Stephen Alien Norton This Report Is Preliminary and Has Not Been
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral Industries and Geology of Certain Areas
REPORT -->/ OF TFIE STATE GEOLOGIST ON THE S 7 (9 Mineral Industries and Geology 12 of Certain Areas OF -o VERMONT. 'I 6 '4 4 7 THIRD OF THIS SERIES, 1901-1902. 4 0 4 S GEORGE H. PERKINS, Ph. D., 2 5 State Geologist and Professor of Geology, University of Vermont 7 8 9 0 2 4 9 1 T. B. LYON C0MI'ANV, I'RINTERS, ALILiNY, New VORK. 1902. CONTENTS. PG K 1NTRODFCTION 5 SKETCH OF THE LIFE OF ZADOCK THOMPSON, G. H. Perkins ----------------- 7 LIST OF OFFICIAL REPORTS ON VERMONT GEOLOGY ----------------- -- -- ----- 14 LIST OF OTHER PUBLICATIONS ON VERMONT GEOLOGY ------- - ---------- ----- 19 SKETCH OF THE LIFE OF AUGUSTUS WING, H. M. Seely -------------------- -- 22 REPORT ON MINERAL INDUSTRIES, G. H. Perkins ............................ 35 Metallic Products ------------------------------------------------------ 32 U seful Minerals ------------------------------------------------------- 35 Building and Ornamental Stone ----------------------------------------- 40 THE GRANITE AREA OF BAItRE, G. I. Finlay------------------------------ --- 46 Topography and Surface Geology ------------------------------------ - -- 46 General Geology, Petrography of the Schists -------------------------- - -- 48 Description and Petrography of Granite Areas ----------------------------51 THE TERRANES OF ORANGE COUNTY, VERMONT, C. H. Richardson ------------ 6i Topography---------------------------- -............................. 6z Chemistry ------------------------------------------------------------66 Geology -------------------------------------------------------------- -
7 X 11 Long.P65
Cambridge University Press 978-0-521-74583-3 - Structural Geology: An Introduction to Geometrical Techniques, Fourth Edition Donal M. Ragan Frontmatter More information STRUCTURAL GEOLOGY An Introduction to Geometrical Techniques fourth edition Many textbooks describe information and theories about the Earth without training students to utilize real data to answer basic geological questions. This volume – a combi- nation of text and lab book – presents an entirely different approach to structural geology. Designed for undergraduate laboratory classes, it is dedicated to helping students solve many of the geometrical problems that arise from field observations. The basic approach is to supply step-by-step instructions to guide students through the methods, which include well-established techniques as well as more cutting-edge approaches. Particular emphasis is given to graphical methods and visualization techniques, intended to support students in tackling traditionally challenging two- and three-dimensional problems. Exer- cises at the end of each chapter provide students with practice in using the techniques, and demonstrate how observations and measurements from the field can be converted into useful information about geological structures and the processes responsible for creating them. Building on the success of previous editions, this fourth edition has been brought fully up-to-date and incorporates new material on stress, deformation, strain and flow. Also new to this edition are a chapter on the underlying mathematics and discussions of uncertainties associated with particular types of measurement. With stereonet plots and full solutions to the exercises available online at www.cambridge.org/ragan, this book is a key resource for undergraduate students as well as more advanced students and researchers wanting to improve their practical skills in structural geology. -
Solis Catherine 202006 MAS Thesis.Pdf
An Investigation of Display Shapes and Projections for Supporting Spatial Visualization Using a Virtual Overhead Map by Catherine Solis A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Mechanical & Industrial Engineering University of Toronto c Copyright 2020 by Catherine Solis Abstract An Investigation of Display Shapes and Projections for Supporting Spatial Visualization Using a Virtual Overhead Map Catherine Solis Master of Applied Science Graduate Department of Mechanical & Industrial Engineering University of Toronto 2020 A novel map display paradigm named \SkyMap" has been introduced to reduce the cognitive effort associated with using map displays for wayfinding and navigation activities. Proposed benefits include its overhead position, large scale, and alignment with the mapped environment below. This thesis investigates the substantiation of these benefits by comparing a conventional heads-down display to flat and domed SkyMap implementations through a spatial visualization task. A within-subjects study was conducted in a virtual reality simulation of an urban environment, in which participants indicated on a map display the perceived location of a landmark seen in their environment. The results showed that accuracy at this task was greater with a flat SkyMap, and domes with stereographic and equidistant projections, than with a heads-down map. These findings confirm the proposed benefits of SkyMap, yield important design implications, and inform future research. ii Acknowledgements Firstly, I'd like to thank my supervisor Paul Milgram for his patience and guidance over these past two and a half years. I genuinely marvel at his capacity to consistently challenge me to improve as a scholar and yet simultaneously show nothing but the utmost confidence in my abilities. -
The Position of Madagascar Within Gondwana and Its Movements During Gondwana Dispersal ⇑ Colin Reeves
Journal of African Earth Sciences xxx (2013) xxx–xxx Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci The position of Madagascar within Gondwana and its movements during Gondwana dispersal ⇑ Colin Reeves Earthworks BV, Achterom 41A, 2611 PL Delft, The Netherlands article info abstract Article history: A reassembly of the Precambrian fragments of central Gondwana is presented that is a refinement of a Available online xxxx tight reassembly published earlier. Fragments are matched with conjugate sides parallel as far as possible and at a distance of 60–120 km from each other. With this amount of Precambrian crust now stretched Keywords: into rifts and passive margins, a fit for all the pieces neighbouring Madagascar – East Africa, Somalia, the Madagascar Seychelles, India, Sri Lanka and Mozambique – may be made without inelegant overlap or underlap. This Gondwana works less well for wider de-stretched margins on such small fragments. A model of Gondwana dispersal Aeromagnetics is also developed, working backwards in time from the present day, confining the relative movements of Indian Ocean the major fragments – Africa, Antarctica and India – such that ocean fracture zones collapse back into Dykes themselves until each ridge-reorganisation is encountered. The movements of Antarctica with respect to Africa and of India with respect to Antarctica are defined in this way by a limited number of interval poles to achieve the Gondwana ‘fit’ situation described above. The ‘fit’ offers persuasive alignments of structural and lithologic features from Madagascar to its neighbours. The dispersal model helps describe the evolution of Madagascar’s passive margins and the role of the Madagascar Rise as a microplate in the India–Africa–Antarctica triple junction. -
Salinic to Neoacadian Deformation Within the Migmatite Zone of the Central Maine Belt in Western Maine Erik James Divan Bates College, [email protected]
Bates College SCARAB Standard Theses Student Scholarship 5-2017 Salinic to Neoacadian Deformation within the Migmatite Zone of the Central Maine Belt in Western Maine Erik James Divan Bates College, [email protected] Follow this and additional works at: http://scarab.bates.edu/geology_theses Recommended Citation Divan, Erik James, "Salinic to Neoacadian Deformation within the Migmatite Zone of the Central Maine Belt in Western Maine" (2017). Standard Theses. 32. http://scarab.bates.edu/geology_theses/32 This Open Access is brought to you for free and open access by the Student Scholarship at SCARAB. It has been accepted for inclusion in Standard Theses by an authorized administrator of SCARAB. For more information, please contact [email protected]. Salinic to Neoacadian Deformation within the Migmatite Zone of the Central Maine Belt in Western Maine Bates College Department of Geology Departmental Thesis Presented to the Faculty of the Department of Geology, Bates College, in partial fulfillment of the requirements for the Degree of Bachelor of Science By Erik James Divan Lewiston, Maine April 7th, 2017 i SALINIC TO NEOACADIAN DEFORMATION WITHIN THE MIGMATITE ZONE OF THE CENTRAL MAINE BELT IN WESTERN MAINE Divan, Erik, J, Wheatcroft, Audrey, Eusden, Dykstra, Geology, Bates College, 44 Campus Ave, Lewiston, ME 04240, [email protected] Detailed bedrock mapping coupled with new geochronology in the southern part of the Gilead 7.5’ Quadrangle in Western Maine has revealed at least three phases of Salinic through Neoacadian deformation. The geology of the study area is dominated by the migmatized Silurian Rangeley, Perry Mtn. (?), and Smalls Falls Formations of the Central Maine Belt (CMB), which are intruded by quartz diorites from the Piscataquis Volcanic Arc, two-mica granites, and pegmatite. -
Determine Strike and Dip from Two Apparent Dips
Structural geology - third year Geometrical Projection: Finding True Dip Lab.No.6 /11/2020 True dip: maximum dip angle of a plane measured in vertical section perpendicular to the strike line. Determine strike and dip from two apparent dips Example: A fault trace is exposed in two adjacent cliff faces. In one wall the apparent dip is15°, S50°E, and in the other it is 28°, N45°E (Fig.1-a).What is the strike and dip of the fault plane? Solution: (Fig.1-b) 1-Use the two trend lines, OA and OC, as fold lines .Also, use a vertical line of arbitrary length d. Draw the two trend lines in plan view. 2-From the junction of these two lines (point O) draw apparent dip angle α1 and α2. 3-Draw a line of length (d=h) perpendicular to each of the trend lines to form the triangle COZ and AOX. The value of d must always be drawn exactly the same length because it represents the depth to the layer along any strike line. 4- Triangles COZ and AOX Folded up into plan view with the two apparent-dip trend lines used as fold lines. In Fig.1-b, line AC is horizontal and parallel to the fault plane; therefore it defines the fault's strike. 5-Line OB is then plotted perpendicular to line AC; it represents the direction of true dip. 6-Using line OB as a fold line, triangle BOY (Fig.1-b) can be projected into the horizontal plane, again using length d to set the position of point Y. -
Geologic Resources Inventory Report, Weir
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Weir Farm National Historic Site Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2012/487 ON THE COVER View of Julian Alden Weir’s studio in Weir Farm National Historic Site. Rock outcrops, such as those in the foreground, are common throughout the park. The bedrock beneath the park is ancient sea floor sediments that were accreted onto North America, hundreds of millions of years ago. They were deformed and metamorphosed during the construction of the Appalachian Mountains. Photograph by Peter Margonelli, courtesy Allison Herrmann (Weir Farm NHS). THIS PAGE The landscape of the park has inspired artists en plein air for more than 125 years. National Park Service photograph available online: http://www.nps.gov/wefa/photosmultimedia/index.htm (accessed 20 January 2012). Weir Farm National Historic Site Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2012/487 National Park Service Geologic Resources Division PO Box 25287 Denver, CO 80225 January 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. -
Using Palaeomagnetism to Determine Late Mesoproterozoic Palaeogeographic History and Tectonic Relations of the Sinclair Terrane, Namaqua Orogen, Namibia
Downloaded from http://sp.lyellcollection.org/ by AJS on May 1, 2016 Using palaeomagnetism to determine late Mesoproterozoic palaeogeographic history and tectonic relations of the Sinclair terrane, Namaqua orogen, Namibia J. E. PANZIK1,2*, D. A. D. EVANS1, J. J. KASBOHM3, R. HANSON4, W. GOSE5 & J. DESORMEAU6 1Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA 2Department of Earth and Planetary Sciences, University of Tennessee, 1412 Circle Drive, Knoxville, TN 37996, USA 3Department of Geosciences, Princeton University, Guyot Hall, Princeton, NJ 08544, USA 4School of Geology, Energy, and the Environment, Texas Christian University, TCU Box 298830, Fort Worth, TX 76129, USA 5Department of Geological Sciences, University of Texas at Austin, 2275 Speedway Stop C9000, Austin, TX 78712, USA 6Geological Sciences and Engineering, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA *Corresponding author (e-mail: [email protected]) Abstract: The Sinclair terrane is an important part of the Namaqua orogenic province in southern Namibia containing well-preserved Mesoproterozoic volcano-sedimentary successions suitable for palaeomagnetic and geochronological studies. The Guperas Formation in the upper part of the Sin- clair stratigraphic assemblage contains both volcanic and sedimentary rocks cut by a bimodal dyke swarm with felsic members dated herein by U–Pb on zircon at c. 1105 Ma. Guperas igneous rocks yield a pre-fold direction and palaeomagnetic pole similar to that previously reported. Guperas sedimentary rocks yield positive conglomerate and fold tests, with a maximum concentration of characteristic remanence directions at 100% untilting. The combined Guperas data generate a palaeomagnetic pole of 69.88 N, 004.18 E(A95 ¼ 7.48, N ¼ 9). -
Lab 01: Orientations of Lines & Planes
GG303 Lab 1 9/10/03 1 ORIENTATIONS OF LINES AND PLANES IN SPACE I Main Topics A Definitions of points, lines, and planes B Geologic methods for describing lines and planes C Attitude symbols for geologic maps D Reference Frames II Definitions of points, lines, and planes A Point 1 Defined by one set of coordinates (an ordered triple in 3-D) 2 Defined by distance and direction from a reference point 3 Intersection of two lines 4 Intersection of three planes B Line 1 Defined by two sets of coordinates 2 Defined by two points 3 Defined by distance from a reference point and the direction of the line Direction Reference point 4 Intersection of two planes C Plane 1 Defined by three sets of coordinates 2 Defined by three points 3 Defined by distance and direction from a reference point Plane (edge view) Direction of line normal to d plane Reference point 4 Defined by two intersecting or two parallel lines Stephen Martel Lab1-1 University of Hawaii GG303 Lab 1 9/10/03 2 III Geologic methods for describing lines and planes A Orientations of lines 1 Trend & plunge a Trend: Direction (azimuth) of a vertical plane containing the line of interest. i Azimuth (compass bearing): direction of a horizontal line contained in a vertical plane. Measured by quadrant or (°). Examples: N90°E, N90°W, S90°W, 270°. ii The trend "points" in the direction a line plunges b Plunge: The inclination of a line below the horizontal 2 Pitch (or rake): the angle, measured in a plane of specified orientation, between one line and a horizontal line (see handout) B Orientations of planes 1 Orientation of two intersecting lines in the plane Strike & dip a Strike: direction of the line of intersection between an inclined plane and a horizontal plane (e.g., a lake); b Dip: inclination of a plane below the horizontal; 0°≤dip≤90° c The azimuth directions of strike and dip are perpendicular d Good idea to specify the direction of dip to eliminate ambiguity, but right hand rule (see handout) can also be used. -
SUBSURFACE EXPLORATIONS the Geology of the New England Area
SUBSURFACE EXPLORATIONS The Geology of the New England Area By David Adilman, P.G. Russell Abell, P.G. September 30, 2013 www.nps.gov/acad University of Massachusetts School of Engineering ASCE Lecture In conjunction with 14.533 Advanced Foundation Engineering class Agenda 1. ASCE Student Chapter and AFE 14.533 Class New England Bedrock Geology Overview Bedrock Geology 101 General Geologic Terranes in New England General Bedrock Types in New England 2. AFE 14.533 Class Rock Core Viewing New England Surficial Geology Overview Unconsolidated Material (Overburden) Types Typical Overburden Stratigraphic Sequences Examples of Applied Subsurface Evaluation 2 Geology 101 – A Recap Three Rock Types: • Igneous • Metamorphic • Sedimentary (Skehan, 2003) 3 Igneous Rock Types Extrusive Intrusive http://dept.astro.lsa.umich.edu/~ cowley/intro2.html 4 Regional Metamorphic Rocks – Shale Protolith Lineation, Schistosity, Foliation http://www.geol.umd.edu/~jmerck/geol100/lectures/17.html 5 Slate Phyllite Gneiss Schist http://www.geol.umd.edu/~jmerck/geol100/lectures/17.html 6 Sedimentary Rock Types http://www.rocksandminerals4u.com/sedimentary_rock.html 7 St. Lawrence Valley Physiographic Adirondacks Regions of the Northeastern U.S. (Adapted from Wikipedia, 2010) 8 Tectonic History of Eastern North America Van Diver, 1987 9 Chronology of MA Geologic Events Glacial Advance/Retreat Failed Rift Basins Alleghanian Orogeny Acadian Orogeny Taconic Orogeny Grenville Uplift (Skehan, 2003) 10 11 12 General MA Bedrock Geology (From OSMG website, 2010) -
Fall Foliage Rides
MagazineMagazine ofof thethe NewNew EnglandEngland MountainMountain BikeBike AssociationAssociation SSingleingleTTrackrackSS OOccttoobbeerr // NNoovveemmbbeerr,, NNuummbbeerr 5588 wwwwww..nneemmbbaa..oorrgg New England’s Best Fall Foliage Rides 2 SSingleingleTTrackS October / November 2001, Number 58 NEMBA, the New England Mountain Bike Association, is a not-for-profit 501 (c) (3) organization dedicated to promoting trail The terrorist attacks against our country and the great sadness that we feel access, maintaining trails open for mountain for the untold loss of innocent life has made this a difficult issue of bicyclists, and educating mountain bicyclists SingleTracks to crank out. Paling in contast to the enormity of the dangers to use these trails sensitively and responsibly. and suffering facing our nation and the world, mountain biking is small and insignificant. However, we should all seek to make the world a better and kinder place through whatever SingleTracks is published six times a year by the New England Mountain Bike Association means possible. Indeed, it is the small things in life which provide meaning and value to for the trail community, and is made possible the whole. It is a gloriaous planet: ride it, cherish it and help make it a more peaceful place. by riders like you. —Philip Keyes ©SingleTracks Making the Trails a Better Place Editor & Publisher: Philip Keyes 11 Singletracks Committee: Bill Boles, Krisztina NEMBA means trails. As a user group, we donate Holly, Nanyee Keyes, and Mary Tunnicliffe 1000s of hours each year to improve the trails. Executive Director: Philip Keyes Here’s a park by park, blow by blow of what NEMBA Letters/Submissions: is doing. -
Hazard Mitigation Plan
Source: Wikimedia Town of Savoy, MA HAZARD MITIGATION PLAN April 2021 Prepared by: westonandsampson.com SAVOY, MA Hazard Mitigation Plan TABLE OF CONTENTS Page 1.0 INTRODUCTION..........................................................................................................1-1 1.1 What is a Hazard Mitigation Plan?............................................................................1-1 1.2 Hazard Mitigation Planning in Savoy ........................................................................1-2 1.3 Planning Process Summary .....................................................................................1-3 1.3.1 Core Team ...........................................................................................................1-3 1.3.2 Stakeholder Involvement ......................................................................................1-5 1.3.3 Plan Layout ..........................................................................................................1-5 1.4 Planning Timeline.....................................................................................................1-5 2.0 HAZARD MITIGATION GOALS ...................................................................................2-6 3.0 COMMUNITY PROFILE, LAND USE, AND DEVELOPMENT TRENDS.......................3-1 3.1 Community Profile ....................................................................................................3-1 3.2 Land Use..................................................................................................................3-4