A General Introduction on Metrology and Traceability

Total Page:16

File Type:pdf, Size:1020Kb

A General Introduction on Metrology and Traceability A general introduction on metrology and traceability Paul Brewer LNG metrology workshop 15th June 2016 National Physical Laboratory • Develop and disseminate UK’s measurement standards, ensure international acceptance • Knowledge transfer and advice between industry, government and academia • Support Industry, trade, regulation, legislation, quality of life, science and innovation industrial environment energy Gas and Particle particles Metrology The Fundamentals of Metrology • What is metrology and what is it for? • What is an NMI and what is it for? • What is the mole and what is it for? What is ‘Metrology’? . Metrology is “the science of measurement, embracing both experimental and theoretical determinations at any level of uncertainty in any field of science and technology.” . Almost all of science and industry involves making and interpreting measurement – why is metrology special? The Proclamation Regarding Weights and Measures, 1556 by Ford Madox Brown (1889) The electrochemical characteristics of platinum phthalocyanine . Quantitative conclusions inferred; but what was the accuracy, repeatability, reproducibility and uncertainty of these measurements? . Would this have affected the conclusions? Metrology’s main activities . The definition of internationally accepted units of measurement, e.g. the kilogram . The realisation of units of measurement by scientific methods . The establishment of (metrological) traceability chains by disseminating and documenting the value and accuracy of a measurement . Traceability implies the calculation of an associated measurement uncertainty . These activities may be fundamental (scientific) or applied (practical, industrial, legal) International vocabulary of metrology The Results of Metrology . Generates systems and frameworks for quantification and through these underpins consistency and assurance in all measurement . Gives a quantified level of confidence in the measurement through an uncertainty statement . Provides a measurement infrastructure which is stable over time, comparable between locations, and coherent, allowing measurements of different properties using different methods to be combined (without scaling factors) . Removes barriers to trade, improves efficiency and competitiveness, enables technological development, encourages global agreement and collaboration confidence in trends confidence in spatial data . Provides a measurement infrastructure which is stable over time, comparable between locations, and coherent, allowing measurements of different properties using different methods to be combined (without scaling factors) confidence that data can be used directly in the equations of chemical physics – unique to the SI How did we get here? . After the French Revolution (1789) old units of measurement associated with the old regime were replaced by new units . The meridional definition of the metre was soon replaced by a metre bar, ‘Mètre des Archives’, in 1799 . As more countries adopted this new ‘metric’ system there was a danger of lack of comparability, or rival systems emerging . Prompted by the need to unify geodesic measurement, 17 governments signed “the Metre Convention” in 1875 . This diplomatic treaty established a permanent organizational structure for member governments to act in common accord on all matters relating to units of measurement. Initially covering just mass and length standards, the coverage grew to encompass the current ‘International System of Units (SI)’ The Metre Convention . The UK was initially reluctant to join. Not to do with non-acceptance of the metric system but more the fear that the endeavour would grow in size and end up costing additional money . In April 1884 H. J. Chaney, Warden of Standards in London, contacted the BIPM to calibrate some UK metre standards. O.-J. Broch, director of the BIPM replied that he could not perform any calibrations for non-member states . On 17 September 1884, the British Government signed the convention on behalf of the United Kingdom National Prototype Metre Bar No. 27, Creating the metre-alloy in 1874 at the made in 1889, given to the USA served as Conservatoire des Arts et Métiers the standard for length from 1893 to 1960 International Infrastructure Originally responsible for curating the primary artefactual standards NMI NMI interaction The SI system of units . The 11th CGPM (1960) adopted the name International System of Units, SI, for the recommended practical system of units of measurement . The base units are a choice of seven units which are regarded as dimensionally independent: the metre, the kilogram, the second, the ampere, the kelvin, the mole, the candela . Derived units are those formed by combining base units according to the algebraic relations linking the corresponding quantities . The SI is not static but evolves to match evolving requirements for measurement The seven dimensionally independent SI base units Examples of derived units National Metrology Institutes (NMIs) . The move away from single artefactual realisations of units and the burgeoning need for calibrations and local support for trade and industry resulted in the establishment of NMIs . 1887: PTR, Germany (PTB from 1945), 1900: NPL, 1901: NBS, USA (NIST from 1988) . NMIs are institutes designated by nation states to develop, improve and maintain national measurement standards for one or more quantities . NMIs represent their country internationally in relation to the NMIs of other countries, Regional Metrology Organisations, and the BIPM . The NMI or its government may appoint other institutes to hold specific national standards: ‘Designated Institutes’ Expansion of the Metre Convention . This has prompted: a) The requirement for regional organisation of NMIs b) Need to understand the comparability of NMIs Regional Metrology Organisations . Performs regional coordination of metrology activities – often with wider scope than the Metre Convention (e.g. EMRP), development of smaller NMIs, regional comparisons, etc CIPM Mutual Recognition Arrangement (MRA) . The MRA was a response to a growing need to give users reliable quantitative information on the comparability of national metrology services. Its objectives: a) To establish the degree of equivalence of national measurement standards at NMIs and DIs b) To provide for the mutual recognition of calibration and measurement certificates issued by NMIs and DIs c) Provide a secure technical foundation for wider international agreements relating to trade, commerce and regulation . The CIPM MRA has been signed by the representatives from 57 Member States, 41 Associates of the CGPM, and 4 international organizations – and covers a further 150 institutes designated by the signatory bodies. CIPM MRA in practice . Participation in key comparisons . CMC claims . Coordinated by CCQM . Input from Euramet Chemical metrology and the mole . Metrology has developed mainly from physical measurement where measurement equations and traceability chains are transparent . Chemical measurements are more complex because of the multi- parameter nature of the problem: Component Amount (concentration) Matrix Isotopic distribution . Chemical measurements also more interested in qualitative measurement (presence or absence) than the physical measurement . In bio-metrology these problems have additional complexity which are not fully part of the SI: what is it (identity), is it alive (and other nominal properties), how many are there (counting quantities)? The mole . 14th CGPM in 1971 adopted the mole as the 7th base unit of the SI (3) . The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is "mol" . When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles . In this definition, it is understood that unbound atoms of carbon 12, at rest and in their ground state, are referred to Why do we need the mole? Lessons from 1971: . Chemists expressed the need for a quantity which was defined as directly proportional to the number of entities in a sample of a substance . It was preferable to adopt a convention with amount of substance having its own dimension. This convention was in wide use by chemists and already recommended by IUPAC, IUPAP and ISO . The wish for chemists to adopt the SI – but the need to incorporate a base unit for amount of substance into the SI to make this happen . A basis to establish stoichiometric relationships (which are not describable in mass terms) Additional benefits . Introduced dimensional analysis to chemistry . Brings the equations of chemical physics within the SI . Allows intensive and extensive quantities in chemistry to be distinguished (e.g. m3/mol rather than just m3) . Resolved the confusion arising from the use of both: g-mol and kg-mol 12C and 16O basis . To express chemical quantities using user-friendly numbers, for instance: 0.1 mol/dm3 Realising the mole . Like other base units the mole may be ‘realised’ (mise en pratique) using ‘primary methods’ . Unlike the other base units the mole is rarely realised directly as an extensive quantity . Instead the mole is realised via related intensive quantities The composition of mixtures Matrix reference materials RJC Brown, Intern. J. Environ. Anal. Chem. 2008, 88, 681–687 Uncertainty of realisation . Unlike the IPK, the realisation of the mole has an associated uncertainty . The uncertainty associated
Recommended publications
  • 2 Amount and Concentration: Making and Diluting Solutions 2 Amount and Concentration; Making and Diluting Solutions
    Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration. 2 Amount and concentration: making and diluting solutions 2 Amount and concentration; making and diluting solutions.........................................................1 2A Rationale.............................................................................................................................1 2B Distinguishing between amount and concentration, g and %w/v..........................................1 2C Distinguishing between amount and concentration, moles and molar...................................2 2D Practice converting g/L to M and vice versa........................................................................3 2E Diluting Solutions ...............................................................................................................5 2F Practice calculating dilutions ...............................................................................................6 Summary of learning objectives................................................................................................7 2A Rationale Biological and biochemical investigations rely completely upon being able to detect the concentration of a variety of substances. For example, in diabetics it is important to know the concentration of glucose in the blood and you may also need to be able to calculate how much insulin would need to be dissolved in a certain volume of saline so as to give the right amount in a 1ml injection volume. It is also vitally
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Towards Future SI Measurement Standards
    European Metrology Research Programme Towards future SI measurement standards A summary of the outputs and impact of the completed EMRP joint research projects in the SI Broader Scope theme and also projects from the Open Excellence theme. The aim of research in these themes is to develop the International System of measurement – the SI – to meet the future measurement needs of industry and society. The research is focused on the SI units for temperature, mass, electric current and time, and on technologies required by users for its implementation. EURAMET e.V. - the European Association of National Metrology Institutes Measurement matters Measurement underpins virtually every aspect of our daily lives, helping to ensure quality and safety, supporting technological innovation and keeping our economy competitive. Supported by the European Commission, EURAMET’s European Metrology Research Programme (EMRP) brings together National Measurement Institutes in 23 countries to pool scientific and financial resources to address key measurement challenges at a European level. The programme is designed to ensure that measurement science meets the future needs of industry and wider society. Research is structured around six themes – Energy, Environment, Health and Industry – as well as the measurement needs of emerging technologies and the fundamentals of the SI measurement units that form the basis of Europe’s measurement infrastructure. Contents Introduction: SI Broader Scope ............................................................................................................................................
    [Show full text]
  • The Nexus Between Human Rights and Democracy
    E-PAPER A Companion to Democracy #1 To be Equal and Free: The Nexus Between Human Rights and Democracy THANDIWE MATTHEWS A Publication of Heinrich Böll Foundation, December 2019 Preface to the E-Paper Series “A Companion to Democracy” Democracy is a fluid, ever evolving and adaptable concept. It is influenced by historical and social context, geopolitical characteristics of a country, its neighbors, allies and adversaries, the political climate, local and global trends. The e-papers series “A Companion to Democracy” examine the phenomena and concepts closely related to democracy and democratization – those which have both a positive and a negative influence upon it. Some, like autocratization, corruption, the loss of legitimacy for democratic institutions and parties, curtailing civic participation or the uncontrolled proliferation of misleading information can rock democracy to its core. Others like human rights, active civil society engagement and accountability strengthen its foundations and develop alongside it. Our e-paper series delves into the most recent global trends and debates regarding democracy and its interactions with society, politics, rights and freedom. To be Equal and Free: The Nexus Between Human Rights and Democracy 2/ 29 To be Equal and Free: The Nexus Between Human Rights and Democracy Thandiwe Matthews 3 Contents Introduction 4 The ambiguous relationship between democracy and human rights 6 The evolution of the international human rights system: achievements and shortcomings 9 The erosion of human rights and its
    [Show full text]
  • Standards and Units: a View from the President of the Royal Society of New South Wales
    Journal & Proceedings of the Royal Society of New South Wales, vol. 150, part 2, 2017, pp. 143–151. ISSN 0035-9173/17/020143-09 Standards and units: a view from the President of the Royal Society of New South Wales D. Brynn Hibbert The Royal Society of New South Wales, UNSW Sydney, and The International Union of Pure and Applied Chemistry Email: [email protected] Abstract As the Royal Society of New South Wales continues to grow in numbers and influence, the retiring president reflects on the achievements of the Society in the 21st century and describes the impending changes in the International System of Units. Scientific debates that have far reaching social effects should be the province of an Enlightenment society such as the RSNSW. Introduction solved by science alone. Our own Society t may be a long bow, but the changes in embraces “science literature philosophy and Ithe definitions of units used across the art” and we see with increasing clarity that world that have been decades in the making, our business often spans all these fields. As might have resonances in the resurgence in we shall learn the choice of units with which the fortunes of the RSNSW in the 21st cen- to measure our world is driven by science, tury. First, we have a system of units tracing philosophy, history and a large measure of back to the nineteenth century that starts social acceptability, not to mention the occa- with little traction in the world but eventu- sional forearm of a Pharaoh. ally becomes the bedrock of science, trade, Measurement health, indeed any measurement-based activ- ity.
    [Show full text]
  • Analysis of an Optical Lattice Methodology for Detection of Atomic Parity Nonconservation
    S S symmetry Article Analysis of an Optical Lattice Methodology for Detection of Atomic Parity Nonconservation 1, ,† 2,† 3,† 4,† Anders Kastberg ∗ , Bijaya Kumar Sahoo , Takatoshi Aoki , Yasuhiro Sakemi and Bhanu Pratap Das 5,† 1 Institute de Physique de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France 2 Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India; [email protected] 3 Institute of Physics, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; [email protected] 4 Center for Nuclear Study, The University of Tokyo, Wako 351-0198, Japan; [email protected] 5 International Education and Research Center of Science and Department of Physics, Tokyo Institute of Technology, Tokyo 152-8550, Japan; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 9 May 2020; Accepted: 30 May 2020; Published: 8 June 2020 Abstract: We present an extension and a deepened analysis of a suggested experimental scheme for detecting atomic parity violation, previously published in Phys. Rev. A 2019, 100, 050101. The experimental concept is described in more detail and we compute new ab initio data necessary for assessing the plausibility of the approach. Original theoretical data for transition matrix elements 2 2 on the electric dipole forbidden transition in caesium 6s S1/2–5d D3/2 are reported, as are a range of electric dipole matrix elements connected to the ground state 6s. The latter is used for an analysis of the wavelength-dependent light shift in Cs.
    [Show full text]
  • Conversion Factors
    Conversion Factors Conversion factors are ratios of one object to another object. A ratio is a way of comparing two quantities. The quantities can be compared in three different ways: a to b, a:b, or a/b. At the local grocery store, a case of soda contains 24 cans. We can express the ratio in three forms: (a to b) 24 cans of soda to each case of soda (a:b) 24 cans of soda: 1 case of soda (a/b) 24 cans of soda/1 case of soda This chapter uses conversion factors frequently to solve problems. Conversion factors are ratios written in the fraction form (a/b). In this chapter, there are three major conversion factors we will learn to use: A universal conversion factor: 1 mole of chemical contains 6.02 x 1023 molecules (or atoms) A molar mass conversion factor: 1 mole of chemical weighs the molar mass of the chemical A chemical formula conversion factor: 1 mole of chemical contains some number of moles of atoms If the chemical in the three conversion factors was CuCl2, then the three conversion factors would be: 23 1 mole of CuCl2 contains 6.02 x 10 molecules of CuCl2 1 mole of CuCl2 weighs 134.6 grams CuCl2 (the molar mass) 1 mole of CuCl2 contains 2 moles of chlorine atoms 1 The most common way that chemists represent ratios is in a fraction form. The three conversion factors would look like this in the fraction form: 1 mole CuCl2 1 mole CuCl2 1 mole CuCl2 23 6.02 x 10 molecule CuCl2 134.6 g CuCl2 2 mole Cl atoms Each of these conversion factors can be written in the inverse form.
    [Show full text]
  • Mc2 " Mc2 , E = K + Mc2 = ! Mc2 for Particle of Charge Q and Mass M Moving in B Field : P = ! Mu = Qbr E2 = ( Pc)2 + (Mc2 )2
    Department of Physics Modern Physics (2D) University of California Prof. V. Sharma San Diego Quiz # 3 (Jan 28, 2005) Some Relevant Formulae, Constants and Identities p = ! mu, K = ! mc2 " mc2 , E = K + mc2 = ! mc2 For particle of charge q and mass m moving in B field : p = ! mu = qBR E2 = ( pc)2 + (mc2 )2 In Photoelectric Effect E= hf = Kmax + # 23 Avagadro's Number NA = 6.022 $ 10 particles/mole Planck's Constant h=6.626 $ 10-34J.s=4.136 $ 10-15eV.s 1 eV = 1.602 $ 10-19 J -14 2 Electron rest mass = 8.2 $ 10 J = 0.511 MeV/c Proton rest mass = 1.673$ 10-27Kg = 938.3MeV/c2 Speed of Light in vaccum c = 2.998 $ 108m/s Electron charge = 1.602 $ 10-19 C Atomic mass unit u = 1.6605 $ 10-27kg = 931.49 MeV/c2 Please write your scratch work in pencil and write your answer in indelible ink in your Blue book. Please write your code number clearly on each page. Please plug in numbers only at the very end of your calculations. Department of Physics Modern Physics (2D) University of California Prof. V. Sharma San Diego Quiz # 3 (Jan 28, 2005) Problem 1: Weapons of Mass Destruction [10 pts] (a) How much energy is released in the explosion of a fission bomb containing 3.0kg of fissionable material? Assume that 0.10% of the rest mass is converted to released energy? (b) What mass of TNT would have to explode to provide the same energy release? Assume that each mole of TNT liberates 3.4MJ of energy on exploding.
    [Show full text]
  • Dynamics of Rydberg Atom Lattices in the Presence of Noise and Dissipation
    Dynamics of Rydberg atom lattices in the presence of noise and dissipation D zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von Wildan Abdussalam M.Sc. Eingereicht am 19.1.2017 Verteidigt am 07.08.2017 Eingereicht am 19.1.2017 Verteidigt am 07.08.2017 1. Gutachter: Prof. Dr. Jan Michael Rost 2. Gutachter: Prof. Dr. Walter Strunz To my family and teachers Abstract The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the pres- ence of decoherence caused by either laser phase noise or strong decay. In the Vrst case, we compare between global and local noise and explore their eUect on the number of ex- citations and the full counting statistics. We Vnd that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of eXciency in certain regimes, we use a Marko- vian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power- law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations.
    [Show full text]
  • Supplementary Description.Pdf
    MEASURING HYDROPEROXIDE CHAIN-BRANCHING AGENTS DURING N-PENTANE LOW-TEMPERATURE OXIDATION 1 1 2 2 3 Anne Rodriguez, Olivier Herbinet, Zhandong Wang , Fei Qi , Christa Fittschen , Phillip R. Westmoreland4,Frédérique Battin-Leclerc,1* 1 Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France 2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China 3PhysicoChimie des Processus de Combustion et de l’Atmosphère, CNRS, Université de Lille 1, 59650 Villeneuve d’Ascq, France 4Department of Chemical & Biomolecular Engineering - NC State University, USA SUPPLEMENTARY DESCRIPTION * To whom correspondence should be addressed. E-mail : [email protected] 1/ Additional details about the used experimental devices and methods 1a/ Schemes of the apparatuses coupling JSR to time-of-flight mass spectrometers combined with synchrotron and laser photoionization I: the differential pumped chamber with molecular-beam sampling system and II the photoionization chamber with the mass spectrometer: 1, VUV light; 2, to turbo molecular pumps; 3, molecular beam; 4, RTOF mass spectrometer; 5, ion trajectory; 6, microchannel plate detector; 7, quartz cone-like nozzle; 8, heated quartz jet-stirred reactor Schematic diagram of the instruments including the jet-stirred reactor and in (a) the synchrotron VUV photoionization mass spectrometer and in (b) the laser photoionization mass spectrometer. 1b/
    [Show full text]
  • Surface Realisation from Knowledge Bases Bikash Gyawali
    Surface Realisation from Knowledge Bases Bikash Gyawali To cite this version: Bikash Gyawali. Surface Realisation from Knowledge Bases. Computation and Language [cs.CL]. Universite de Lorraine, 2016. English. NNT : 2016LORR0004. tel-01754499v2 HAL Id: tel-01754499 https://hal.inria.fr/tel-01754499v2 Submitted on 18 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole´ doctorale IAEM Lorraine Surface Realisation from Knowledge Bases THESE` pr´esent´ee et soutenue publiquement le 20 Janvier 2016 pour l’obtention du Doctorat de l’Universit´ede Lorraine (Mention Informatique) par Bikash Gyawali Composition du jury Directrice : Claire Gardent Directrice de recherche, CNRS, LORIA, France Rapporteurs : Karin Harbush Professor, Universit¨at Koblenz-Landau, Germany Albert Gatt Senior Lecturer, University of Malta, Malta Examinateurs : Christophe Cerisara Charg´ede recherche, CNRS, LORIA, France Guy Perrier Professor Emerite, Universit´ede Lorraine, France Patrick Saint-Dizier Directeur de recherche, CNRS, IRIT, France (Pr´esident) Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503 Mis en page avec la classe thloria. Acknowledgements I take this opportunity to express my sincere thanks to everyone who directly or indirectly contributed to the success of my PhD studies.
    [Show full text]