative and absolute distribution contrasts with primary impacts, which are spatially ages of geological units on these objects have been based on this random. The low spatial density and unusual non-random spatial assumption2. Here we present an analysis of the comparatively distribution of Europa’s small craters enabled us to achieve what has sparse crater population on Jupiter’s icy moon Europa and suggest been previously difficult, namely unambiguous identification and that this assumption is incorrect for small craters. We find that quantification of the contribution of distant secondary craters to the ‘secondaries’ (craters formed by material ejected from large total crater SFD. This, in turn, allows us to re-examine the overall primary impact craters) comprise about 95 per cent of the small crater age-dating methodology. We discuss the specifics of the craters (diameters less than 1 km) on Europa. We therefore con- Europa data first. clude that large primary impacts into a solid surface (for example, We measured more than 17,000 craters in 87 low-compression, ice or rock) produce far more secondaries than previously low-sun, high-resolution Europa images (scales ,60 m pixel21), believed, implying that the small crater populations on the which cover nine regions totalling 0.2% of Europa’s surface (a much Moon, Mars and other large bodies must be dominated by larger percentage of Europa has been imaged at lower resolutions), secondaries. -
Smyth, Dawes, and Lassell
No. 2 An Independent Miscellany of Astronomy 26 October 2018 In Occasional Notes No. 1, my article on John Herschel inc- and I sometimes sense that I might be intruding in his priv- ludes letters written by his daughter Francisca. I also have ate affairs. Nevertheless, these letters were written more in my collections a large number of letters written by William than 150 years ago – a temporal distance sufficient to rem- Rutter Dawes, and letters and documents received by him. ove such impediment. With this in mind, a glimpse into this For the most part these do not concern scientific matters, correspondence is presented here. but instead provide an insight into the social affairs of a The second article in this issue is Part II of Alan Snook’s group of astronomers who remained close friends over a report on his restoration of a fine instrument manufactured period of half a century. When reading these letters I often by Rob and Jim Hysom. have to remind myself that I am holding the paper that Dawes held and wrote upon with the ink from his ink-well, Bob Marriott xxxxxx Smyth, Dawes, and Lassell In the first volume of the Royal Astronomical Soc- iety’s Monthly Notices, published in 1830, William Henry Smyth presented an account of the observ- atory that he had established in Bedford, including a description of his 5.9-inch Tulley refractor. ____________________________________________________________ The object-glass of the telescope is of 8½ feet focal 9 length, with a clear aperture of 5 /10 inches, work- ed by the late Mr.