Unit-V Communication Interface

Total Page:16

File Type:pdf, Size:1020Kb

Unit-V Communication Interface Jntuhubupdates.com Jntuhubupdates UNIT-V COMMUNICATION INTERFACE SERIAL DATA TRANSFER INTRODUCTION Data transmission, digital transmission or digital communications is the physical transfer of data (a digital bit stream) over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibres, wireless communication channels, and storage media. The data is represented as an electro-magnetic signal, such as an electrical voltage, radiowave, microwave or infra-redsignal. While analog communications is the transfer of continuously varying information signal, digital communications is the transfer of discrete messages. The messages are either represented by a sequence of pulses by means of a line code ( baseband transmission), or by a limited set of continuously varying wave forms ( passband transmission), using a digital modulation method. The passband modulation and corresponding demodulation (also known as detection) is carried out by modem equipment. According to the most common definition of digital signal, both baseband and passband signals representing bit-streams are considered as digital transmission, while an alternative definition only considers the baseband signal as digital, and passband transmission of digital data as a form of digital-to-analog conversion. Data transmitted may be digital messages originating from a data source, for example a computer or a keyboard. It may also be an analogsignal such as a phone call or a video signal, digitized into a bit-stream for example using pulse-code modulation (PCM) or more advancedsource coding (analog-to-digital conversion and data compression) schemes. This source coding and decoding is carried out by codecequipment. Base band and Pass band signals The physically transmitted signal may be one of the following: 1. A baseband signal ("digital-over-digital" transmission): A sequence of electrical pulses or light pulses produced by means of a line coding scheme such as Manchester coding. This is typically used in serial cables, wired local area networks such as Ethernet, and in optical fiber communication. It results in a pulse amplitude modulated signal, also known as a pulse train. 2. A passband signal ("digital-over-analog" transmission): A modulated sine wave signal representing a digital bit-stream. The signal is produced by means of adigital modulation method such as PSK, QAM or FSK. The modulation and demodulation is carried out by modem equipment. This is used in wireless communication, and over telephone network local-loop and cable-TV networks. Serial and Parallel transmission In telecommunications, serial transmission is the sequential transmission of signal elements of a group representing a character or other entity of data. Digital serial transmissions are bits sent over a single wire, frequency or optical path sequentially. Because it requires less signal Jntuhubupdates.com Jntuhubupdates.com Jntuhubupdates processing and less chances for error than parallel transmission, the transfer rate of each individual path may be faster. This can be used over longer distances as a check digit or parity bit can be sent along it easily. In telecommunications, parallel transmission is the simultaneous transmission of the signal elements of a character or other entity of data. Indigital communications, parallel transmission is the simultaneous transmission of related signal elements over two or more separate paths. Multiple electrical wires are used which can transmit multiple bits simultaneously, which allows for higher data transfer rates than can be achieved with serial transmission. This method is used internally within the computer, for example the internal buses, and sometimes externally for such things as printers, The major issue with this is "skewing" because the wires in parallel data transmission have slightly different properties (not intentionally) so some bits may arrive before others, which may corrupt the message. A parity bit can help to reduce this. However, electrical wire parallel data transmission is therefore less reliable for long distances because corrupt transmissions are far more likely. Types of Communication channels . Half-duplex . Full-duplex . Point-to-point . Multi-drop: . Bus network . Ring network . Star network . Mesh network . Wireless network Serial communications: There are two types of Serial communications Asynchronous transmission uses start and stop bits to signify the beginning bit [citation needed] http://en.wikipedia.org/wiki/ASCII ASCII character would actually be transmitted using 10 bits e.g.: A "0100 0001" would become "1 0100 0001 0". The extra one (or zero depending on parity bit) at the start and end of the transmission tells the receiver first that a character is coming and secondly that the character has ended. This method of transmission is used when data is sent intermittently as opposed to in a solid stream. In the previous example the start and stop bits are in bold. The start and stop bits Jntuhubupdates.com Jntuhubupdates.com Jntuhubupdates [ citation needed] must be of opposite polarity . This allows the receiver to recognize when the second packet of information is being sent. It is suitable for data transmitted at random intervals (e.g. keyboard to computer) large overhead (20% or more) rather low data rates (up to 115.2 kbps, practically 38.4 kbps) simplicity and availability: UART and RS232 are present in any PC used in the great majority of dial-up connections Synchronous transmission uses no start and stop bits but instead synchronizes transmission speeds at both the receiving and sending end of the transmission using clock signal(s) built into [vague] each component . A continual stream of data is then sent between the two nodes. Due to there being no start and stop bits the data transfer rate is quicker although more errors will occur, as the clocks will eventually get out of sync, and the receiving device would have the wrong time that had been agreed in protocol (computing) for sending/receiving data, so some bytescould [citation needed] become corrupted (by losing bits) . Ways to get around this problem include re- synchronization of the clocks and use ofcheck digits to ensure the byte is correctly interpreted and received. low overhead (long frames) high rates less prone to errors Jntuhubupdates.com Jntuhubupdates.com Jntuhubupdates LONG DISTANCE SERIAL COMMUNICATION FRAME FORMAT Jntuhubupdates.com Jntuhubupdates.com Jntuhubupdates The UART performs the "overhead" tasks necessary for asynchronous serial communication. Parity bits are also often employed to ensure that the data sent has not been corrupted. The UART usually generates the start, stop, and parity bits when transmitting data, and can detect communication errors upon receiving data. 8251 USART ARCHITECTURE AND INTERFACING The 8251A is a programmable serial communication interface chip designed for synchronous and asynchronous serial data communication. It supports the serial transmission of data. It is packed in a 28 pin DIP. Block diagram of the 8251 USART (Universal Synchronous Asynchronous Receiver Transmitter) The functional block diagram of 8251A consists five sections. They are: Read/Write control logic Transmitter Receiver Data bus buffer Modem control. The functional block diagram is shown in fig: Jntuhubupdates.com Jntuhubupdates.com Jntuhubupdates Jntuhubupdates.com Jntuhubupdates.com Jntuhubupdates Read/Write control logic: The Read/Write Control logic interfaces the 8251A with CPU, determines the functions of the 8251A according to the control word written into its control register. It monitors the data flow. This section has three registers and they are control register, status register and data buffer. The active low signals RD, WR, CS and C/D(Low) are used for read/write operations with these three registers. When C/D(low) is high, the control register is selected for writing control word or reading status word. When C/D(low) is low, the data buffer is selected for read/write operation. When the reset is high, it forces 8251A into the idle mode. The clock input is necessary for 8251A for communication with CPU and this clock does not control either the serial transmission or the reception rate. Transmitter section: The transmitter section accepts parallel data from CPU and converts them into serial data. The transmitter section is double buffered, i.e., it has a buffer register to hold an 8-bit parallel data and another register called output register to convert the parallel data into serial bits. When output register is empty, the data is transferred from buffer to output register. Now the processor can again load another data in buffer register. If buffer register is empty, then TxRDY is goes to high. If output register is empty then TxEMPTY goes to high. The clock signal, TxC (low) controls the rate at which the bits are transmitted by the USART. The clock frequency can be 1,16 or 64 times the baud rate. Receiver Section: The receiver section accepts serial data and convert them into parallel data The receiver section is double buffered, i.e., it has an input register to receive serial data and convert to parallel, and a buffer register to hold the parallel data. When the RxD line goes low,the control logic assumes it as a START bit, waits for half a bit time and samples the line again. If the line is still low, then the input register accepts the following bits, forms a character and loads it into the buffer register. The CPU reads the parallel data from the buffer register. When the input register loads a parallel data to buffer register, the RxRDY line goes high. The clock signal RxC (low) controls the rate at which bits are received by the USART. During asynchronous mode, the signal SYNDET/BRKDET will indicate the break in the data transmission. During synchronous mode, the signal SYNDET/BRKDET will indicate the reception of synchronous character. MODEM Control: The MODEM control unit allows to interface a MODEM to 8251A and to establish data communication through MODEM over telephone lines. This unit takes care of handshake signals for MODEM interface.
Recommended publications
  • Rs-232 Rs-422 Rs-485
    ConceptConcept ofof SerialSerial CommunicationCommunication AgendaAgenda Serial v.s. Parallel Simplex , Half Duplex , Full Duplex Communication RS-485 Advantage over RS-232 SerialSerial v.s.v.s. ParallelParallel Application: How to Measure the temperature in a long distance? Measuring with a DAC card: 1200 m Remote sensor Control room T/C wire T/C A/D noise Application: How to Measure the temperature in a long distance? Measuring with a remote I/O module: 1200 m Remote sensor Control room T/C Remote I/O Standard Serial Communication T/C signal, 4-20mA, 0-5V… Noise rejection (Differential signal) MostMost PopularPopular 33 typestypes ofof SerialSerial Comm.Comm. z Most commonly available Tx Rx Rx Tx z Simple wiring CTS RTS z Low cost RTS CTS RS-232 z Short length (40 ft) DTR DSR DSR DTR Bar code reader z Slow data rates GND GND z Subject to noise Tx+ z High data rates Tx- z Longer cable lengths (4000 ft) Rx+ Rx- RS-422 z Full-duplex GND z Noise rejection PLC z Multipoint application (Up to 32 units) z Low cost Data+ z Longer cable lengths (4000 ft) Data- RS-485 zNoise immunity GND zHalf-duplex PLC SerialSerial V.S.V.S. ParallelParallel CommunicationCommunication Serial Communication Transfer the data bit by bit Synchronous Data Transfer Bit Send Data Receive Data Parallel Communication Transfer the all data simultaneously Asynchronous Data Transfer Bit Bit Bit Bit Bit Bit Bit Bit Send Data Receive Data SimplexSimplex ,, HalfHalf DuplexDuplex ,, FullFull DuplexDuplex CommunicationCommunication SimplexSimplex CommunicationCommunication Simplex Communication : – Data in a simplex channel is always one way.
    [Show full text]
  • Distributed Systems
    14-760: ADVANCED REAL-WORLD NETWORKS LECTURE 17 * SPRING 2019 * KESDEN SERIAL COMMUNICATION Courtesy 18-349 SERIAL VS. PARALLEL TX Serial MCU 1 RX MCU 2 signal Data[0:7] Parallel MCU 1 MCU 2 3 WHY SERIAL COMMUNICATION? 4 • Serial communication is a pin-efficient way of sending and receiving bits of data • Sends and receives data one bit at a time over one wire • While it takes eight times as long to transfer each byte of data this way (as compared to parallel communication), only a few wires are required • Typically one to send, one to receive (for full-duplex), and a common signal ground wire • Simplistic way to visualize serial port • Two 8-bit shift registers connected together • Output of one shift register (transmitter) connected to the input of the other shift register (receiver) • Common clock so that as a bit exits the transmitting shift register, the bit enters the receiving shift register • Data rate depends on clock frequency SIMPLISTIC VIEW OF SERIAL PORT OPERATION Transmitter Receiver n 0 1 2 3 4 5 6 7 n n+1 0 1 2 3 4 5 6 n+1 7 n+2 0 1 2 3 4 5 n+2 6 7 n+3 0 1 2 3 4 n+3 5 6 7 n+4 0 1 2 3 n+4 4 5 6 7 n+5 0 1 2 n+5 3 4 5 6 7 n+6 0 1 n+6 2 3 4 5 6 7 n+7 0 n+7 1 2 3 4 5 6 7 n+8 n+8 0 1 2 3 4 5 6 7 Interrupt raised when Interrupt raised when Transmitter (Tx) is empty Receiver (Rx) is full a Byte has been transmitted a Byte has been received and next byte ready for loading and is ready for reading SIMPLE SERIAL PORT Receive Buffer Register 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Receive Shift Register Transmit Shift Register 0 1 2 3 4 5
    [Show full text]
  • Enhanced Communications Protocol Serial Port
    Enhanced Communications Protocol Serial Port Huey lope below. Shakier Muffin may very threefold while Andrej remains bloody-minded and hypertonic. Foreordained Bartlett overshoots excellently. Why degaussing is missing the linux, it is connected to have various commands from serial communications control signals going into digital Specifies the stac algorithm on the CAIM card for the port. Enhanced communication protocols there is ready for access control equipment costs, required for this interface configuration mode is also occurs waiting for other. The protocol such a real plant as a standard ports for wio lte module can be a single instrument approaches built around, said serial manager. Scanner 1131 Sensia. This communications option uses the NITP protocol to communication with the serial. Its serial manager is installed handlers should be improved accuracy of remote device in some way is processed. Hart communication port interface also values that. Moreover our enhanced security features and mass device management. Homeyduino allows you. Modbus communication problems. However, we recommend that you configure the working interface first. ASCII character key string or byte value serial communication protocols. This allows additional watchdog logic to monitor multiple slave devices for communication faults not detected by the Serial Interface. These protocols are called a protocol for controlling train simulator on device which would still often erred in parallel process to be included a communications in. Data Transmission Parallel vs Serial Transmission Quantil. This prompt type is standard Ethernet protocol; the same used on an empty internal computer network. LZS and MPPC data compression algorithms. For communications with Modbus devices any way these methods can be utilized.
    [Show full text]
  • Serial Communication Buses
    Computer Architecture 10 Serial Communication Buses Made wi th OpenOffi ce.org 1 Serial Communication SendingSending datadata oneone bitbit atat oneone time,time, sequentiallysequentially SerialSerial vsvs parallelparallel communicationcommunication cable cost (or PCB space), synchronization, distance ! speed ? ImprovedImproved serialserial communicationcommunication technologytechnology allowsallows forfor transfertransfer atat higherhigher speedsspeeds andand isis dominatingdominating thethe modernmodern digitaldigital technology:technology: RS232, RS-485, I2C, SPI, 1-Wire, USB, FireWire, Ethernet, Fibre Channel, MIDI, Serial Attached SCSI, Serial ATA, PCI Express, etc. Made wi th OpenOffi ce.org 2 RS232, EIA232 TheThe ElectronicElectronic IndustriesIndustries AllianceAlliance (EIA)(EIA) standardstandard RS-232-CRS-232-C (1969)(1969) definition of physical layer (electrical signal characteristics: voltage levels, signaling rate, timing, short-circuit behavior, cable length, etc.) 25 or (more often) 9-pin connector serial transmission (bit-by-bit) asynchronous operation (no clock signal) truly bi-directional transfer (full-duplex) only limited power can be supplied to another device numerous handshake lines (seldom used) many protocols use RS232 (e.g. Modbus) Made wi th OpenOffi ce.org 3 Voltage Levels RS-232RS-232 standardstandard convertconvert TTL/CMOS-levelTTL/CMOS-level signalssignals intointo bipolarbipolar voltagevoltage levelslevels toto improveimprove noisenoise immunityimmunity andand supportsupport longlong cablecable lengthslengths TTL/CMOS → RS232: 0V = logic zero → +3V…+12V (SPACE) +5V (+3.3V) = logic one → −3V…−12V (MARK) Some equipment ignores the negative level and accepts a zero voltage level as the "OFF" state The "dead area" between +3V and -3V may vary, many receivers are sensitive to differentials of 1V or less Made wi th OpenOffi ce.org 4 Data frame CompleteComplete one-byteone-byte frameframe consistsconsists of:of: start-bit (SPACE), data bits (7, 8), stop-bits (MARK) e.g.
    [Show full text]
  • SAM2634 Datasheet
    SAM2634 LOW-POWER SYNTHESIZER WITH EFFECTS The SAM2634 integrates into a single chip a proprietary DREAM® DSP core (64-slots DSP + 16-bit microcontroller), a 32k x 16 RAM and an LCD display interface. With addition of a single external ROM or FLASH, a complete low cost sound module can be built, including reverb and chorus effects, parametric equalizer, surround effects, without compromising on sound quality. Key features . Single chip synthesizer + effects, typical application includes: o Wavetable synthesis, serial MIDI in & out, parallel MIDI o Effects: reverb + chorus, on MIDI and/or audio in o Surround on 2 or 4 speakers with intensity/delay control o Equalizer: 4 bands, parametric o Audio in processing through echo, equalizer, surround . Low chip count o Synthesizer, ROM/Flash, DAC o Effects RAM is built-in (32k x 16) . Low power o 14 mA typ. operating o Single 3.3V supply o Built-in 1.2V regulator with power down mode . High quality wavetable synthesis o 16 bits samples, 48 KHz sampling rate, 24dB digital filter per voice o Up to 64 voices polyphony o Up to 64MByte ROM/Flash and RAM for firmware, and PCM data . Available wavetable firmwares and sample sets o CleanWave8® low cost General MIDI 1 megabyte firmware + sample set o CleanWave32® high quality 4 megabyte firmware + sample set o CleanWave64® top quality 8 megabyte firmware + sample set o Other sample sets available under special conditions. Fast product to market o Enhanced P16 processor with C compiler o Built-in ROM debugger o Flash programmer through dedicated pins. Small footprint o 100-pin LQFP package .
    [Show full text]
  • Interface Between a PC Parallel Port and GPIB Devices
    Giant Meter wave Radio Telescope National Center for Radio Astrophysics Tata Institute of Fundamental Research NCRA·TTF'R Interface between a PC parallel port and GPIB devices Author: L. Pommier Project director: T.L.VeHkanmuBHUllmll Date: 06102104 Table of Contents 1.Introduction................................................................................................................................... 2­ 2.The GPm interface .......................................................................................................................§. 2.1.GPIB messages....................................................................................................................................................2 2.2.GPIB devices.......................................................................................................................................................2 2.3.6PIB Signals........................................................................................................................................................2 2.3.1.Data lines....................................................................................................................................................Z 2.3.2.Management lines......................................................................................................................................Z 2.3.3.Handshake lines.........................................................................................................................................Z 2.4.The handshaldng
    [Show full text]
  • Communication Protocols on the PIC24EP and Arduino-A Tutorial For
    Communication Protocols on the PIC24EP and Arduino – A Tutorial for Undergraduate Students A thesis submitted to the graduate school of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science In the Department of Electrical Engineering and Computing Systems of the College of Engineering and Applied Science By Srikar Chintapalli Bachelor of Technology: Electronics and Communications Engineering NIT Warangal, May 2015 Committee Chair: Dr. Carla Purdy Abstract With embedded systems technology growing rapidly, communication between MCUs, SOCs, FPGAs, and their peripherals has become extremely crucial to the building of successful applications. The ability for designers to connect and network modules from different manufacturers is what allows the embedded computing world to continue to thrive and overcome roadblocks, driving us further and further towards pervasive and ubiquitous computing. This ability has long been afforded by standardized communication protocols developed and incorporated into the devices we use on a day-to-day basis. This thesis aims to explain to an undergraduate audience and to implement the major communication protocols that are used to exchange data between microcontrollers and their peripheral modules. With a thorough understanding of these concepts, students should be able to interface and program their microcontroller units to successfully build projects, giving them hands on experience in embedded design. This is an important skill to have in a field in which configuring the electronics and hardware to work correctly is equally as integral as writing code for the desired application. The protocols that are discussed are the three main serial communication protocols: I2C (inter-integrated circuit), SPI (serial peripheral interface), and TTL UART (universal asynchronous receiver transmitter).
    [Show full text]
  • Computer Ports
    Computer Ports In computer hardware, a port serves as an interface between the computer and other computers or peripheral devices. Physically, a port is a specialized outlet on a piece of equipment to which a plug or cable connects. Electronically, the several conductors making up the outlet provide a signal transfer between devices. The term "port" is derived from a Dutch word "poort" meaning gate, entrance or door. ETHERNET PORTS: Ethernet is a family of computer networking technologies for local area networks (LANs) commercially introduced in 1980. Standardized in IEEE 802.3, Ethernet has largely replaced competing wired LAN technologies. Systems communicating over Ethernet divide a stream of data into individual packets called frames. Each frame contains source and destination addresses and error-checking data so that damaged data can be detected and re-transmitted. The standards define several wiring and signaling variants. The original 10BASE5 Ethernet used coaxial cable as a shared medium. Later the coaxial cables were replaced by twisted pair and fiber optic links in conjunction with hubs or switches. Data rates were periodically increased from the original 10 megabits per second, to 100 gigabits per second. Since its commercial release, Ethernet has retained a good degree of compatibility. Features such as the 48-bit MAC address and Ethernet frame format have influenced other networking protocols. HISTORY OF ETHERNET: Ethernet was developed at Xerox PARC between 1973 and 1974.[1][2] It was inspired by ALOHAnet, which Robert Metcalfe had studied as part of his PhD dissertation.[3] The idea was first documented in a memo that Metcalfe wrote on May 22, 1973.[1][4] In 1975, Xerox filed a patent application listing Metcalfe, David Boggs, Chuck Thacker and Butler Lampson as inventors.[5] In 1976, after the system was deployed at PARC, Metcalfe and Boggs published a seminal paper.
    [Show full text]
  • Timers and Counters A/DD/A Converter Keyboards Displays
    I/O Devices I/O Devices Universal Asynchronous Receiver/Transmitter (UART) Timers and counters A/D D/A converter Keyboards Displays UART Universal asynchronous receiver transmitter provides serial communication. Usually integrated into standard PC interface chip. Serial communication Characters are transmitted separately: no char start bit 0 bit 1 ... bit n-1 stop time Serial communication parameters Baud (bit) rate. Number of bits per character. Parity/no parity. Even/odd parity. Length of stop bit (1, 1.5, 2 bits). 8251 CPU interface status (8 bit) xmit/ CPU 8251 rcv data serial (8 bit) port Timers and counters Very similar: Registers to hold the current value; An increment input that adds one to the current register value. Timer Connected to a periodic clock signal Counter Connected to more general (periodic/aperiodic) signals Watchdog timer Watchdog timer is periodically reset by system timer. If watchdog is not reset, it generates an interrupt to reset the host. interrupt host CPU watchdog reset timer A/D and D/A converters A/D converter (ADC) The control signal requires sampling the analog signal and converting it to digital form (binary) D/A converter (DAC) Convert the digital signal to the analog signal Keyboard An array of switches N1 N2 N3 k_pressed N4 M1 M2 M3 M4 4 key_code key_code keypad controller Button bouncing and debouncingN=4, M=4 Key Bouncing The mechanical contact to make or break an electrical circuit generates bouncing signal LED Light Emitting Diode Use resistor to limit current:
    [Show full text]
  • Serial Data Transfer Schemes
    Microprocessors and Microcontrollers P a g e | 1 UNIT-5 SERIAL DATA TRANSFER SCHEMES SERIAL COMMUNICATION INTRODUCTION Serial communication is common method of transmitting data between a computer and a peripheral device such as a programmable instrument or even another computer. Serial communication transmits data one bit at a time, sequentially, over a single communication line to a receiver. Serial is also a most popular communication protocol that is used by many devices for instrumentation. This method is used when data transfer rates are very low or the data must be transferred over long distances and also where the cost of cable and synchronization difficulties makes parallel communication impractical. Serial communication is popular because most computers have one or more serial ports, so no extra hardware is needed other than a cable to connect the instrument to the computer or two computers together. SERIAL AND PARALLEL TRANSMISSION Let us now try to have a comparative study on parallel and serial communications to understand the differences and advantages & disadvantages of both in detail. We know that parallel ports are typically used to connect a PC to a printer and are rarely used for other connections. A parallel port sends and receives data eight bits at a time over eight separate wires or lines. This allows data to be transferred very quickly. However, the setup looks more bulky because of the number of individual wires it must contain. But, in the case of a serial communication, as stated earlier, a serial port sends and receives data, one bit at a time over one wire.
    [Show full text]
  • The PC Parallel Ports Chapter 21
    The PC Parallel Ports Chapter 21 The original IBM PC design provided support for three parallel printer ports that IBM designated LPT1:, LPT2:, and LPT3:1. IBM probably envisioned machines that could support a standard dot matrix printer, a daisy wheel printer, and maybe some other auxiliary type of printer for different purposes, all on the same machine (laser printers were still a few years in the future at that time). Surely IBM did not antic- ipate the general use that parallel ports have received or they would probably have designed them differ- ently. Today, the PC’s parallel port controls keyboards, disk drives, tape drives, SCSI adapters, ethernet (and other network) adapters, joystick adapters, auxiliary keypad devices, other miscellaneous devices, and, oh yes, printers. This chapter will not attempt to describe how to use the parallel port for all these var- ious purposes – this book is long enough already. However, a thorough discussion of how the parallel interface controls a printer and one other application of the parallel port (cross machine communication) should provide you with enough ideas to implement the next great parallel device. 21.1 Basic Parallel Port Information There are two basic data transmission methods modern computes employ: parallel data transmission and serial data transmission. In a serial data transmission scheme (see “The PC Serial Ports” on page 1223) one device sends data to another a single bit at a time across one wire. In a parallel transmission scheme, one device sends data to another several bits at a time (in parallel) on several different wires.
    [Show full text]
  • An Efficient Architecture for PCI Bus Design
    ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 5, May 2015 An Efficient Architecture for PCI Bus Design Amit Sanjayrao Mamidwar1, Vrushali G. Raut2 PG Student [Digital System], Dept. of E&TC, Sinhgad College of Engineering, Pune, Maharashtra, India1 Assistant Professor, Dept. of E&TC, Sinhgad College of Engineering, Pune, Maharashtra, India 2 ABSTRACT: In several application of embedded system, the digital components interconnects are needs flexible to power and area of the devices. Also it requires a bus width with several versions like 64 bits or 32 bits with different frequencies (Ex. 33 MHz or 66 MHz). PCI bus is used for connecting these hardware devices in computer. Instead of using different buses in computer, it can use single bus for different frequencies with multiplexing bus width. In order to solve this problem, this paper designs FPGA based PCI bus with these requirements. Through analysis of PCI bus, the top-down method applies on the PCI bus with several functional modules. Also it uses the master and target as coprocessor of the device which are programmed with finite state machine using VHDL language and structured in detail which helps to minimize the power consumption. For selecting bandwidth and frequency, it has used separate multiplexing module. Through the analysis of test bench and synthesis report it will prove that the bus complete requirements of power consumption on the basis of utilization of registers, CLB‟s and flip flops and helps to design with dual frequency.
    [Show full text]