Natural Antifouling Defences of Tropical Sea Stars

Total Page:16

File Type:pdf, Size:1020Kb

Natural Antifouling Defences of Tropical Sea Stars This file is part of the following reference: Guenther, Jana (2007) Natural antifouling defences of tropical sea stars. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/3223 Natural antifouling defences of tropical sea stars Thesis submitted by Jana Guenther BSc (Hons) October 2007 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University Statement of Access _______________________________________________ I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work. _____________________________________ ______________________ Signature Date ii Statement of Sources Declaration _______________________________________________ I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. _____________________________________ ______________________ Signature Date iii Electronic Copy _______________________________________________ I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available. _____________________________________ ______________________ Signature Date iv Statement on the Contribution of Others _______________________________________________ Financial support for this study was provided by the Australian Defence Science and Technology Organisation – Biomimetic Fouling Control Program, the School of Marine and Tropical Biology and the Graduate School of James Cook University, CRC Reef, AIMS@JCU and the Institute of Marine Engineering, Science and Technology. A James Cook University Postgraduate Research Scholarship provided stipend support. Alan Dartnall (James Cook University, Townsville), Genefor Walker-Smith (Tasmanian Museum and Art Gallery, Hobart) and Anders Warén (Swedish Museum of Natural History, Stockholm), assisted with the identification of the sea stars Astropecten velitaris and A. indicus, the surface-associated copepods Stellicola illgi and Paramolgus sp., and the eulimid Thyca (Granulithyca) nardoafrianti, respectively (Chapter 2). Kirsten Heimann (James Cook University, Townsville) supplied the chrysophyte alga Chrysocystis fragilis (Chapter 3). Alex Wu (University of New South Wales, Sydney) measured the contact angles of control surfaces using a goniometer (Chapter 4). Kathy Burns (Australian Institute of Marine Sciences, Townsville) assisted with gas chromatography – mass spectrometry (Chapter 5 and 6). v Acknowledgements _______________________________________________ Many wonderful people have supported me during this study and have therefore contributed to its success. Firstly, I would like to thank my supervisor Rocky de Nys. He has been an excellent supervisor. He readily discussed my work and provided valuable guidance throughout this study. His seemingly endless enthusiasm and motivation has often helped me keep going. I am very grateful to have been one of his students. My associate supervisor Tony Wright at the Australian Institute of Marine Science, Townsville, provided valuable advice on natural products chemistry. He has been very encouraging and reminded me to ‘keep things as simple as possible’. Thank you to all the members of the de Nys lab, especially Andrew Scardino, Raymond Bannister, Steve Whalan, Piers Ettinger-Epstein, Nick Paul and Michael Horne, who have made working in this lab very enjoyable. Thank you to all the members of the chemistry lab at the Australian Institute of Marine Sciences, Townsville. Jonathon Nielson, Marnie Freckelton, Piers Ettinger-Epstein, Cherie Motti and Rick Willis have given me advice on extractions, chromatography and analysis with nuclear magnetic resonance. Kathy Burns and Catherine Pratt have helped with the analysis of samples using gas chromatography, which was much appreciated. Bruce Bowden has helped with the oxidation of a sterol. Numerous people have helped with the collection of sea stars by SCUBA diving and snorkel, thank you to Raymond Bannister, Alicia Crawley, Clare Omodei, Cameron Crothers, Dominica Loong, Daniel Louden, Nick Paul, Andrew Scardino, Steve Whalan and the crown-of-thorns starfish control team (Association of Marine Park Tourism Operators), especially Craig Zytkow. Thank you also to the staff at the Marine and Aquaculture Research Facilities Unit and Lizard Island Research Station, who provided logistical help with maintaining sea stars in tanks. Genefor Walker-Smith at the Tasmanian Museum and Art Gallery, Hobart, Anders Waren at the Swedish Museum of Natural History, Stockholm, and Alan Dartnall at James Cook University have helped me with the taxonomic identification of some sea stars and surface-associated organisms. vi Thank you to Hua Zhang, Alex Wu and Tim Charlton at the University of New South Wales, Sydney, for their logistical help with contact angle measurements. Kevin Blake at the Advanced Analytical Centre was very helpful with the use of the scanning electron microscope. Rob Gegg at the workshop was also helpful with making PVC panels. Thank you to Kirsten Heimann and Stanley Hudson for supplying the alga Chrysocystis fragilis and Erika Martinez Fernandez and Megan Stride for advice on culturing microalgae. Megan Huggett at the University of Hawaii, Honolulu, has given me valuable advice on culturing Hydroides elegans larvae. Nick Paul and David Donald have helped with the statistical analyses, which was very much appreciated. I would like to thank Rachel James, Maya Holme, Malwine Lober and Kiki Tziouveli in the Aquaculture department as well as Tuyet-Nga Hua, Caroline Hay, Jessica Gautherot and Lauren Scardino for their friendship and support. Finally, I would like to thank my family. My fiancé Raymond Bannister has given me much love, understanding and encouragement. He has shared my joy and dried my tears – life is wonderful with you by my side! My parents, Joachim and Gisela Guenther, have always encouraged me to fulfil my ambitions in life and have strongly supported me during my tertiary studies in Australia. I would not have made it this far without my family, and I dedicate this thesis to them. vii Abstract _______________________________________________ Qualitative evidence suggests that sea stars have remarkably clean epidermal surfaces. To quantify surface-associated micro- and macroorganisms, field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons. Mean bacterial abundances on 7 sea star species were approximately 104 to 105 cells cm-2 during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. Low numbers of parasitic and commensal macroorganisms were found on 6 sea star species, and no common generalist macrofouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were discovered on any specimens. Sea stars therefore offered an excellent model to investigate the mechanisms driving fouling-resistant surfaces. Subsequently, 5 sea star species belonging to the order Valvatida were chosen for this study to investigate mechanical, physical and chemical fouling deterrence: Acanthaster planci (Family Acanthasteridae), Linckia laevigata and Fromia indica (both Family Ophidiasteridae), Cryptasterina pentagona (Family Asterinidae) and Archaster typicus (Family Archasteridae). It has been proposed that mechanical antifouling defence mechanisms of sea stars are linked with pedicellariae, which are pincer-like appendages made of calcareous ossicles. In this study, the role of pedicellariae of the sea star A. planci in fouling control was investigated. The morphology and distribution of its pedicellariae were measured to determine if larvae or propagules of fouling organisms could settle between pedicellariae without being in their physical range. The elementary and straight pedicellariae of A. planci had a mean length of 0.7 mm and a mean distance of 2.6 mm. The total number of pedicellariae was proportional to the estimated surface area of A. planci. To determine how pedicellariae respond to tactile stimulation, pedicellariae were stimulated by touching either inner, outer or basal sites of pedicellariae with a hypodermic needle. Pedicellariae closed rapidly on touch and closed for significantly longer when touched at their inner sites (8.9 s) than outer (6.7 s) and basal (7.9 s) sites. Settling larvae were simulated by dropping silica beads (size: 50.2 μm, 181.5 μm, 255.7 μm and 510.7 μm, density: 2.5 g ml-1) and zirconium/silica beads (size: 191.2 μm and 507.6 μm, density: 3.7 g ml-1) over the pedicellariae. The percentage of responding pedicellariae increased proportionally with increasing size of the silica beads. However, the percentage also increased when zirconium/silica beads of similar size but higher density were used, demonstrating that the mass, not size, of the beads was the main driving factor for
Recommended publications
  • Caenogastropoda Eulimidae) from the Western Iberian Peninsula
    Biodiversity Journal, 2021, 12 (2): 277–282, https://doi.org/10.31396/Biodiv.Jour.2021.12.2.277.282 https://zoobank.org:pub:AA55BDF3-1E5E-469D-84A8-5EC6A013150F A new minute eulimid (Caenogastropoda Eulimidae) from the western Iberian Peninsula Serge Gofas1 & Luigi Romani2* 1Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain,; e-mail: [email protected] 2Via delle ville 79, 55012 Capannori (Lucca), Italy; e-mail: [email protected] *Corresponding author ABSTRACT An enigmatic small-sized gastropod is recorded on few shells originating from the western Iberian Peninsula. It is assigned to the family Eulimidae relying on shell characters, and com- pared to species of several genera which share some morphological features with it. It is de- scribed as new and provisionally included in Chileutomia Tate et Cossmann, 1898, although with reservation, as we refrain to establish a new genus without anatomical and molecular data which can clarify the phylogenetic relationships of the new species. KEY WORDS Gastropoda; new species; NW Atlantic Ocean. Received 06.01.2020; accepted 28.02.2021; published online 12.04.2021 INTRODUCTION tematics and intra-familial relationships is at its very beginning, for instance the phylogenetic posi- The Eulimidae Philippi, 1853 are a species-rich tion of the Eulimidae within the Caenogastropoda taxon of marine snails, mostly parasitic of Echino- was assessed by molecular means only recently dermata (Warén, 1984). The family comprises (Takano & Kano, 2014), leading to consider them about one thousand recent valid species recognized as sister-group to the Vanikoridae (Bouchet et al., worldwide (MolluscaBase, 2021a), but a more re- 2017).
    [Show full text]
  • Neosmilaster Georgianus» from Anvers Island, Antarctica
    Costs of brood maintenance and development in the seastar Neosmilaster georgianus from Anvers Island, Antarctica MARC SLATrERY, Department of Biology, University ofAlabama, Birmingham, Alabama 35294 ISIDRO BOSCH, Department of Biology, State University of New York, Geneseo, New York 14454 arental investment of marine inver- ptebrates that protect their offspring through development to a juvenile 600 BW stage (that is, brooders) includes both direct and indirect energetic costs. 450 Direct costs, for instance, might include the energy initially allocated to eggs as provisional reserves for development 300 (Turner and Dearborn 1979) or to pro- duce larger juveniles (Lawrence, 150 McClintock, and Guille 1984). Indirect energy costs might include a reduced capacity to feed while holding a brood 0 or even starvation in cases where E females carry broods in their oral cavi- 1000 PC ties and are prevented from feeding 0 (Emlet, McEdward, and Strathmann 750 1987). 0 The total energy costs associated CL with brood protection will be related to 500 the duration of the brooding period. Slow developmental rates and pro- 250 longed periods of brood protection are E well-known characteristics of antarctic C) invertebrates (Pearse, McClintock, and 0 Bosch 1991). Therefore, a relatively high cost of reproduction might be 40 Fer expected in this fauna. The purpose of this study was to examine the costs of brooding and brood development in 30 the seastar, Neosmilaster georgianus. These large (having a radius of 51.4 20 centimeters) forcipulate asteroids are widespread in shallow subtidal com- 10 munities of the Antarctic Peninsula (Dearborn and Fell 1974). Neosmilaster georgian us exhibits reproductive asyn- 0 chrony within populations, an unusual 0 1 2 3 4 5 pseudocopulatory spawning behavior, Brood Stage and extended periods of brood protec- -0--ash tion during which the female is unable -0-- carbohydrate to feed (Slattery and Bosch in press).
    [Show full text]
  • W7192e19.Pdf
    click for previous page 952 Shrimps and Prawns Sicyoniidae SICYONIIDAE Rock shrimps iagnostic characters: Body generally Drobust, with shell very hard, of “stony” grooves appearance; abdomen often with deep grooves and numerous tubercles. Rostrum well developed and extending beyond eyes, always bearing more than 3 upper teeth (in- cluding those on carapace); base of eyestalk with styliform projection on inner surface, but without tubercle on inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. 1 Carapace lacks both postorbital and postantennal spines, cervical groove in- distinct or absent. Exopod present only on first maxilliped. All 5 pairs of legs well devel- 2 oped, fourth leg bearing a single well-devel- 3rd and 4th pleopods 4 single-branched oped arthrobranch (hidden beneath 3 carapace). In males, endopod of second pair 5 of pleopods (abdominal appendages) with appendix masculina only. Third and fourth pleopods single-branched. Telson generally armed with a pair of fixed lateral spines. Colour: body colour varies from dark brown to reddish; often with distinct spots or colour markings on carapace and/or abdomen - such colour markings are specific and very useful in distinguishing the species. Habitat, biology, and fisheries: All members of this family are marine and can be found from shallow to deep waters (to depths of more than 400 m). They are all benthic and occur on both soft and hard bottoms. Their sizes are generally small, about 2 to 8 cm, but some species can reach a body length over 15 cm. The sexes are easily distinguished by the presence of a large copulatory organ (petasma) on the first pair of pleopods of males, while the females have the posterior thoracic sternites modified into a large sperm receptacle process (thelycum) which holds the spermatophores or sperm sacs (usually whitish or yellowish in colour) after mating.
    [Show full text]
  • Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
    Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement.
    [Show full text]
  • Bulletin of the United States Fish Commission
    CONTRIBUTIONS FROM THE BIOLOGICAL LABORATORY OF THE U. S. FISH COMMISSION AT WOODS HOLE, MASSACHUSETTS. THE ECHINODERMS OE THE WOODS HOLE REGION. BY HUBERT LYMAN CLARK, Professor of Biology Olivet College .. , F. C. B. 1902—35 545 G’G-HTEMrS. Page. Echinoidea: Page. Introduction 547-550 Key to the species 562 Key to the classes 551 Arbacia punctlilata 563 Asteroidea: Strongylocentrotus drbbachiensis 563 Key to the species 552 Echinaiachnius parma 564 Asterias forbesi 552 Mellita pentapora 565 Asterias vulgaris 553 Holothurioidea: Asterias tenera 554 Key to the species 566 Asterias austera 555 Cucumaria frondosa 566 Cribrella sanguinolenta 555 Cucumaria plulcherrkna 567 Solaster endeca 556 Thyone briareus 567 Ophiuroidea: Thyone scabra 568 Key to the species 558 Thyone unisemita 569 Ophiura brevi&pina 558 Caudina arenata 569 Ophioglypha robusta 558 Trocliostoma oolitieum 570 Ophiopholis aculeata 559 Synapta inhaerens 571 Amphipholi.s squamata 560 Synapta roseola 571 _ Gorgonocephalus agassizii , 561 Bibliography 572-574 546 THE ECHINODERMS OF THE WOODS HOLE REGION. By HUBERT LYMAN CLARK, Professor of Biology , Olivet College. As used in this report, the Woods Hole region includes that part of I he New England coast easily accessible in one-day excursions by steamer from the U. S. Fish Commission station at Woods Hole, Mass. The northern point of Cape Cod is the limit in one direction, and New London, Conn., is the opposite extreme. Seaward the region would naturally extend to about the 100- fathom line, but for the purposes of this report the 50-fathom line has been taken as the limit, the reason for this being that as the Gulf Stream is approached we meet with an echinodcrm fauna so totally different from that along shore that the two have little in common.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • Guam Crown-Of-Thorns Outbreak Response Plan December 2017 Guam COTS Outbreak Response Plan 1
    Guam Crown-of-Thorns Outbreak Response Plan December 2017 Guam COTS Outbreak Response Plan 1 Overview The Guam Crown-of-Thorns sea star (COTS) Outbreak Response Plan was DevelopeD collaboratively by multiple local anD feDeral agencies, incluDing the Bureau of Statistics anD Plans (BSP) anD the Guam Coastal Management Program (GCMP), the Guam Department of Agriculture’s (GDOAG) Division of Aquatic anD WilDlife Resources (DAWR), the Guam Environmental Protection Agency (GEPA), the University of Guam Marine Laboratory (UOGML), the National Oceanic anD Atmospheric Association (NOAA), the National Park Service (NPS), Joint Region Marianas (JRM), anD the U.S. Fish & WilDlife Service (USFWS). The COTS Outbreak Response Plan exists to maximize effectiveness of activities conDucted by the Guam Coral Reef Response Team anD ensure efficient use of resources anD human capital by proviDing a stanDarDizeD framework for responDing to COTS outbreaks. This Document, designed as a working draft that will be continuously updated, includes an in-depth description of Guam’s early warning system for COTS outbreaks, stanDarD operating procedures for response implementation incluDing Detailed assessment anD mitigation protocols, anD recommenDations for post-outbreak management, reef recovery, and restoration approaches. This Document is intenDed for use by coral reef managers anD scientists on Guam, but may also be useful to inDividuals anD groups in other locations impacteD by COTS outbreaks, especially those who are interesteD in Developing COTS outbreak response plans. Objectives of the Guam COTS Response Plan: 1. Summarize impacts of past COTS outbreaks on Guam. 2. ProviDe up-to-date standard operating procedures to be followed before, during, and after COTS outbreaks, including lists of agency assets anD necessary supplies anD Delineation of agency roles.
    [Show full text]
  • Observations on the Gorgonian Coral Primnoa Pacifica at the Knight Inlet Sill, British Columbia 2008 to 2013
    Observations on the Gorgonian Coral Primnoa pacifica at the Knight Inlet sill, British Columbia 2008 to 2013 By Neil McDaniel1 and Doug Swanston2 May 1, 2013 Background The fjords of British Columbia are glacially-carved troughs that snake their way through the coastal mountains, attaining depths as great as 760 m. Knight Inlet is especially long, extending 120 km northeast from an entrance located 240 km northwest of Vancouver, near the north end of Vancouver Island. Despite a maximum depth of 540 m it has a relatively shallow sill lying between Hoeya Head and Prominent Point with a maximum depth of only 65 m. Due to the shallow nature of the sill, tidal currents frequently exceed 0.5 m/second. ____________________ 1 [email protected] 2 [email protected] 1 The site has been of particular interest to oceanographers as the classical shape of this sill results in the presence of internal gravity waves and other interesting hydraulic phenomena (Thompson, 1981). As a result, university and federal government scientists have undertaken a number of oceanographic surveys of these features. In the early 1980s researchers surveying the depths of Knight Inlet with the submersible Pisces IV encountered large fans of gorgonian coral on the flanks of the sill at depths of 65 to 200 m (Tunnicliffe and Syvitski, 1983). Boulders of various sizes were found scattered over the sill, many colonized by impressive fans of Primnoa, the largest 3 m across. The fact that this gorgonian coral was present was noteworthy, but the scientists observed something else extremely curious. Behind some of the boulders were long drag marks, evidence that when the coral fan on a particular boulder became big enough it acted like a sail in the tidal currents.
    [Show full text]
  • Ecological Assessment of the Flora and Fauna of Point Lookout Dive Sites North Stradbroke Island, QLD Australia
    Ecological Assessment of the Flora and Fauna of Point Lookout Dive Sites North Stradbroke Island, QLD Australia Authors Chris Roelfsema, Ruth Thurstan, Jason Flower, Maria Beger, Michele Gallo, Jennifer Loder, Eva Kovacs, K-le Gomez Cabrera, Alexandra Lea, Juan Ortiz, Dunia Brunner, and Diana Kleine Ecological Assessment of the Flora and Fauna of Point Lookout Dive Sites, North Stradbroke Island, Queensland. Final Report This report should be cited as: Roelfsema C., R. Thurstan, J. Flower, M. Beger, M. Gallo, J. Loder, E. Kovacs, K. Gomez Cabrera, A. Lea, J. Ortiz, D. Brunner, and D. Kleine (2014). Ecological Assessment of the Flora and Fauna of Point Lookout Dive Sites, North Stradbroke Island, Queensland., UniDive, The University of Queensland Underwater Club, Brisbane, Australia. The views and interpretation expressed in this report are those of the authors and not necessarily those of contributing agencies and organisations. UniDive PLEA Final Report 12/12/2014 1 | Page UniDive PLEA Final Report 12/12/2014 2 | Page I see a majestic gliding turtle Like a bird of the ocean Go past colourful stinging coral The slimy fish like darts Miniscule bubbles rising fast That are like ocean toys I hear colossal waves forming A front flip splashing, shrill, bulking dolphin Diving through the salt water, croaking calmly A poem by Felix Pheasant 8 years old, the youngest PLEA participant to join us during the survey weekends.. This Report will give him a chance to enjoy “Straddie” as much as the volunteers did. UniDive PLEA Final Report 12/12/2014 3 | Page Table of Contents Table of Contents 4 List of Figures 5 List of Tables 6 List of Appendices 6 Acknowledgements 7 Core PLEA divers during training weekend in January and March 2014.
    [Show full text]
  • BULLETIN of the BRITISH MUSEUM (NATURAL HISTORY) ZOOLOGY Vol
    NOTES ON ASTEROIDS IN THE BRITISH MUSEUM (NATURAL HISTORY) V. NARDOA AND SOME OTHER OPHIDIASTERIDS BY AILSA MCGOWN CLARK >c British Museum (Natural History) 6 Plates Pp. 167-198 ; BULLETIN OF THE BRITISH MUSEUM (NATURAL HISTORY) ZOOLOGY Vol. 15 No. 4 LONDON: 1967 THE BULLETIN OF THE BRITISH MUSEUM (NATURAL HISTORY), instituted, in 1949, is issued in five series corresponding to the Departments of the Museum, and an Historical series. Parts will appear at irregular intervals as they become ready. Volumes will contain about three or four hundred pages, and will not necessarily be completed within one calendar year. In 1965 a separate supplementary series of longer papers was instituted, numbered serially for each Department. This paper is Vol. 15, No. 4 of the Zoological series. The abbreviated titles of periodicals cited follow those of the World List of Scientific Periodicals. World List abbreviation : Bull. Br. Mus. not. Hist. (Zool.) Trustees of the British Museum (Natural History) 1967 TRUSTEES OF THE BRITISH MUSEUM (NATURAL HISTORY) Issued 24 February, 1967 Price NOTES ON ASTEROIDS IN THE BRITISH MUSEUM (NATURAL HISTORY) V. NARDOA AND SOME OTHER OPHIDIASTERIDS By AILSA McGOWN CLARK THE present study includes notes on the provenance of Nardoa variolata (Lamarck) the type-species of Nardoa, details of the true holotype of N. gomophia (Perrier), description of a new species from northern Australia and a discussion of the remain- ing species of the genus coupled with notes on the validity of the monotypic Gomo- phia, a new subspecies of which is described. In the course of this, the following conclusions are reached : Ophidiaster watsoni Livingstone (1936) is referred to Gomophia and is probably conspecific with G.
    [Show full text]
  • Assessment of Marine Resources in the University of Eastern Philippines, Catarman, Northern Samar
    International Conference on Emerging Trends in Computer and Image Processing (ICETCIP'2014) Dec. 15-16, 2014 Pattaya (Thailand) Assessment of Marine Resources in the University of Eastern Philippines, Catarman, Northern Samar Divina M. Galenzoga, and Geraldine A. Quinones Part of the coastline of UEP, where there is fine white sand Abstract—This study aimed to assess the marine resources of and panoramic view of the Pacific Ocean, is developed. It is the University in terms of the following: algae, birds,corals, made into UEP White Beach Resort. Local and foreign crustaceans, echinoderms, fishes, mangroves, molluscs, seagrasses, tourists, faculty members, and students are welcomed to the and sponges; determine their abundance and distribution; determine resort. The resort is located near the exit gate (landmark) of the environmental parameters, ie. pH, current, temperature, salinity the University. The part of the coastline which is not and substrate; and determine their economic uses. The study was developed lay the mangrove areas, the coralline seashore, and conducted during the first semester SY 2014-2015 (June-October, 2014). There were 18 species of algae, 7 species of birds, 10 species the fishing ground of the people. The coastline runs around of corals, 17 species of crustaceans, 16 species of echinoderms, 10 5km parallel to the National Highway species of fishes, 20 species of mangroves, 27 species of molluscs, 7 species of seagrasses, and 2 species of sponges. Most abundant alga II. OBJECTIVES - Sargassum cristaefolium; bird -Egretta sacra; coral - Porite slutea; The objectives of this study are: crustacean - Pagurus longicarpus; echinoderm- Archaster rtypicus; 1. To identify the marine resources of a University Town fish – Siganus virgatus; mangrove - Rhizophora apiculata; mollusk – Cypraea moneta; seagrass – Thalassia hemprechii; and sponge- in terms of: algae, birds, corals, crustaceans, Halichondria panicea.
    [Show full text]
  • PREFERENSI HABITAT BINTANG LAUT (Asteroidea) DI PADANG LAMUN PERAIRAN DESA LANGARA BAJO, KONAWE KEPULAUAN
    Sapa Laut Februari 2019. Vol. 4(1): 23-29 E- ISSN 2503-0396 PREFERENSI HABITAT BINTANG LAUT (Asteroidea) DI PADANG LAMUN PERAIRAN DESA LANGARA BAJO, KONAWE KEPULAUAN Habitat Preference Of Sea Star (Asteroidea) In Seagrass Beds in The Langara Bajo Waters Konawe Islands Nur Alfatmadina1, Ira2, La Ode Muhammad Yasir Haya3 1,2,3 Jurusan Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Halu Oleo. Jl. H.E.A Mokodompit Kampus Hijau Bumi Tridharma Anduonohu Kendari 93232 1Email: [email protected] Abstrak Bintang laut merupakan salah satu kelompok hewan dalam Filum Echinodermata yang ditemukan hampir di semua perairan di Indonesia. Bintang laut biasanya ditemukan pada ekosistem yang ada di pesisir, termasuk ekosistem lamun. Lamun merupakan tempat bagi sebagian besar organisme khususnya bintang laut untuk mencari makan, berpijah dan tempat berlindung dari predator. Perbedaan pemilihan habitat pada organisme biasanya disebabkan oleh faktor internal (genetik) dan eksternal (kemampuan adaptasi dengan lingkungannya). Tujuan dari penelitian ini adalah untuk mengetahui jenis dan kepadatan bintang laut dan lamun di Perairan Desa Langara Bajo berdasarkan jenis substratnya. Penelitian ini dilaksanakan pada bulan April-Juni 2018 di perairan Desa Langara Bajo Konawe Kepulauan. Pengambilan data dilakukan dengan menggunakan metode transek kuadrat sebanyak tiga kali pengulangan pada sertiap stasiun pengamatan.Penelitian ini menemukan tiga jenis bintang laut, yaitu Protoreaster nodosus, Linckia laevigata dan Archaster typicus dengan kepadatan berkisar 1.63-2 ind/m2. Jenis lamun yang ditemukan berasal dari jenis Enhalus acoroides dengan kepadatan berkisar 189.7-589.7 tegakan/m2. Jenis bintang laut P.nodosus banyak ditemukan di stasiun yang kerapatan lamunnya tinggi denan substrat berpasir, sedangkan jenis A.
    [Show full text]