Mathematical Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Sciences NORTHERN ILLINOIS UNIVERSITY | COLLEGE OF LIBERAL ARTS AND SCIENCES Mathematical Sciences Mathematics is still the basis for understanding and solving economic, scientific, engineering, physics and business problems. It’s also one of the most dynamic fields in which to work. Mathematicians use computational techniques, algorithms, and the latest technology to meet the ever-increasing demand for data analysis and statistical information. At NIU, you’ll not only learn the fundamentals but one also choose electives that prepare you for graduate school, professional school or dozens of exciting careers in this challenging and vital field. Academic support Scholarships and Awards Degree Offerings We would like every student to succeed Merit scholarships are available for incoming We offer a Bachelor of Science (B.S.) degree in our courses. Our faculty members are and continuing students. These opportunities with emphases in the following areas: always willing to help, and we encourage range from $500-$4,000 and you can apply you to reach out to them. online via the MyScholarships system. We also General mathematics have a number of financial awards that We Applied mathematics One-on-one and group tutoring sessions are also present numerous financial awards at the Computational mathematics available from the Mathematics Assistance end of the year or even upon graduation to Mathematics education (teach grades 9-12) Center in DuSable 326. We offer topic reward achievement. sessions throughout the week which Minors are available in: summarize main points and answer Applied Mathematics questions posed in the previous week’s General Mathematics material. We also offer exam review sessions Secondary Mathematics Education and practice exams Tutoring is also available through the university’s ACCESS Tutoring and Support Services. MATHEMATICAL SCIENCES AT NORTHERN ILLINOIS UNIVERSITY Degree Requirements The department offers a Bachelor of Science (B.S.) degree in mathematical Contact Information sciences with emphases in four areas: Department of Mathematical Sciences • General Mathematics - appropriate choice if you wish to pursue Northern Illinois University graduate degrees, or attend professional school, teach in a community Watson Hall, room 320 college or above. 815-753-0566 • Applied Mathematics - appropriate choice if you’re interested in www.math.niu.edu problems arising from industry or engineering, and prepares you for many technical fields. What can I do with • Computational Mathematics - investigates the nature of this degree? computation and the methods used to compute mathematical In addition to preparing you for quantities accurately and efficiently. graduate degrees, there are numerous • Mathematics Education - you’ll earn both a mathematics degree and opportunities for those who hold a an Illinois State licensure to teach in secondary schools. Learn more at mathematics degree! go.niu.edu/math-licensure. Applications Programmer • We also offer an honors program inmathematical sciences. High school math teacher (9-12) Computational Scientist Computer Applications Software Engineer Emphasis 1. General (44-46 credits) MATH 440 - Elements of Complex Analysis Computer Programmer Requirements in Department MATH 444 - Linear Programming and Network Flows Computer Systems Analyst MATH 229 - Calculus I MATH 460 - Modeling Dynamical Systems Database Administrator MATH 230 - Calculus II STAT 400 - Probability Operations Research Analyst MATH 232 - Calculus III STAT 401 - Stochastic Processes Systems Engineer MATH 240 - Linear Algebra and Applications One additional MATH/STAT course numbered above Applied Mathematician MATH 336 - Ordinary Differential Equations MATH 333 Business Analyst MATH 360 - Model Building in Applied Mathematics Requirements outside Department MATH 420 - Abstract Algebra I CSCI 230 - Computer Programming in FORTRAN Communications Engineer MATH 421 - Abstract Algebra II OR CSCI 240 - Computer Programming in C++ Economic Analyst OR MATH 423 - Linear and Multilinear Algebra STAT 300 - Introduction to Probability and Statistics Investment Manager MATH 430 - Advanced Calculus I Special Requirement: Students in this emphasis are Market Researcher Northern Illinois University is an equal opportunity/affirmative action institution. Printed by authority of the State of Illinois. niu.edu 48686 6/19 MATH 431 - Advanced Calculus II required to complete a minor selected with the approval Product Developer Two additional courses from MATH courses numbered of the department. above MATH 333 or STAT courses numbered above 299. Biomathematican Biomedical Engineer Requirement outside Department Emphasis 3. Computational Mathematics CSCI 230 - Computer Programming in FORTRAN (44-45 credits) OR CSCI 240 - Computer Programming in C++ Requirements in Department: Emerging Fields Recommendations MATH 229 - Calculus I Computational Biology MATH 440 - Elements of Complex Analysis MATH 230 - Calculus II Genomics MATH 450 - Introduction to Topology MATH 232 - Calculus III Data Mining PHYS 253 - Fundamentals of Physics I: Mechanics MATH 240 - Linear Algebra and Applications Neuroscience MATH 360 - Model Building in Applied Mathematics Emphasis 2. Applied Mathematics (44-47 credits) MATH 420 - Abstract Algebra I Materials Science Requirements in Department: MATH 430 - Advanced Calculus I Computer Animation MATH 229 - Calculus I MATH 434 - Numerical Linear Algebra Digital Imaging MATH 230 - Calculus II MATH 435 - Numerical Analysis MATH 232 - Calculus III One of the following: MATH 240 - Linear Algebra and Applications MATH 380 - Elementary Combinatorics MATH 336 - Ordinary Differential Equations MATH 423 - Linear and Multilinear Algebra OR MATH 334 - Foundations of Applied Mathematics MATH 440 - Elements of Complex Analysis MATH 360 - Model Building in Applied Mathematics MATH 444 - Linear Programming and Network Flows MATH 430 - Advanced Calculus I MATH 496 - Seminar in Computational Mathematics MATH 431 - Advanced Calculus II STAT 435 - Applied Regression Analysis Two of the following: Additional course MATH 420 - Abstract Algebra I One additional course from: MATH 434 - Numerical Linear Algebra CSCI 340 - Data Structures and Algorithm Analysis MATH 435 - Numerical Analysis CSCI 464 - Data Structures in Assembly Language MATH 438 - Theory of Differential Equations MATH/STAT courses numbered above 333 MATH 439 - Applied Mathematics for Sciences and Requirements outside Department: Engineering CSCI 230 - Computer Programming in FORTRAN OR MATH 442 - Elements of Partial Differential OR CSCI 240 - Computer Programming in C++ Equations STAT 300 - Introduction to Probability and Statistics.
Recommended publications
  • Mathematical Economics - B.S
    College of Mathematical Economics - B.S. Arts and Sciences The mathematical economics major offers students a degree program that combines College Requirements mathematics, statistics, and economics. In today’s increasingly complicated international I. Foreign Language (placement exam recommended) ........................................... 0-14 business world, a strong preparation in the fundamentals of both economics and II. Disciplinary Requirements mathematics is crucial to success. This degree program is designed to prepare a student a. Natural Science .............................................................................................3 to go directly into the business world with skills that are in high demand, or to go on b. Social Science (completed by Major Requirements) to graduate study in economics or finance. A degree in mathematical economics would, c. Humanities ....................................................................................................3 for example, prepare a student for the beginning of a career in operations research or III. Laboratory or Field Work........................................................................................1 actuarial science. IV. Electives ..................................................................................................................6 120 hours (minimum) College Requirement hours: ..........................................................13-27 Any student earning a Bachelor of Science (BS) degree must complete a minimum of 60 hours in natural,
    [Show full text]
  • Priorities for the National Science Foundation
    December 2020 Priorities for the National Science Foundation Founded in 1888, the American Mathematical Society (AMS) is dedicated to advancing the interests of mathematical research and scholarship and connecting the diverse global mathematical community. We do this through our book and journal publications, meetings and conferences, database of research publications1 that goes back to the early 1800s, professional services, advocacy, and awareness programs. The AMS has 30,000 individual members worldwide and supports mathemat- ical scientists at every career stage. The AMS advocates for increased and sustained funding for the National Science Foundation (NSF). The applications The NSF supports more fundamental research in the of advances in mathematical sciences—and done at colleges and theoretical science, 2 universities—than any other federal agency. A signif- including theory of icant increase in Congressional appropriations would mathe matics, occur help address the effects of years of high-quality grant on a time scale that proposals that go unfunded due to limited funding. means the investment Those unmet needs continue. A 2019 National Science Board report3 stated that in fiscal year 2018, “approxi- is often hard to justify mately $3.4 billion was requested for declined proposals in the short run. that were rated Very Good or higher in the merit review process.” This accounts for about 5440 declined proposals at the NSF. The U.S. is leaving potentially transformative scientific research unfunded, while other countries are making significant investments. In the next section we give an overview of our two priorities. The second, and final section offers a discussion of existing funding mechanisms for mathematicians.
    [Show full text]
  • Mathematical and Physical Sciences
    Overview of the Directorate for Mathematical and Physical Sciences NSF Grants Conference Hosted by George Washington University Arlington, VA, October 6-7, 2014 Bogdan Mihaila, [email protected] Program Director Division of Physics US Government NSF Vision and Goals Vision » A Nation that creates and exploits new concepts in science and engineering and provides global leadership in research and education Mission » To promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense Strategic Goals » Transform the frontiers of science and engineering » Stimulate innovation and address societal needs through research & education » Excel as a Federal Science Agency NSF in a Nutshell Independent agency to support basic research & education Grant mechanism in two forms: » Unsolicited, curiosity driven (the majority of the $) » Solicited, more focused All fields of science/engineering Merit review: Intellectual Merit & Broader Impacts Discipline-based structure, some cross-disciplinary Support large facilities NSF Organization Chart Office of Diversity & National Science Board Director Inclusion (ODI) (NSB) Deputy Director Office of the General Counsel (OGC) Office of the NSB Office Office of International & Inspector General $482M (OIG) ($4.3M) Integrative Activities (OIIA) ($14.2M) Office of Legislative & Public Affairs (OLPA) Computer & Mathematical Biological Information Engineering Geosciences & Physical Sciences Science & (ENG) (GEO) Sciences (BIO) Engineering (MPS) (CISE)
    [Show full text]
  • Mathematical and Physical Sciences
    DIRECTORATE FOR MATHEMATICAL AND $1,255,820,000 PHYSICAL SCIENCES (MPS) -$247,590,000 / -16.5% MPS Funding (Dollars in Millions) Change over FY 2018 FY 2019 FY 2020 FY 2018 Actual Actual (TBD) Request Amount Percent Astronomical Sciences (AST) $311.16 - $217.08 -$94.08 -30.2% Chemistry (CHE) 246.29 - 214.18 -32.11 -13.0% Materials Research (DMR) 337.14 - 273.78 -63.36 -18.8% Mathematical Sciences (DMS) 237.69 - 203.26 -34.43 -14.5% Physics (PHY) 310.75 - 247.50 -63.25 -20.4% Office of Multidisciplinary Activities (OMA) 60.39 - 100.02 39.63 65.6% Total $1,503.41 - $1,255.82 -$247.59 -16.5% About MPS The MPS FY 2020 Request builds on past efforts and aligns with NSF priorities for FY 2020. The programs in MPS span from individual investigator awards to large, multi-user facilities. MPS-funded science spans an enormous range as well: from the smallest objects and shortest times ever studied to distances and times that are the size and age of the universe. Individual investigators and small teams receive most awards, but centers, institutes, and facilities are all integral to MPS-funded research. The MPS FY 2020 Request is influenced by four key priorities: (1) sustaining core research programs, (2) supporting the highest priority facilities, (3) supporting early-career investigators, and (4) providing funding for targeted basic research in NSF-Wide Investments, including the NSF Big Ideas. MPS continues to support its core areas of science (astronomical sciences, chemistry, materials research, mathematical sciences, and physics) as well as thet next generation of scientists.
    [Show full text]
  • Brochure on Careers in Applied Mathematics
    careers in applied mathematics Options for STEM Majors society for industrial and applied mathematics 2 / careers in applied mathematics Mathematics and computational science are utilized in almost every discipline of science, engineering, industry, and technology. New application areas are WHERE CAN YOU WHAT KINDS OF PROBLEMS MIGHT YOU WORK ON? constantly being discovered MAKE AN IMPACT? While careers in mathematics may differ widely by discipline while established techniques Many different types and job title, one thing remains constant among them— are being applied in new of organizations hire problem solving. Some potential problems that someone with ways and in emerging fields. mathematicians and mathematical training might encounter are described below. Consequently, a wide variety computational scientists. Which of them do you find most intriguing, and why? of career opportunities You can easily search the • How can an airline use smarter scheduling to reduce costs of are open to people with websites of organizations and aircraft parking and engine maintenance? Or smarter pricing mathematical talent and corporations that interest to maximize profit? training. you to learn more about their • How can one design a detailed plan for a clinical trial? Building such a plan requires advanced statistical skills and In this guide, you will find answers to sophisticated knowledge of the design of experiments. questions about careers in applied mathematics • Is ethanol a viable solution for the world’s dependence and computational science, and profiles on fossil fuels? Can biofuel production be optimized to of professionals working in a variety of combat negative implications on the world’s economy and environment? environments for which a strong background • How do we use major advances in computing power to in mathematics is necessary for success.
    [Show full text]
  • Report of the MPSAC
    Report of the Subcommittee of the MPSAC to Examine the Question of Renaming the Division of Mathematical Sciences James Berger (Duke University) Emery Brown (Massachusetts Institute of Technology) Kevin Corlette (University of Chicago) Irene Fonseca (Carnegie Mellon University) Juan C. Meza (University of California – Merced) Fred Roberts (Rutgers University) (chair) Background Dr. Sastry Pantula, Director of the NSF Division of Mathematical Sciences, has proposed that the Division be renamed the Division of Mathematical and Statistical Sciences. In a letter to Dr. James Berger, chair of the MPSAC, the MPS Assistant Director Ed Seidel asked Dr. Berger to form a subcommittee to examine the question of renaming the Division of Mathematical Sciences at NSF. It included the following charge to the subcommittee: Charge The subcommittee will develop the arguments, both in favor of, and against, the suggestion of renaming the Division of Mathematical Sciences. In doing so, the scope of the subcommittee will include the following: • Seeking input from the mathematical and statistical societies within the U.S; • Seeking input from individual members of the community on this matter; and • Developing a document listing the arguments in favor of, and against, the suggestion. • And other comments relevant to this topic. In order to accept input from the public, MPS will arrange for creation of a website or email address to which the community may send its comments. Comments may be unsigned. While the subcommittee is not required to announce its meetings and hold them open to the public because it will be reporting directly to the MPSAC, any documents received by or created by the subcommittee may be subject to access by the public.
    [Show full text]
  • Statistics: Challenges and Opportunities for the Twenty-First Century
    This is page i Printer: Opaque this Statistics: Challenges and Opportunities for the Twenty-First Century Edited by: Jon Kettenring, Bruce Lindsay, & David Siegmund Draft: 6 April 2003 ii This is page iii Printer: Opaque this Contents 1 Introduction 1 1.1 The workshop . 1 1.2 What is statistics? . 2 1.3 The statistical community . 3 1.4 Resources . 5 2 Historical Overview 7 3 Current Status 9 3.1 General overview . 9 3.1.1 The quality of the profession . 9 3.1.2 The size of the profession . 10 3.1.3 The Odom Report: Issues in mathematics and statistics 11 4 The Core of Statistics 15 4.1 Understanding core interactivity . 15 4.2 A detailed example of interplay . 18 4.3 A set of research challenges . 20 4.3.1 Scales of data . 20 4.3.2 Data reduction and compression. 21 4.3.3 Machine learning and neural networks . 21 4.3.4 Multivariate analysis for large p, small n. 21 4.3.5 Bayes and biased estimation . 22 4.3.6 Middle ground between proof and computational ex- periment. 22 4.4 Opportunities and needs for the core . 23 4.4.1 Adapting to data analysis outside the core . 23 4.4.2 Fragmentation of core research . 23 4.4.3 Growth in the professional needs. 24 4.4.4 Research funding . 24 4.4.5 A Possible Program . 24 5 Statistics in Science and Industry 27 5.1 Biological Sciences . 27 5.2 Engineering and Industry . 33 5.3 Geophysical and Environmental Sciences .
    [Show full text]
  • MORSE Mathematics Operational Research Statistics Economics
    MORSE Mathematics Operational Research Statistics Economics BSc Hons • MMORSE • SCHOOL Mathematics MORSE (BSc Hons • MMORSE ) Honours Degrees in Mathematics, Operational Research, Statistics and Economics • UNIVERSITY MORSE An integrated Single Honours Degree, designed to provide a sound basis leading to What is MORSE? a wide variety of careers. MORSE is a single honours degree The theory of pure mathematics is taught • CAREER in mathematics and its practical with relevance to applications in operational application to Business, Finance, research, statistics, finance, econometrics Economics, and other topics and it and mathematical economics. › Professions is available only at the University of No previous knowledge of these areas is • Actuary Warwick. Instead of pursuing the necessary. • Accountancy more traditional areas of Applied • Finance Mathematics, MORSE relates Available as a three year BSc (UCAS CODE: Pure Mathematics to the modern GLN0) or as a four year integrated Master’s › Statistician application areas described opposite. (UCAS CODE: GOL0) in which students specialise in their final two years in one • Industry MORSE contains a balance of of four possible streams: Actuarial and Financial Mathematics; Operational • Civil Service mathematical theory and practical Research and Statistics; Econometrics and work in order to produce high quality › Operational Mathematical Economics; or Statistics with graduates who are mathematically Mathematics. Control equipped to deal with the practical • Management problems of the modern world. Application should be made to only one Consultancy of these courses. If in doubt, apply for the four year integrated Master’s because it is • Modelling possible to transfer to the three year BSc at the end of the second year.
    [Show full text]
  • The Center of Mathematical Sciences and Applications at Harvard University by Shing-Tung Yau, Director*,†
    The Center of Mathematical Sciences and Applications at Harvard University by Shing-Tung Yau, Director*,† The Center of Mathematical Sciences and Appli- cations at Harvard University was created as a fu- sion point for mathematics, statistics, physics, and related sciences, with the purpose of establishing ap- plied mathematics at Harvard as a first-class, inter- disciplinary field of study. The Center carries out the most innovative research while also training young researchers from all over the world, especially those from China. In addition to hosting several regu- lar seminars and a colloquium, the Center also fre- quently hosts larger conferences and workshops on a variety of topics, including topological insulators, big data, and optimization in image processing. The Center hosted its inaugural events on the afternoon of April 10, 2014, with talks from Prof. Shoucheng Zhang of Stanford University and Prof. Stanley Osher of the University of California at Los Angeles. Before the talks, the establishment of the Center of Mathematical Sciences and Applications was celebrated with a reception attended by Provost Alan Garber, Dean Jeremy Bloxham, Administrative Dean Russ Porter, and a few members of the Ever- grande Group, among others. At the lectures, Jeremy Bloxham, Dean of Science, welcomed attendees and congratulated Prof. Shing-Tung Yau, director of the Center of Mathematical Sciences and Applications, for his considerable effort and leadership in estab- * Department of Mathematics, Harvard University E-mail: [email protected] Figure 1. Prof. Shing-Tung Yau, Director of the † The author wishes to thank Sarah LaBauve for her assis- Center of Mathematical Sciences and Applications, tance in preparing this article, and for organizing the inau- guration ceremony, along with Irene Minde and others in the presents Mr.
    [Show full text]
  • Assistantships and Graduate Fellowships in the Mathematical Sciences
    2011 Assistantships and Graduate Fellowships in the Mathematical Sciences American Mathematical Society Compiled under the direction of the Annual Survey Data Committee, sponsored by the AMS, ASA, IMS, MAA, and SIAM This publication is under the direction of the AMS-ASA-IMS-MAA-SIAM Annual Survey Data Committee. Members of the committee are: Pam Arroway, Richard Cleary (chair), Steven Dunbar, Susan Geller, Boris Hasselblatt, Abbe H. Herzig, Ellen Kirkman, Peter March, James W. Maxwell (ex officio), David Morrison, and Bart Ng. ISSN 1040-7650 ISBN-13: 978-0-8218-6897-3 c Copyright 2011 by the American Mathematical Society Printed in the United States of America All rights reserved ∞ The paper in this publication is acid-free and falls within the guidelines established to ensure permanence and durability. This publication was typeset using the TEX typesetting system. Visit the AMS website at URL: http://www.ams.org 10987654321 161514131211 ii CONTENTS Foreword v Current Employment Trends in the Mathematical Sciences vii Introduction Organization of This Book xi Assistantships and Graduate Fellowships 1 iii FOREWORD This is the twenty-fourth issue of Assistantships and Graduate Fellowships in the Mathematical Sciences (A&GF). This publication is primarily intended as a conve- nient source of comparative information on graduate programs in the mathematical sciences for prospective graduate students and their advisors. Its contents will also be useful to others in the mathematical community who are interested in support patterns for graduate education. The A&GF is a complement to the annual Society publication, Mathematical Sciences Professional Directory. Information in the A&GF was provided by departments in response to a survey questionnaire mailed in late spring 2011.
    [Show full text]
  • Keynote Speaker-2 How I Became a Computational Scientist
    Keynote Speaker-2 How I Became a Computational Scientist J. Mailen Kootsey Redlands, California, USA Email: [email protected] Abstract— Professional journal advertisements, email newsletters, and university marketing now advertise numerous educational and research programs in computational physics, computational biology, and other fields where computation is an essential element of the discipline. These programs all have very recent origins, made possible by the exponential growth in the availability of compute power. In this presentation, I describe some milestones in my own experience as a person living through and participating in the birth of computational science – especially the contributions of computing to scientific theory and understanding. I began my history with analog computing, learned numerical methods by manual computations of derivatives and integrals, learned to program an early vacuum tube computer, and experienced challenges in finding acceptance for computer methods in traditional biomedical disciplines. Keywords—computational science, history of science, biomedicine, cardiac electrophysiology, analog computer, numerical methods. 1. Introduction : Computers are now making major contributions to all fields of science, from fundamental particle physics through chemistry, biology, and medicine, to the social sciences and cosmology. A major part of the computer contribution to these fields is related to data: acquisition, organization, presentation, sharing, and pattern recognition in data. Computers are also changing scientific theory by making it possible to explore and evaluate models that are much more realistic and complex than could be considered with only analytic and hand calculations. Computational science did not spring into existence fully developed, but experienced birth and development like a living system. In some scientific fields, the contribution of computing to theory is still in early stages.
    [Show full text]
  • Computational Scientist Tracking Code 3624 Job Description
    Computational Scientist Tracking Code 3624 Job Description Assistant Computational Scientist/Associate Computational Scientist/Computational Scientist in Computational Sciences-Statistics & Analytics Group The Jackson Laboratory of Genomic Medicine, based in Farmington, CT is seeking computational scientists of all levels to join our Computational Sciences – Statistics & Analytics (CS-SA) group. These positions offer the opportunity to make leading contributions to cutting edge research in mouse genetics, disease biology, and translational research in collaboration with the faculty and genetic resource scientists and clients of The Jackson Laboratory (JAX). Cross campus and industry collaborations are encouraged. These positions report to the Director of Jackson’s Computational Sciences (CS) team and have primary responsibility for providing statistical and analytical bioinformatics expertise and interpretation to the scientific research programs at the Jackson Laboratory for Genomic Medicine in Farmington, CT and its collaborative programs. Characteristic distinction from Assistant Computational Scientist to Associate Computational Scientist to Computational Scientist include increased ability to work independently, development of in-depth knowledge in selected biological disciplines to analyze and provide expert reasoning to the relevant projects. A Computational Scientist is expected to independently establish collaborations within JAX, providing expert reasoning to the projects relevant to his disciplines and make leading contributions
    [Show full text]