Tarek . I . Kakhia

Total Page:16

File Type:pdf, Size:1020Kb

Tarek . I . Kakhia Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Organic Acid By Tarek . I . Kakhia 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 2 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 1 - Introduction To Organic Acid Contents 1 Introduction 2 Characteristics 3 Applications 4 Application in food 5 Application in nutrition and animal feeds 1 - Introduction An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group – COOH. Sulfonic acids, containing the group – SO2OH, are relatively stronger acids. Alcohols, with – OH, can act as acids but they are usually very weak. The relative stability of the conjugate base of the acid determines its acidity. Other groups can also confer acidity, usually weakly: the thiol group –SH, the enol group, and the phenol group. In biological systems, organic compounds containing these groups are generally referred to as organic acids. 2 - Characteristics In general, organic acids are weak acids and do not dissociate completely in water, where as the strong mineral acids do. Lower molecular mass organic acids such as formic and lactic acids are miscible in water, but higher molecular mass organic acids, such as benzoic acid, are insoluble in molecular (neutral) form. On the other hand, most organic acids are very soluble in organic solvents. p-Toluene sulfonic acid is a comparatively strong acid used in organic chemistry often because it is able to dissolve in the organic reaction solvent. Exceptions to these solubility characteristics exist in the presence of other substituents that affect the polarity of the compound. 3 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 3 - Applications Simple organic acids like formic or acetic acids are used for oil and gas well stimulation treatments. These organic acids are much less reactive with metals than are strong mineral acids like hydrochloric acid (HCl) or mixtures of HCl and hydrofluoric acid (HF). For this reason, organic acids are used at high temperatures or when long contact times between acid and pipe are needed . The conjugate bases of organic acids such as citrate and lactate are often used in biologically- compatible buffer solutions. Citric and oxalic acids are used as rust removal. As acids, they can dissolve the iron oxides, but without damaging the base metal as do stronger mineral acids. In the dissociated form, they may be able to chelate the metal ions, helping to speed removal . Biological systems create many and more complex organic acids such as L-lactic, citric, and D- glucuronic acids that contain hydroxyl or carboxyl groups. Human blood and urine contain these plus organic acid degradation products of amino acids, neurotransmitters, and intestinal bacterial action on food components. Examples of these categories are alpha – ketoisocaproic vanilmandelic, and D-lactic acids, derived from catabolism of L-leucine and epinephrine (adrenaline) by human tissues and catabolism of dietary carbohydrate by intestinal bacteria, respectively. The general structure of a few weak organic acids. From left to right: phenol, enol, alcohol, thiol. The acidic hydrogen in each molecule is colored red. 4 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org The general structure of a few organic acids. From left to right: carboxylic acid, sulfonic acid. The acidic hydrogen in each molecule is colored red. 3 - Application in food Organic acids are used in food preservation because of their effects on bacteria. The key basic principle on the mode of action of organic acids on bacteria is that non-dissociated (non-ionized) organic acids can penetrate the bacteria cell wall and disrupt the normal physiology of certain types of bacteria that we call pH-sensitive, meaning that they cannot tolerate a wide internal and external pH gradient. Among those bacteria are Escherichia coli, Salmonella spp., C. perfringens, Listeria mono cytogenes, and Campylobacter species. Upon passive diffusion of organic acids into the bacteria, where the pH is near or above neutrality, the acids will dissociate and lower the bacteria internal pH, leading to situations that will impair or stop the growth of bacteria. On the other hand, the anionic part of the organic acids that cannot escape the bacteria in its dissociated form will accumulate within the bacteria and disrupt many metabolic functions, leading to osmotic pressure increase, incompatible with the survival of the bacteria. It has been well demonstrated that the state of the organic acids (undissociated or dissociated) is extremely important to define their capacity to inhibit the growth of bacteria, compared to undissociated acids. Lactic acid and its salts sodium lactate and potassium lactate are widely used as antimicrobials in food products, in particular, meat and poultry such as ham and sausages. 4 - Application in nutrition and animal feeds Organic acids have been used successfully in pig production for more than 25 years. Although less research has been done in poultry, organic acids have also been found to be effective in poultry production. 5 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Organic acids ( C1 – C7 ) are widely distributed in nature as normal constituents of plants or animal tissues. They are also formed through microbial fermentation of carbohydrates mainly in the large intestine. They are sometimes found in their sodium, potassium, or calcium salts, or even stronger double salts. Organic acids added to feeds should be protected to avoid their dissociation in the crop and in the intestine (high pH segments) and reach far into the gastrointestinal tract, where the bulk of the bacteria population is located. From the use of organic acids in poultry and pigs, one can expect an improvement in performance similar to or better than that of antibiotic growth promoters, without the public health concern, a preventive effect on the intestinal problems like necrotic enteritis in chickens and Escherichia coli infection in young pigs. Also one can expect a reduction of the carrier state for Salmonella species and Campylobacter species. 6 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 2 - Introduction To Carboxylic Acid Carboxylate ion Contents 1 Introduction 2 Physical properties 2.1 Solubility 2.2 Boiling points 2.3 Acidity 2.4 Odor 3 Characterization 4 Occurrence and applications 5 Synthesis 5.1 Industrial routes 5.2 Laboratory methods 5.3 Less - common reactions 6 Reactions 6.1 Specialized reactions 7 Nomenclature and examples 8 Carboxyl radical 1 - Introduction A carboxylic acid is an organic acid characterized by the presence of at least one carboxyl group . The general formula of a carboxylic acid is R- COOH, where R is some monovalent functional group. A carboxyl group (or carboxy) is a functional group consisting of a carbonyl (RR'C= O) and a hydroxyl (R- O -H), which has the formula - C(= O)OH, usually written as - COOH or - CO2H. Carboxylic acids are Brønsted-Lowry acids because they are proton (H+) donors. They are the most common type of organic acid. 7 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Among the simplest examples are formic acid H-COOH, which occurs in ants, and acetic acid CH3- COOH, which gives vinegar its sour taste. Acids with two or more carboxyl groups are called dicarboxylic, tricarboxylic, etc. The simplest dicarboxylic example is oxalic acid (COOH)2, which is just two connected carboxyls. Mellitic acid is an example of a hexacarboxylic acid. Other important natural examples are citric acid (in lemons) and tartaric acid (in tamarinds). Salts and esters of carboxylic acids are called carboxylates. When a carboxyl group is deprotonated, its conjugate base forms a carboxylate anion. Carboxylate ions are resonance stabilized and this increased stability makes carboxylic acids more acidic than alcohols. Carboxylic acids can be seen as reduced or alkylated forms of the Lewis acid carbon dioxide; under some circumstances they can be decarboxylated to yield carbon dioxide. 2 - Physical properties 2 – 1 - Solubility Carboxylic acid dimers Carboxylic acids are polar. Because they are both hydrogen- bond acceptors (the carbonyl) and hydrogen-bond donors (the hydroxyl), they also participate in hydrogen bonding. Together the hydroxyl and carbonyl group forms the functional group carboxyl. Carboxylic acids usually exist as dimeric pairs in nonpolar media due to their tendency to “self-associate.” Smaller carboxylic acids (1 to 5 carbons) are soluble in water, whereas higher carboxylic acids are less soluble due to the increasing hydrophobic nature of the alkyl chain. These longer chain acids tend to be rather soluble in less-polar solvents such as ethers and alcohols. 2 – 2 - Boiling points Carboxylic acids tend to have higher boiling points than water, not only because of their increased surface area, but because of their 8 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org tendency to form stabilised dimers. Carboxylic acids tend to evaporate or boil as these dimers. For boiling to occur, either the dimer bonds must be broken, or the entire dimer arrangement must be vaporised, both of which increase enthalpy of vaporization requirements significantly. 2 – 3 - Acidity Carboxylic acids are typically weak acids, meaning that they only partially dissociate into H+ cations and RCOO – anions in neutral aqueous solution. For example, at room temperature, only 0.4% of all acetic acid molecules are dissociated. Electronegative substituents give stronger acids. Carboxylic acid Forula pKa Formic acid H COOH 3.75 Acetic acid CH3 COOH 4.76 Chloro acetic acid CH2 ClCOOH 2.86 Oxalic acid HOOC- COOH 1.27 Benzoic acid C6H5 COOH 4.2 Deprotonation of carboxylic acids gives carboxylate anions, which is resonance stabilized because the negative charge is delocalized between the two oxygen atoms increasing its stability. Each of the carbon - oxygen bonds in carboxylate anion has partial double-bond character.
Recommended publications
  • LD5655.V855 1924.M377.Pdf
    A STUDY OF BACILLUS AROIDEAE 'l'OWNSEND, THE CAUSE OF A SOFT ROT OF TOMATO, AN:) B. CAROTOVORUS JONES. A thesis 811.bmitted as partial requirement for the degree of Master of Science in Botany by A.B.Massey Reprinted from PHYT0PATH0L0GY, Vol. XIV, October, 1924. A STUDY OF BACILLUS AROIDEAE, TOWNSEND, THE CAUSE OF A SOFT ROT OF TOMATO, AND B. CAROTOVORUS JONES A. B. MASSEY! \Vl'l'll Tlll:EE FIGURES IN THE TEXT INTRODUCTION In the summer of 1918, at Blacksburg, Virginia, there developed a con- siderable amount of a soft rot of tomatoes. This occurre<l in experimental plots which were designated to study the control of septoria leaf blight, and the soft rot of the fruit developed into an important factor. I~ describing these experiments Fromme (2) states: "Practically all of the unsoundness of the fruit was caused by bacterial soft rot, a disease which is exceedingly common and often very destructive in tomato fields in Vir- ginia." Isolations from diseased fruits made by S. A. Wingard (15) proved a bacterium to be the causative agent. Its growth in pure culture resembled that of the group of bacteria which causes soft rots of plants but it could not be readily as!ligned to any of the describe<l species of this group. There has been only casual mention of a bacterial soft rot of tomato in literature, and the distinguishing features of the organisms which might be responsible have not been as sharply defined as is desirable. It was decided, therefore, to un<lcrtake comparative studies of the organism in question together with some of the non-chromogenic soft rot forms.
    [Show full text]
  • United States Patent [19] [11] 15 Re. 30,811 Dykstra Et A1
    United States Patent [19] [11] 15 Re. 30,811 Dykstra et a1. [45] Reissued Dec. 1, 1981 [54] SUBSTITUTED PIPERIDINES 2,780,577 2/1957 Phillips et a]. .................. .. 424/267 THERAPEUTIC PROCESS AND 3,192,213 1/1965 Krapcho . .. 260/253 COMPOSITIONS 3,789,072 1/1974 Bernstein ...... .. 260/557 D 3,931,195 1/1976 Dykstra et a1. .............. .. 260/293.58 [75] Inventors: Stanley J. Dykstra; Joseph L. OTHER PUBLICATIONS Minielli, both of Evansville, Ind. 73 A. - ._ Mead J hnson 81 C a Lawson, J. Pharm. Ex p . Thera p ., 160, pp . 21-31 (1968). [ 1 ‘Slgnee Evansv?le in mm’ ‘W’ Krapcho et al., J. Med. Chem, 6, p. 219 (1963). ' Krapcho et al., J. Med. Chem, 7, pp. 376-377 (1964). [2!] Appl- NW 98.008 Krapcho et 31., .1. Med. Chem, 9, pp. 809-812 (1966). [22] Filed. No“ 28, 1979 Krapcho et al., J. Med. Chem, 12, pp. 164-166 (1969). Phillips, J. Am. Chem. Soc., 72, pp. 1850-1852 (1950). Related US. Patent Documents Primary Examiner—Stanley J. Friedman Reissue of. Attorney, Agent, or Firm-Robert H. Uloth; Robert E. [64] Patent NO.I 4,064,254 Camha" Issued: Dec. 20, 1977 [57] ABSTRACT F531:A 1. N 0 .: 0cL734,583 21 1976 The compounds are of the heterocycltc, class of 2 v _ ’ phenethylpiperidines having an amido substituent in the U-5- APPl1cat1°I151 ortho position of the phenethyl moiety. Substituents in 160] Dlvisio" 0151?’ NO- 620-207’ Ocl- 3» 19751 Pa" N°~ the ortho position include formamido, benzamido, cin 4‘00Oé143' wh‘ch '5 agd‘wls‘gn 025:", No- 384'34l' Jul" namamido, 2-thiophenecarboxamido, alkanesul 31' 1.
    [Show full text]
  • Inhaled Nitric Oxide Therapy in Adults Benedict C Creagh-Brown, Mark JD Griffiths and Timothy W Evans
    Available online http://ccforum.com/content/13/3/212 Review Bench-to-bedside review: Inhaled nitric oxide therapy in adults Benedict C Creagh-Brown, Mark JD Griffiths and Timothy W Evans Unit of Critical Care, Faculty of Medicine, Imperial College, London, UK and Adult Intensive Care Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK Corresponding author: Timothy W Evans, [email protected] Published: 29 May 2009 Critical Care 2009, 13:212 (doi:10.1186/cc7734) This article is online at http://ccforum.com/content/13/3/221 © 2009 BioMed Central Ltd Abstract Administration of inhaled nitric oxide to adults Nitric oxide (NO) is an endogenous mediator of vascular tone and The licensed indication of iNO is restricted to persistent host defence. Inhaled nitric oxide (iNO) results in preferential pulmonary hypertension in neonates, yet most iNO is pulmonary vasodilatation and lowers pulmonary vascular resis- administered for unlicensed indications. Pharmaceutical iNO tance. The route of administration delivers NO selectively to is available at a very high cost, and in light of this and ventilated lung units so that its effect augments that of hypoxic concerns over potential adverse effects of iNO, international pulmonary vasoconstriction and improves oxygenation. This guidelines have been developed. An advisory board under the ‘Bench-to-bedside’ review focuses on the mechanisms of action of iNO and its clinical applications, with emphasis on acute lung injury auspices of the European Society of Intensive Care Medicine and the acute respiratory distress syndrome. Developments in our and the European Association of Cardiothoracic Anaes- understanding of the cellular and molecular actions of NO may thesiologists published its recommendations in 2005 [1].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Derivatives of Carboxylic Acid
    Derivatives of Carboxylic Acid acid chloride carboxylate nitrile amide acid anhydride ester Nomenclature of Acid Halides IUPAC: alkanoic acid → alkanoyl halide Common: alkanic acid → alkanyl halide I: 3-aminopropanoyl chloride I: 4-nitropentanoyl chloride c: b-aminopropionyl chloride c: g-nitrovaleryl chloride I: hexanedioyl chloride c: adipoyl chloride Rings: (IUPAC only): ringcarbonyl halide I: benzenecarbonyl bromide I: 3-cylcopentenecarbonyl chloride c: benzoyl bromide Nomenclature of Acid Anhydrides Acid anhydrides are prepared by dehydrating carboxylic acids acetic anhydride ethanoic acid ethanoic anhydride I: benzenecarboxylic anhydride I: butanedioic acid I: butanedioic anhydride c: benzoic andhydride c: succinic acid c: succinic anhydride Some unsymmetrical anhydrides I: ethanoic methanoic I: benzoic methanoic anhydride anhydride I: cis-butenedioic c: benzoic formic anhydride anhydride c: acetic formic anhydride Nomenclature of Esters Esters occur when carboxylic acids react with alcohols I: phenyl methanoate I: t-butyl benzenecarboxylate I: methyl ethanoate c: phenyl formate c: methyl acetate c: t-butyl benzoate I: isobutyl I: cyclobutyl 2- I: dimethyl ethanedioate cyclobutanecarboxylate methylpropanoate c: cyclobutyl a- c: dimethyl oxalate c: none methylpropionate Cyclic Esters Reaction of -OH and -COOH on same molecule produces a cyclic ester, lactone. To name, add word lactone to the IUPAC acid name or replace the -ic acid of common name with -olactone. 4-hydroxy-2-methylpentanoic acid lactone -methyl- -valerolactone Amides Product of the reaction of a carboxylic acid and ammonia or an amine. Not basic because the lone pair on nitrogen is delocalized by resonance. Classes of Amides 1 amide has one C-N bond (two N-H). 2 amide or N-substituted amide has two C-N bonds (one N-H).
    [Show full text]
  • Unit 15 Monocarboxylic and Sulphonjc Acids
    UNIT 15 MONOCARBOXYLIC AND SULPHONJC ACIDS Structure Introduction Objectives Carboxylic Acids Preparation of Monocarboxylic Acids physical Properties of ~onocarbox~licAcids Spectral Properties of Carboxylic Acids Reactions of Carboxylic Acids Sulphonic Acids Preparation of Benzenesulphonic acid Reactions of Benzenesulphonic acid Industrial Uses of Carboxylic and Sulphonic Acids Laboratory Detection of Carboxylic and Sulphonic Acids Summary Terminal Questions Answers 15.1 INTRODUCTION 0 I Carboxylic acids are the compounds which contain the carboxy (-COH) functional 0 I1 group and can be represented either as RCOH or as RCOOH. The carboxylic acids not only form an important class of organic compounds but are also the parent compounds of a large group of compounds called the functional derivatives of carboxylic acids which can be further classified as acid halides, acid anhydrides, acid .amides and esters. These classes of compounds \kill be discussed in Unit 17. Carboxylic acids also play an important role in various biological processes. In Unit 16, you will study about some such acids ..Besides carboxylic acids, there is another important class of organic acids, called sulphonic adds. The sulphonic acids are the compounds which contain a S03H group, called the sulphonic acid soup. Sulphonic acids are organic acids related to sulphuric acid. Sulphonic acids and carboxylic acids are closely related in their chemistry. Therefore, in this unit, we will first study the chemistry of carboxylic acids and then that of the sulphonic acids. Objectives
    [Show full text]
  • Chemical Specificity in Short-Chain Fatty Acids and Their Analogues in Increasing Osmotic Fragility in Rat Erythrocytes in Vitro
    Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic fragility in rat erythrocytes in Title vitro. Author(s) Mineo, Hitoshi; Hara, Hiroshi Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(6), 1448-1453 Citation https://doi.org/10.1016/j.bbamem.2007.02.008 Issue Date 2007-06 Doc URL http://hdl.handle.net/2115/28208 Type article (author version) File Information BBA1768-6.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 1 Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic 2 fragility in rat erythrocytes in vitro 3 4 Hitoshi Mineo, Hiroshi Hara* 5 6 Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, 7 Hokkaido 060-8589, Japan 8 9 10 *Corresponding author. 11 Hiroshi HARA Ph.D. 12 Division of Applied Bioscience, 13 Graduate School of Agriculture, 14 Hokkaido University, 15 Kita-9, Nishi-9, Sapporo, 16 Hokkaido 060-8589, 17 Tel.: +81-11-706-3352; 18 fax: +81-11-706-2504. 19 E-mail address: [email protected] 20 21 22 23 24 25 2 1 Abstract 2 3 We examined the role of the chemical specificity of short-chain fatty acids 4 (SCFAs) and their derivatives in increasing osmotic fragility (OF) in rat red blood cells 5 (RBCs). Except for formic acid, normal SCFAs with 2 to 8 carbons increased the OF in 6 rat RBCs with increasing number of hydrocarbons in a dose-dependent manner. 7 Replacement of the carboxylic group with sulfonic group inhibited, but did not abolish, 8 the SCFA-mediated increase in OF.
    [Show full text]
  • Leaf Variegation in Caladium Steudneriifolium (Araceae): a Case of Mimicry?
    Evol Ecol (2009) 23:503–512 DOI 10.1007/s10682-008-9248-2 ORIGINAL PAPER Leaf variegation in Caladium steudneriifolium (Araceae): a case of mimicry? Ulf Soltau Æ Stefan Do¨tterl Æ Sigrid Liede-Schumann Received: 27 November 2007 / Accepted: 25 February 2008 / Published online: 6 March 2008 Ó Springer Science+Business Media B.V. 2008 Abstract The leaves of Caladium steudneriifolium (Araceae) of the understorey of a submontane rainforest in the Podocarpus National Park (South East Ecuador, 1,060 m a.s.l.) are plain green or patterned with whitish variegation. Of the 3,413 individual leaves randomly chosen and examined in April 2003, two-thirds were plain green, whereas one third were variegated (i.e., whitish due to absence of chloroplasts). Leaves of both morphs are frequently attacked by mining moth caterpillars. Our BLAST analysis based on Cytochrome-c-Oxidase-subunit-1 sequences suggests that the moth is possibly a member of the Pyraloidea or another microlepidopteran group. It was observed that the variegated leaf zones strongly resemble recent damages caused by mining larvae and therefore may mimic an attack by moth larvae. Infestation was significantly 4–12 times higher for green leaves than for variegated leaves. To test the hypothesis that variegation can be interpreted as mimicry to deter ovipositing moths, we first ruled out the possibility that variegation is a function of canopy density (i.e., that the moths might be attracted or deterred by factors unrelated to the plant). Then plain green leaves were artificially variegated and the number of mining larvae counted after 3 months.
    [Show full text]
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Supporting Document 1
    Supporting document 1 Risk and Technical Assessment Report – Application A1103 Citric & Lactic Acids as Food Additives in Beer and related products Executive Summary FSANZ received an Application from DB Breweries Limited seeking to amend Standard 1.3.1 – Food Additives of the Australia New Zealand Food Standards Code (the Code) to permit the addition of citric and lactic acids as food additives in beer. Within Standard 1.3.1, this permission would apply to the food category 14.2.1 - Beer and related products. Citric and lactic acids are currently permitted as food additives in a large range of foods at levels consistent with Good Manufacturing Practice (GMP). For the proposed use of citric and lactic acids in beer and related products, this Application also requests GMP permission. The food technology assessment concluded that certain types of beers exhibit improved flavour profiles due to pH reduction achieved by the addition of citric and lactic acids. Maximum levels of addition are expected to be approximately 3 g per litre of beer (total of citric acid plus lactic acid). Citric acid and lactic acid are substances of very low toxicity. Citric acid occurs in many foods, with levels of approximately 10 and 50 g/L in orange juice and lemon juice, respectively. Lactic acid levels are highest in foods produced by fermentation, with levels of approximately 10 g/kg reported for cheese and yogurt. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) concluded that establishment of an Acceptable Daily Intake (ADI) expressed in numerical terms was unnecessary for either substance.
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]