Genetic Population Structures of the Blue Starfish Linckia Laevigata and Its Gastropod Ectoparasite Thyca Crystallina

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Population Structures of the Blue Starfish Linckia Laevigata and Its Gastropod Ectoparasite Thyca Crystallina Vol. 396: 211–219, 2009 MARINE ECOLOGY PROGRESS SERIES Published December 9 doi: 10.3354/meps08281 Mar Ecol Prog Ser Contribution to the Theme Section ‘Marine biodiversity: current understanding and future research’ OPENPEN ACCESSCCESS Genetic population structures of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina M. Kochzius1,*,**, C. Seidel1, 2, J. Hauschild1, 3, S. Kirchhoff1, P. Mester1, I. Meyer-Wachsmuth1, A. Nuryanto1, 4, J. Timm1 1Biotechnology and Molecular Genetics, FB2-UFT, University of Bremen, Leobenerstrasse UFT, 28359 Bremen, Germany 2Present address: Insitute of Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany 3Present address: Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Institut für Nutztiergenetik, Höltystrasse 10, 31535 Neustadt, Germany 4Present address: Faculty of Biology, Jenderal Soedirman University, Dr. Suparno Street, Purwokerto 53122, Indonesia ABSTRACT: Comparative analyses of the genetic population structure of hosts and parasites can be useful to elucidate factors that influence dispersal, because common ecological and evolutionary processes can lead to congruent patterns. We studied the comparative genetic population structure based on partial sequences of the mitochondrial cytochrome oxidase I gene of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina in order to elucidate evolutionary processes in the Indo-Malay Archipelago. AMOVA revealed a low fixation index but significant φ genetic population structure ( ST = 0.03) in L. laevigata, whereas T. crystallina showed panmixing φ ( ST = 0.005). According to a hierarchical AMOVA, the populations of L. laevigata could be assigned to the following groups: (1) Eastern Indian Ocean, (2) central Indo-Malay Archipelago and (3) West- ern Pacific. This pattern of a genetic break in L. laevigata between the Indian and Pacific Ocean, con- gruent to studies on other marine species in the Indo-Malay Archipelago, is likely due to allopatry caused by Pliocene and Pleistocene glacial sea level low stands. KEY WORDS: COI · Coral Triangle · Coral reef · Phylogeography · Population expansion · Southeast Asia Resale or republication not permitted without written consent of the publisher INTRODUCTION Warén 1980, Janssen 1985), which penetrates the radial hemal and perihemal system of L. laevigata with Comparative analyses of the genetic population its proboscis to obtain nutrients (Egloff et al. 1988). structure of a host and its parasite can be used to eluci- T. crystallina seems to be co-distributed with its host, date factors that influence dispersal (Criscione 2008), ranging from the Western Indian Ocean across the because common ecological and evolutionary pro- Indo-Malay Archipelago and northeastern Australia to cesses can lead to congruent patterns (Bermingham & Samoa and Fiji (Sloan et al. 1979, Warén 1980). Infec- Moritz 1998, Avise 2000). The blue starfish Linckia tion rates of L. laevigata with T. crystallina vary among laevigata (Ophidiasteridea; Chao 1999) is widely dis- populations, ranging from 14.3% in Fiji (Egloff et al. tributed on Indo-Pacific coral reefs, from the Western 1988), 15.7% (Troncoso & Van Goethem 1998) and Indian Ocean across the Indo-Malay Archipelago to 22.3% (Bouillon & Jangoux 1984) in eastern New southeastern Polynesia (Yamaguchi 1977). It is fre- Guinea to 62.0% in the Moluccas (Elder 1979). quently parasitised by the obligate and strictly specific Here we compare the genetic population structure ectoparasitic gastropod Thyca crystallina (Eulimidae; of the host Linckia laevigata and its parasite Thyca **Email: [email protected] © Inter-Research 2009 · www.int-res.com **All authors except M.K. and C.S. are in alphabetical order 212 Mar Ecol Prog Ser 396: 211–219, 2009 crystallina in the Indo-Malay Archipelago. This highly MATERIALS AND METHODS dynamic region in terms of biodiversity, ecology, geo- logy and oceanography is the centre of marine shal- Sampling. Tissue samples from 270 specimens of the low water biodiversity (Briggs 1999, Hoeksema 2007). blue starfish Linckia laevigata and 324 specimens of its Molecular phylogenetic studies have shown a break ectoparasite, the snail Thyca crystallina, were col- between the Indian and Pacific Oceans, e.g. in lion- lected during several field trips from 2004 to 2007 at fishes (Kochzius et al. 2003), clownfishes (Timm et al. 24 sample sites across the Indo-Malay Archipelago 2008), and damselfishes (Froukh & Kochzius 2008). (Fig. 1A,C, Table 1). Several colour morphs of L. laevi- Additionally, a growing number of population genetic gata are known, such as blue, orange, green, and studies in the Indo-Malay Archipelago show a com- violet. Since genetic studies indicated that colour plex pattern of divergent lineages and restricted gene variation is congruent to genetic variation (Williams & flow, e.g. in a clownfish (Timm & Kochzius 2008), Benzie 1998) and that species boundaries in Linckia giant clams (Kochzius & Nuryanto 2008, Nuryanto & are difficult to define (Williams 2000), only blue colour Kochzius 2009), and a mushroom coral (Knittweis et morphs were analysed. Tissue samples were preserved al. 2009). in >96% ethanol and later stored at 4°C. Plate tectonic movements in the Indo-Malay Archi- DNA extraction, amplification and sequencing. pelago and global fluctuation of sea level during multi- Extraction of genomic DNA from both species was ple Pliocene and Pleistocene glaciations are the pri- done with the Chelex method, following the protocol of mary hypothesised triggers for this genetic separation Walsh et al. (1991). A fragment of the mitochondrial of the 2 ocean basins. Most of the islands in the Indo- COI gene was used for both species as molecular Malay Archipelago did not exist or were not at their marker and amplified with the primers from Folmer et current position about 30 million years ago. During al. (1994). PCR was conducted in a volume of 50 µl and that time, water masses of the Pacific South Equatorial contained 2 µl DNA template, 10 mM Tris-HCl (pH 9), Current (SEC) entered the Indian Ocean via the so- 50 mM KCl, 4 mM MgCl2, 0.4 µM of each primer, called Indonesian seaway. This current pattern started 0.2 mM dNTPs, 2 µl BSA (2 mg/ml) and 1 U Taq poly- to change about 25 million years ago, due to the devel- merase. The following temperature profile was used opment of Sulawesi by the amalgamation of several for the PCR: 94°C for 5 min, followed by 35 cycles of fragments and the northward movement of New 1 min at 94°C, 1.5 min at 45°C and 1 min at 72°C. Final Guinea, the Bird’s Head Peninsula, and Australia (Hall extension was conducted at 72°C for 5 min. The PCR 1998). The Indonesian seaway was finally closed about products were purified using the QIAquick spin col- 5 million years ago by the northward displacement of umn PCR purification kit (Qiagen), following the New Guinea (Cane & Molnar 2001). Since then, the manufacturer’s protocol. Sequencing was done using major exchange of water masses between the 2 oceans the DyeDeoxy terminator chemistry (PE Biosystem) has been facilitated by the Indonesian throughflow and an automated sequencer (ABI PRISM 310 and (ITF), which originates from the northern Pacific (Gor- 3100, Applied Biosystems). New primers were de- don & Fine 1996, Gordon 2005). signed for cycle sequencing in Linckia laevigata Additionally, multiple glaciations in the Pliocene and (Linckia Seq Frw [forward]: 5’-AAA ATC AGA ATA Pleistocene caused global fluctuations in sea level with AGT GCT GGA-3’; Linckia Seq Rev [reverse]: 5’-TTT low stands of up to 120 m below present sea level GGA GCT TGA GCT GGA ATG-3’) and Thyca crystal- (Krantz 1991, Rohling et al. 1998, Siddall et al. 2003). lina (Thyca Seq Frw [forward]: 5’-TAT TGT AAC TGC Shallow shelf areas such as the Sunda shelf were TCA TGC TTT TG-3’). exposed, and ocean basins were separated (Voris 2000; Genetic diversity. Sequences were edited with the Fig. 1). Molecular clock estimates support the view of programmes Sequence Navigator (version 1.0.1, allopatric speciation in separate ocean basins during Applied Biosystems) or Seqman (version 4.05, DNAS- the Pliocene and Pleistocene in some species (Kochzius tar). They were translated to amino acids with the et al. 2003, Timm et al. 2008). program Bioedit (version 7.0.9.0, Hall 1999) in order The present study aims to elucidate if common eco- to exclude mistakes in sequencing and to verify if a logical and evolutionary processes lead to congruence functional mitochondrial DNA sequence was obtained in the genetic structure of Linckia laevigata and Thyca and not a nuclear pseudogene. Multiple alignment crystallina populations from the Indo-Malay Archipel- was done using Clustal W (Thompson et al. 1994) as ago. The genetic marker used for both species in the implemented in the software Bioedit. Haplotype present study is the cytochrome c oxidase I gene (COI), diversity h (Nei 1987) and nucleotide diversity (Nei & which is suitable to investigate the genetic population Jin 1989) were calculated with the programme structure of starfishes (e.g. Harley et al. 2006) and Arlequin (http://cmpg.unibe.ch/software/arlequin3, snails (e.g. Reid et al. 2006). version 3.11; Excoffier et al. 2005). Linckia laevigata Thyca crystallina A C Ce AS Mindanao Mindanao Eddy Eddy BI NECC BI NECC KK ITF NB ITF Sa Ma LS Halmahera Sa Ma LS Halmahera Eddy Eddy SEC SEC Borneo TI Borneo TI N Maluku Mi Bk N Maluku Bk Lu Sea Pi Lu Sea Do Do Mi Sumatra Sulawesi Ke New Sumatra Sulawesi Ke New PS Sp Guinea PS Sp Guinea Kochzius etal.:Geneticstructure ofhostandectoparasite SSP Se SSP Banda Banda Ka Bi Ka Bi Sea Sea Java ITF Java ITF ITF ITF Ko Ku Ko Ku imor 0 Sumba T 0 Ba Sumba Timor ITF ITF B D Fig. 1. Linckia laevigata (A, B) and Thyca crystallina (C, D). (A, C) Indo-Malay Archipelago with sample sites (for abbreviations see Table 1) as well as oceanographic pat- terns with dominant (solid lines) and seasonally changing (dashed lines) currents (Wyrtki 1961, Gordon & Fine 1996, Gordon 2005).
Recommended publications
  • Caenogastropoda Eulimidae) from the Western Iberian Peninsula
    Biodiversity Journal, 2021, 12 (2): 277–282, https://doi.org/10.31396/Biodiv.Jour.2021.12.2.277.282 https://zoobank.org:pub:AA55BDF3-1E5E-469D-84A8-5EC6A013150F A new minute eulimid (Caenogastropoda Eulimidae) from the western Iberian Peninsula Serge Gofas1 & Luigi Romani2* 1Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain,; e-mail: [email protected] 2Via delle ville 79, 55012 Capannori (Lucca), Italy; e-mail: [email protected] *Corresponding author ABSTRACT An enigmatic small-sized gastropod is recorded on few shells originating from the western Iberian Peninsula. It is assigned to the family Eulimidae relying on shell characters, and com- pared to species of several genera which share some morphological features with it. It is de- scribed as new and provisionally included in Chileutomia Tate et Cossmann, 1898, although with reservation, as we refrain to establish a new genus without anatomical and molecular data which can clarify the phylogenetic relationships of the new species. KEY WORDS Gastropoda; new species; NW Atlantic Ocean. Received 06.01.2020; accepted 28.02.2021; published online 12.04.2021 INTRODUCTION tematics and intra-familial relationships is at its very beginning, for instance the phylogenetic posi- The Eulimidae Philippi, 1853 are a species-rich tion of the Eulimidae within the Caenogastropoda taxon of marine snails, mostly parasitic of Echino- was assessed by molecular means only recently dermata (Warén, 1984). The family comprises (Takano & Kano, 2014), leading to consider them about one thousand recent valid species recognized as sister-group to the Vanikoridae (Bouchet et al., worldwide (MolluscaBase, 2021a), but a more re- 2017).
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
    UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene.
    [Show full text]
  • Gastropoda: Caenogastropoda: Eulimidae) from Japan, with a Revised Diagnosis of the Genus
    VENUS 78 (3–4): 71–85, 2020 ©The Malacological Society of Japan DOI: http://doi.org/10.18941/venus.78.3-4_71Three New Species of Hemiliostraca September 25, 202071 Three New Species of Hemiliostraca and a Redescription of H. conspurcata (Gastropoda: Caenogastropoda: Eulimidae) from Japan, with a Revised Diagnosis of the Genus Haruna Matsuda1*, Daisuke Uyeno2 and Kazuya Nagasawa3 1Center for Faculty-wide General Education, Shikoku University, 123-1, Ebisuno, Furukawa, Ojin-cho, Tokushima-shi, Tokushima 771-1192, Japan 2Graduate School of Science and Engineering, Kagoshima University, 1-21-35, Korimoto, Kagoshima 890-0065, Japan 3Aquaparasitology Laboratory, 365-61 Kusanagi, Shizuoka 424-0886, Japan Abstract: Three new species of the eulimid gastropod genus Hemiliostraca Pilsbry, 1917, i.e., H. capreolus n. sp., H. tenuis n. sp., and H. maculata n. sp., are described and H. conspurcata (A. Adams, 1863) is redescribed based on newly obtained material from Japan. The diagnosis of the genus is also revised. Hemiliostraca capreolus n. sp. was previously misidentied as H. samoensis in museum collections and in literature. This new species was collected from Okinawa-jima Island and Amami-Oshima Island, southern Japan, and can be distinguished from H. samoensis by its distinct color patterns and markings. A recently collected specimen from an unidentied species of ophiuroid from Wakayama Prefecture, central Japan, is herein conrmed to be identiable with H. conspurcata, which has not been recorded since its originally description from central Japan in 1863. Hemiliostraca tenuis n. sp. was collected from an unidentied species of sponge and the ophiuroid Ophiarachnella septemspinosa from Kume-jima Island, southern Japan.
    [Show full text]
  • Part 5 DIGITAL IMAGES by the AUTHOR
    Friend or Foe Friend or FoeTRISTAN LOUGHER B.Sc. graduated from Manchester University in 1992 with a degree in Zoology. He has worked at Cheshire Waterlife for five years. Part 5 DIGITAL IMAGES BY THE AUTHOR n the previous Friend or Foe article we Order : Mesogastropoda little harm to its host so an argument could began looking at the Molluscs that are Sub-order : Ptenoglossa be made for leaving it alone. After all, Ifrequently imported along with live Family : Thycidae many will never be spotted on seemingly rock and corals with particular attention Common name : None healthy starfish anyway! being given to the gastropods – i.e. slugs and snails. This article will continue that If you can spot this snail then you really do Sub-order : Ptenoglossa theme as there are so many different have excellent vision. The fascinating Family : Epitoniidae species worthy of a mention that 3000 Thyca crystallina lives as a parasite on Common name : Wentletraps words wasn’t enough! Finally, we will look starfish from the Genus Linckia ( Blue at the other molluscan group regularly starfish – see figure 22). Unfortunately, at the time of this article encountered in reef aquaria – the Bivalves. The snail actually looks like one half going to press I do not have any images of These include the popular clams and of a cockle shell and the fact that its this snail available. Wentletraps are scallops. brilliant blue colouration almost exactly potentially very serious predators of hard mirrors that of its host means it can be very corals in particular and may arrive in Order : Allogastropoda difficult to locate even when you are association with the corals upon which they Family : Architectonicidae looking for it! The animal feeds exclusively feed.
    [Show full text]
  • SEASMART Program Final Report Annex
    Creating a Sustainable, Equitable & Affordable Marine Aquarium Industry in Papua New Guinea | 1 Table of Contents Executive Summary ............................................................................................................ 7 Introduction ....................................................................................................................... 15 Contract Deliverables ........................................................................................................ 21 Overview of PNG in the Marine Aquarium Trade ............................................................. 23 History of the Global Marine Aquarium Trade & PNG ............................................ 23 Extent of the Global Marine Aquarium Trade .......................................................... 25 Brief History of Two Other Coastal Fisheries in PNG ............................................ 25 Destructive Potential of an Inequitable, Poorly Monitored & Managed Nature of the Trade Marine Aquarium Fishery in PNG ........................... 26 Benefit Potential of a Well Monitored & Branded Marine Aquarium Trade (and Other Artisanal Fisheries) in PNG ................................................................... 27 PNG Way to Best Business Practice & the Need for Effective Branding .............. 29 Economic & Environmental Benefits....................................................................... 30 Competitive Advantages of PNG in the Marine Aquarium Trade ................................... 32 Pristine Marine
    [Show full text]
  • Illustration De Vitreolina Philippi (Ponzi, De Rayneval & Van Den Hecke, 1854) Sur Paracentrotus Lividus (Lamarck, 1816) À
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive NOVAPEX / Société 10(3), 10 octobre 2009 99 Illustration de Vitreolina philippi (Ponzi, de Rayneval & Van den Hecke, 1854) sur Paracentrotus lividus (Lamarck, 1816) à Chypre Nord Christiane DELONGUEVILLE Avenue Den Doorn, 5 – B - 1180 Bruxelles - [email protected] Roland SCAILLET Avenue Franz Guillaume, 63 – B - 1140 Bruxelles - [email protected] MOTS-CLEFS Chypre Nord, Eulimidae, Vitreolina philippi , Echinidae, Paracentrotus lividus , Association KEY-WORDS North Cyprus, Eulimidae, Vitreolina philippi , Echinidae, Paracentrotus lividus , Association RÉSUMÉ Un spécimen de Paracentrotus lividus (Echinidae) portait sur le test, entre les épines et parmi les pédicellaires, vingt et un spécimens d’un gastéropode parasite, Vitreolina philippi (Eulimidae). Le matériel a été récolté par un pêcheur par une dizaine de mètres de fond, au large de Bogaz, petit port de pêche sur la côte Est de Chypre Nord. ABSTRACT A specimen of Paracentrotus lividus (Echinidae) had on its test, between spines and among pedicellariae, twenty one specimens of a parasitic gastropod, Vitreolina philippi (Eulimidae). The material was collected by a fisherman, at a depth of about ten meters, off Bogaz, little fishing harbour along the Eastern coast of North Cyprus. INTRODUCTION Vitreolina philippi (Ponzi, de Rayneval & Van den Hecke, 1854) est un Eulimidae parasite d’oursins réguliers et d’ophiurides. On signale sa présence notamment sur Paracentrotus lividus (Lamarck, 1816), Arbacia lixula (Linnaeus, 1758), Sphaerechinus granularis (Lamarck, 1816), Centrostephanus longispinus (Philippi, 1845) et sur Psammechinus microtuberculatus (Blainville, 1825) (Oliverio et al. 1994). L’espèce est commune tant en Méditerranée que sur la façade atlantique de l’Europe, de la Norvège aux Iles Canaries (Rodríguez et al.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • Quaternary Micromolluscan Fuana of the Mudlump Province, Mississippi River Delta
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 Quaternary Micromolluscan Fuana of the Mudlump Province, Mississippi River Delta. James Xavier Corgan Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Corgan, James Xavier, "Quaternary Micromolluscan Fuana of the Mudlump Province, Mississippi River Delta." (1967). LSU Historical Dissertations and Theses. 1286. https://digitalcommons.lsu.edu/gradschool_disstheses/1286 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. I This dissertation has been microfilmed exactly aa received CORGAN, James Xavier, 1930- QUATERNARY MICROMOLLUSCAN FAUNA OF THE MUDLUMP PROVINCE, MISSISSIPPI RIVER DELTA. Louisiana State University and Agricultural and Mechanical College, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan JAMES XAVIER CQRGAN 1Q£7 All Rights Reserved QUATERNARY MICROMOLLUSC AN FAUNA OF THE MUDLUMP PROVINCE, MISSISSIPPI RIVER DELTA A Dissertation Submitted to the Graduate Faculty of Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology James X^Corgan B.A., New York University, 1955 M.A., Columbia University, 1957 June, 1967 ACKNOWLEDGMENTS Continuing aid and encouragement from Dr. Alan H. Cheetham and Dr. James P. Morgan made th is dissertation possible. Research was directed by Dr. Cheetham and essentially completed during his tenure as Associate Professor of Geology, Louisiana State University.
    [Show full text]
  • Check List and Authors Chec List Open Access | Freely Available at Journal of Species Lists and Distribution
    ISSN 1809-127X (online edition) © 2011 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution N Gastropoda, Caenogastropoda, Eulimidae, Annulobalcis aurisflamma Simone and Martins, 1995: First record to ISTRIBUTIO northeastern Brazil D 1* 1 2 1 1 RAPHIC Vinicius Queiroz , Licia Sales , Cláudio L. S. Sampaio , Elizabeth G. Neves and Rodrigo Johnsson G EO G N O 1 Universidade Federal da Bahia, Instituto de Biologia, Departamento de Zoologia. Avenida Adhemar de Barros s/nº, Campus Ondina. CEP 40170- 290. Salvador, BA, Brazil. OTES 2 Universidade Federal de Alagoas, Campus Arapiraca. Unidade de Ensino Penedo. Avenida Beira Rio, Centro Histórico. CEP 57200-000. Penedo, N AL, Brazil. * Corresponding author. E-mail: [email protected] Abstract: Annulobalcis aurisflamma Simone and Martins, 1995 outside São Paulo state, Brazil. Herein we extend its geographical distribution to northeastern Brazil. The current article provides the first record of Warén 1983; Simone and Martins 1995; Simone 2002). speciesThe biodiversitybeing described of marine is continuously invertebrates increasing in Brazil with is Annulobalcis aurisflamma theirundoubtedly distributional underestimated records beingand theconstantly amount updated.of new StateThe coast, aim expandingof this paper its is distribution to report for up the to firstnortheastern time the Even in a well established group as Mollusca in which the Brazil.occurrence of out of São Paulo The sample was gathered on January 6th, 2010 in Barra beach (Figure 1) Salvador-BA, Brazil (13°00’37” S, shell facilitates its preservation, the most relevant book to the knowledge of Brazilian mollusks (Rios 1994;e.g.
    [Show full text]
  • A New Species of Mucronalia (Gastropoda: Eulimidae) Parasitizing the Ophiocomid Brittle Star Ophiomastix Mixta in Japan
    DOI: http://doi.org/10.18941/venus.77.1-4_45 Short Notes ©The Malacological Society of Japan45 Short Notes A New Species of Mucronalia (Gastropoda: Eulimidae) Parasitizing the Ophiocomid Brittle Star Ophiomastix mixta in Japan Tsuyoshi Takano1,2*, Hayate Tanaka3,4 and Yasunori Kano2 1Meguro Parasitological Museum, 4-1-1 Shimomeguro, Meguro, Tokyo 153-0064, Japan; *[email protected] 2Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan 3Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan 4National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan Gastropods of the family Eulimidae Over 30 species have been described in this genus, (Caenogastropoda: Vanikoroidea) are parasites of largely based on the presence of a mucronate apex or echinoderms including all five classes of the a calloused inner lip (e.g., Pease, 1860; Habe, 1974). phylum, namely Asteroidea, Crinoidea, Echinoidea, However, Warén (1980a) has transferred more Holothuroidea and Ophiuroidea (Warén, 1984). than half of them to other eulimid genera such as The Eulimidae contain numerous extant and extinct Echineulima Lützen & Nielsen, 1975, Hypermastus species (Bouchet et al., 2002; Lozouet, 2014), but Pilsbry, 1899 and Melanella Bowdich, 1822 or to many remain to be described (Warén, 1984). This the cerithioid family Pelycidiidae (see Ponder & has led to a number of recent publications on eulimid Hall, 1983: fig. 1C; Takano & Kano, 2014). Some systematics that aim at a better understanding of ten described species remain in Mucronalia, all their ecological, morphological and species diversity of which bear the mucronate apex, parietal callus (e.g., Matsuda et al., 2010, 2013; Dgebuadze et and curved outer lip of the shell (Warén, 1980a).
    [Show full text]