Class G Tables of Geographic Cutter Numbers: Maps -- by Region Or
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Japanese Suiseki for Display at the BCI Convention, Visions of the American West, June 21 to 24, 2012
promoting international friendship through bonsai bonsai-bci.com Japanese suiseki for display at the BCI convention, Visions of the American West, June 21 to 24, 2012 Auction of Japanese Stone Donation Please note that all proceeds from this auction will go to Bonsai Clubs International. Bonsai Clubs International members have an unusual opportunity to acquire an authentic Japanese suiseki while supporting BCI. If you are not a member, you can join at this time and participate in the auction! What: Eighteen stones, each with it’s own hand In the case of tie bids, the bid with the earliest carved base, were donated by members of the submission date and time will be considered as the International Viewing Stone Association in Japan successful bid. for display at the BCI convention and for auction to benefit BCI. Please remember that people at the live auction can outbid online submissions. See the Stones: During the BCI convention, the stones will be on display in the Lupine Room of the What if I win the bid? Successful bidder at the Denver Marriott Tech Center. Prior to the convention, live auction can pick up their stones immediately larger photos of these stones can be viewed online after the auction and after they have paid the BCI at www.bonsai-bci.com. Treasurer for their winning bid. Online winners will be notified within one week following the close of How do I buy one? The stone will be auctioned at the convention. Successful online winner will be the closing dinner of the BCI convention. The best required to pay for the stone and for actual packing way of insuring success is to attend the convention and shipping costs before the stones are shipped to and be present at the auction. -
ARTISTIC AWAKENING in ANKARA (1953)1 Bülent Ecevit
DOCUMENT ARTISTIC AWAKENING IN ANKARA (1953)1 BÜLent ecevit Until very recently, we Ankara residents were as jealous of Istanbul’s artistic awareness as we were of its sea and its trees. Our trees have yet to reach maturity, and we are as distant from the sea as ever, but an artistic awakening has now begun in Ankara as well. Concert tickets have begun to sell out in the blink of an eye, as soon as they are available. Curiously enough, tickets to the opening night of the opera reportedly sometimes sell out even before they are released.2 I say “reportedly” because this is a story I heard from one of the people interested in opening nights at the opera. Our opera no longer admits people to the concert hall who are ungroomed or who lack a formal dinner jacket. There are frequent balls at the opera. You’d think you’re in 18th-century Vienna. Because, as far as we know, this kind of dandyism no longer exists in any 20th-century city. Even in the most traditional of cities, like London, people in dinner jackets sit side- by-side with those in sports coats. 1 First published in Turkish as “Ankara’da sanat uyanıs¸ı,” Dünya, April 2, 1953, n.p. 2 The Ankara Opera, designed in 1933 by Turkish architect S¸evki Balmumcu as a space for large-scale exhibitions, was converted for use as the Ankara State Opera by German archi- tect Paul Bonatz in 1948. It was a widely recognized symbol of Turkey’s—and especially Ankara’s—cultural sophistication. -
Modern Pollen Influx Data from Lake Baiyangdian, China
Quaternary Science Reviews 37 (2012) 81e91 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China Qinghai Xu a,b,*, Fang Tian a, M. Jane Bunting c, Yuecong Li a, Wei Ding a, Xianyong Cao a, Zhiguo He a a College of Resources and Environment Science, and Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, East Road of Southern 2nd Ring, Shijiazhuang 050024, China b National Key Laboratory of Western China’s Environmental System, Ministry of Education, Lanzhou University, Southern Tianshui Road, Lanzhou 730000, China c Department of Geography, University of Hull, Cottingham Road, Hull HU6 7RX, UK article info abstract Article history: Comparing pollen influx recorded in traps above the surface and below the surface of Lake Baiyangdian Received 30 April 2011 in northern China shows that the average pollen influx in the traps above the surface is much lower, at À À À À Received in revised form 1210 grains cm 2 a 1 (varying from 550 to 2770 grains cm 2 a 1), than in the traps below the surface 15 January 2012 À À À À which average 8990 grains cm 2 a 1 (ranging from 430 to 22310 grains cm 2 a 1). This suggests that Accepted 19 January 2012 about 12% of the total pollen influx is transported by air, and 88% via inflowing water. If hydrophyte Available online 17 February 2012 pollen types are not included, the mean pollen influx in the traps above the surface decreases to À À À À À À 470 grains cm 2 a 1 (varying from 170 to 910 grains cm 2 a 1) and to 5470 grains cm 2 a 1 in the traps Keywords: À2 À1 Pollen assemblages below the surface (ranging from 270 to 12820 grains cm a ), suggesting that the contribution of Pollen influx waterborne pollen to the non-hydrophyte pollen assemblages in Lake Baiyangdian is about 92%. -
Ankara University
Ankara University FOLLOW-UP EVALUATION REPORT July 2011 Team: Fuada Stankovic, chair Alina Gavra Andy Gibbs, coordinator Institutional Evaluation Programme/Ankara University/July 2011 Contents 1. Introduction .................................................................................................................... 3 1.1 Institutional Evaluation Programme and follow-up evaluation process ............................ 3 1.2 Ankara University and the national context ..................................................................... 4 1.3 The Self Evaluation Process ............................................................................................. 4 1.4. Description of the University ............................................................................................ 5 1.5. Changes that have been made since the original evaluation ............................................ 5 2. Internationalisation ......................................................................................................... 7 3. Science and society ....................................................................................................... 10 4. University / Industry Collaboration ................................................................................ 12 5. Quality Monitoring and Administration ......................................................................... 14 6. Conclusion ..................................................................................................................... 16 2 Institutional -
Report on Biodiversity and Tropical Forests in Indonesia
Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and -
The Seasonal Variability of Sea Surface Temperature and Chlorophyll-A Concentration in the South of Makassar Strait
Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 33 ( 2016 ) 583 – 599 The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring 2015, LISAT-FSEM 2015 The seasonal variability of sea surface temperature and chlorophyll-a concentration in the south of Makassar Strait Bisman Nababan*, Novilia Rosyadi, Djisman Manurung, Nyoman M. Natih, and Romdonul Hakim Department of Marine Science and Technology, Bogor Agricultural University, Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Indonesia Abstract The sea surface temperature (SST) and chlorophyll-a (Chl-a) variabilities in the south of Makassar Strait were mostly affected by monsoonal wind speed/directions and riverine freshwater inflows. The east-southeast (ESE) wind (May-October) played a major role in an upwelling formation in the region starting in the southern tip of the southern Sulawesi Island. Of the 17 years time period, the variability of the SST values ranged from 25.7°C (August 2004) - 30.89°C (March 2007). An upwelling initiation typically occurred in early May when ESE wind speed was at <5 m/s, a fully developed upwelling event usually occurred in June when ESE wind speed reached >5 m/s, whereas the largest upwelling event always occurred in August of each year. Upwelling event generally diminished in September and terminated in October. At the time of the maximum upwelling events (August), the formation of upwelling could be observed up to about 330 km toward the southwest of the southern tip of the Sulawesi island. Interannually, El Niño Southern Oscillation (ENSO) intensified the upwelling event during the east season through an intensification of the ESE wind speed. -
Laporan Tahunan Bank Maluku
2012 Laporan Tahunan Bank Maluku • BERUBAH MENJADI LEBIH BAIK • TRANSFORMED TO BE BETTER Bank Maluku telah memasuki era transformasi Bank Maluku has entered an era of transformation Era baru dalam pengembangan jati diri merubah a new era in the development of identity mimpi menjadi kenyataan change dream into reality Tak mudah merubah sebuah paradigma yang It is not easy to change a paradigm the common menjadi cita-cita bersama dengan dinamika yang goal with di erent dynamics berbeda Berubah Menjadi Lebih Baik Meniti asa menjadi Changed for the Better Climbing up into the Jawara di Maluku maupun Maluku Utara Sebagai champs in Maluku and North Maluku as Regional Champion Bank Regional Champion Bank. Laporan Tahunan PT Bank Pembangunan Daerah Maluku Tahun 2012 Annual Report 2012 PT Bank Pembangunan Daerah Maluku TRANSFORMED TO BE BETTER Daftar Isi Table of Content PEMBUKAAN 1 OPENING Nilai – Nilai Budaya Kerja PT. Bank Maluku 4 Value - Value of Cultural Work PT. Bank Maluku - Kepercayaan 4 - Confi dence - Integritas 4 - Integrity - Profesional 4 - Professional - Melayani 4 - Serve - Komitmen 4 - commitment - Disiplin 4 - Discipline - Kerjasama 4 - Cooperation Visi dan Misi 6-7 Vision and Mission Motto 8 Motto Makna Logo 9 Meaning Logo LAPORAN MANAJEMEN 10 MANAGEMENT REPORT Laporan Direksi 10 Report of the Board of Directors Laporan Dewan Komisaris 20 Report of the Board of Commissioners PROFIL PERUSAHAAN 26 COMPANY PROFILE Identitas Perusahaan 27 Company identity Sejarah Singkat 28 A Brief History Ikhtisar Keuangan 30 Financial Highlights -
Amur Leopard Fact File
AMUR LEOPARD FACTFILE NAME Amur Leopard SCIENTIFIC NAME Panthera pardus orientalis GEOGRAPHIC RANGE Southwest Primorye in the Russian Far East HABITAT Temperate forests. LIFESPAN 10-15 years in the wild. Up to 20 years in captivity. WEIGHT 25– 75kg DIET Roe deer, sika deer, badgers and hares. WILD POPULATION Approx. 100 individuals IUCN RED LIST STATUS An extremely high risk of becoming extinct in the wild. GENERAL DESCRIPTION Amur leopards are one of nine sub-species of leopard. They are the most critically endangered big cat in the world. Found in the Russian far-east, Amur leopards are well adapted to a cold climate with thick fur that can reach up to 7.5cm long in winter months. Amur leopards are much paler than other leopards, with bigger and more spaced out rosettes. This is to allow them to camouflage in the snow. In the 20th century the Amur leopard population dramatically decreased due to habitat loss and hunting. Prior to this their range extended throughout northeast China, the Korean peninsula and the Primorsky Krai region of Russia. Now the Amur leopard range is predominantly in the south of the Primorsky Krai region in Russia, however, individuals have been reported over the border into northeast China. In 2011 Amur leopard population estimates were extremely low with approximately 35 individuals remaining. Intensified protection of this species has lead to a population increase, with approximately 100 now remaining in the wild. AMUR LEOPARD RANGE THREATS • Illegal wildlife trade– poaching for furs, teeth and bones is a huge threat to Amur leopards. A hunting culture, for both sport and food across Russia, also targets the leopards and their prey species. -
Copyrighted Material
INDEX Aodayixike Qingzhensi Baisha, 683–684 Abacus Museum (Linhai), (Ordaisnki Mosque; Baishui Tai (White Water 507 Kashgar), 334 Terraces), 692–693 Abakh Hoja Mosque (Xiang- Aolinpike Gongyuan (Olym- Baita (Chowan), 775 fei Mu; Kashgar), 333 pic Park; Beijing), 133–134 Bai Ta (White Dagoba) Abercrombie & Kent, 70 Apricot Altar (Xing Tan; Beijing, 134 Academic Travel Abroad, 67 Qufu), 380 Yangzhou, 414 Access America, 51 Aqua Spirit (Hong Kong), 601 Baiyang Gou (White Poplar Accommodations, 75–77 Arch Angel Antiques (Hong Gully), 325 best, 10–11 Kong), 596 Baiyun Guan (White Cloud Acrobatics Architecture, 27–29 Temple; Beijing), 132 Beijing, 144–145 Area and country codes, 806 Bama, 10, 632–638 Guilin, 622 The arts, 25–27 Bama Chang Shou Bo Wu Shanghai, 478 ATMs (automated teller Guan (Longevity Museum), Adventure and Wellness machines), 60, 74 634 Trips, 68 Bamboo Museum and Adventure Center, 70 Gardens (Anji), 491 AIDS, 63 ack Lakes, The (Shicha Hai; Bamboo Temple (Qiongzhu Air pollution, 31 B Beijing), 91 Si; Kunming), 658 Air travel, 51–54 accommodations, 106–108 Bangchui Dao (Dalian), 190 Aitiga’er Qingzhen Si (Idkah bars, 147 Banpo Bowuguan (Banpo Mosque; Kashgar), 333 restaurants, 117–120 Neolithic Village; Xi’an), Ali (Shiquan He), 331 walking tour, 137–140 279 Alien Travel Permit (ATP), 780 Ba Da Guan (Eight Passes; Baoding Shan (Dazu), 727, Altitude sickness, 63, 761 Qingdao), 389 728 Amchog (A’muquhu), 297 Bagua Ting (Pavilion of the Baofeng Hu (Baofeng Lake), American Express, emergency Eight Trigrams; Chengdu), 754 check -
Lombok Island, Sumbawa Island, and Samalas Volcano
ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part. Almost 800 years after the eruption, the geomorphological impact of this eruption on the island of Lombok remains unknown, whereas its overall climatic and societal consequences are now better understood. A combination of stratigraphic information, present-day topography, geophysical measurement with two-dimensional resistivity profiling technique, local written sources, as well as laboratory and computational analysis, were used to obtain detailed information concerning geomorphic impacts of the 1257 CE eruption of Samalas volcano on the coastal area along the Alas Strait in West Nusa Tenggara Province, Indonesia. This study provides new information related to the geomorphic impact of a major eruption volcanic in coastal areas, in this case, on the eastern part of Lombok and the western coast of Sumbawa. In the first place, the study result shows that since the 1257 CE eruption, the landscape on the eastern part of Lombok is still evolved until the present time. -
Amur Oblast TYNDINSKY 361,900 Sq
AMUR 196 Ⅲ THE RUSSIAN FAR EAST SAKHA Map 5.1 Ust-Nyukzha Amur Oblast TY NDINS KY 361,900 sq. km Lopcha Lapri Ust-Urkima Baikal-Amur Mainline Tynda CHITA !. ZEISKY Kirovsky Kirovsky Zeiskoe Zolotaya Gora Reservoir Takhtamygda Solovyovsk Urkan Urusha !Skovorodino KHABAROVSK Erofei Pavlovich Never SKOVO MAGDAGACHINSKY Tra ns-Siberian Railroad DIRO Taldan Mokhe NSKY Zeya .! Ignashino Ivanovka Dzhalinda Ovsyanka ! Pioner Magdagachi Beketovo Yasny Tolbuzino Yubileiny Tokur Ekimchan Tygda Inzhan Oktyabrskiy Lukachek Zlatoustovsk Koboldo Ushumun Stoiba Ivanovskoe Chernyaevo Sivaki Ogodzha Ust-Tygda Selemdzhinsk Kuznetsovo Byssa Fevralsk KY Kukhterin-Lug NS Mukhino Tu Novorossiika Norsk M DHI Chagoyan Maisky SELE Novovoskresenovka SKY N OV ! Shimanovsk Uglovoe MAZ SHIMA ANOV Novogeorgievka Y Novokievsky Uval SK EN SK Mazanovo Y SVOBODN Chernigovka !. Svobodny Margaritovka e CHINA Kostyukovka inlin SERYSHEVSKY ! Seryshevo Belogorsk ROMNENSKY rMa Bolshaya Sazanka !. Shiroky Log - Amu BELOGORSKY Pridorozhnoe BLAGOVESHCHENSKY Romny Baikal Pozdeevka Berezovka Novotroitskoe IVANOVSKY Ekaterinoslavka Y Cheugda Ivanovka Talakan BRSKY SKY P! O KTYA INSK EI BLAGOVESHCHENSK Tambovka ZavitinskIT BUR ! Bakhirevo ZAV T A M B OVSKY Muravyovka Raichikhinsk ! ! VKONSTANTINO SKY Poyarkovo Progress ARKHARINSKY Konstantinovka Arkhara ! Gribovka M LIKHAI O VSKY ¯ Kundur Innokentevka Leninskoe km A m Trans -Siberianad Railro u 100 r R i v JAO Russian Far East e r By Newell and Zhou / Sources: Ministry of Natural Resources, 2002; ESRI, 2002. Newell, J. 2004. The Russian Far East: A Reference Guide for Conservation and Development. McKinleyville, CA: Daniel & Daniel. 466 pages CHAPTER 5 Amur Oblast Location Amur Oblast, in the upper and middle Amur River basin, is 8,000 km east of Moscow by rail (or 6,500 km by air). -
Flood Loss Model Model
GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano