Energy Consumption in Italy 1861-2000 93 2

Total Page:16

File Type:pdf, Size:1020Kb

Energy Consumption in Italy 1861-2000 93 2 Energy Consumption in Italy in the 19th and 20th Centuries A Statistical Outline by Paolo Malanima Consiglio Nazionale delle Ricerche Istituto di Studi sulle Società del Mediterraneo Elaborazione ed impaginazione a cura di: Aniello Barone e Paolo Pironti ISBN 88-8080-066-3 Copyright © 2006 by Consiglio Nazionale delle Ricerche (CNR), Istituto di Studi sulle Società del Mediterraneo (ISSM). Tutti i diritti sono riservati. Nessuna parte di questa pubblicazione può essere fotocopiata, riprodotta, archiviata, memorizzata o trasmessa in qualsiasi forma o mezzo – elettronico, meccanico, reprografico, digitale – se non nei termini previsti dalla legge che tutela il Diritto d’Autore. INDEX Foreword 5 1. Energy sources 7 1.1. The energy transition 9 1.2. Definitions 10 1.3. Primary sources 13 1.4. Territory and population 15 2. Traditional sources 19 2.1. Methods 21 2.2. Food 26 2.3. Firewood 28 2.4. Animals 34 2.5. Wind 36 2.6. Water 37 2.7. Consumption of traditional sources 42 3. Modern sources 45 3.1. From traditional to modern energy carriers 47 3.2. Fossil sources 54 3.3. Primary electricity 58 3.4. Consumption of modern sources 62 4. Energy and product 67 4.1. The trend 69 4.2. Energy intensity and productivity of energy 72 4.3. Conclusion 78 4 Index List of abbreviations 79 References 81 Appendix 89 I Aggregate series 91 1. Energy consumption in Italy 1861-2000 93 2. The structure of energy consumption 1861- 2000 96 3. Per capita energy consumption 1861-2000 99 II The energy carriers 103 1. Food for men 105 2. Firewood 108 3. Animals 111 4. Wind 114 5. Water 117 6. Fossil fuels 120 7. Primary electricity 123 III Product and energy intensity 127 1. Gross domestic product 1861-2003 132 2. Per capita product 1861-2003 135 3. Product and energy intensity 138 FOREWORD The purpose of this work is to provide statistical series on energy consumption in Italy in the last two centuries. Its main innovation is the inclusion of traditional sources along with modern ones. After some introductory remarks on the purpose of my re- search and the definitions used therein (Ch. 1), I examine each carrier individually and explain the statistical methods I have employed for traditional (Ch. 2) and modern (Ch. 3) en- ergy carriers. I also review some characteristics of energy con- sumption trends in Italy (Ch. 4) to set the statistical data within a wider economic context. The statistical series are given in the Appendix. This work is part of a more ambitious project undertaken by the research group “Energy, Growth, Pollution”. Its aim is to quantify energy consumption in most European countries. I would like to thank the members of the group for their com- ments during the several meetings we had over the last few years. I am also grateful to Astrid Kander for her remarks to a previous draft, and especially to Silvana Bartoletto for collect- ing much of the data on which the series in this book are based. 1. The energy sources 1. Energy sources 1.1. The energy transition The energy transition from traditional vegetable energy sources to modern fossil carriers marked a strong discontinu- ity in the availability and use of energy and was one of the main foundations of modern growth.1 Yet our knowledge of this major transformation is far from clear. The available sta- tistical information in European historical accounting only concerns modern sources. The lack in it of the traditional en- ergy carriers or the inclusion only of firewood, and the lack of clarity about what traditional carriers actually are and the methods used to record them bias our perception of recent economic transformations. If we include traditional sources in our investigations, the interplay between the economy and energy becomes much more complex and interesting. The purpose of the present research is to quantify all en- ergy carriers over the long period of the Italian energy tran- sition.2 At the time of its political unification in 1861, Italy was still a traditional economy, an economy based, that is, primarily on the vegetable product of fields, pastures and forests. Its use of fossil sources was much lower than in north-western European countries, accounting for 7 percent of the total energy balance. In the following century, Italy, like other countries, witnessed a dramatic transformation in the structure of its energy consumption after a long-term 1 See especially Cipolla (1962) and Wrigley (1988 and 2004). 2 Works on energy in 19th- and 20th-century Italy completely disregard traditional sources and hence only give a partial image of the connections between energy and economy. See, for instance, Colombo (1991), Clô (1994), Toninelli (1999). 10 Paolo Malanima stability which had lasted several centuries. In 2000, only 7 percent of the country’s overall energy consumption came from traditional sources. This energy transition went hand in hand with a rise of gross product and an expansion of the secondary and tertiary sectors. Since “energy transition” means a replacing of the old with the new, its study may be a first step to throw light on the dynamics of energy consumption both in modern and in pre-modern economies. 1.2. Definitions The aim of this investigation is to take into account every form of energy exploited by human beings yesterday and today.3 The objective is to reconstruct the input of energy having a cost into the economic system; that is to quantify primary sources of energy consumed yearly, at some cost, by human beings. I will look at the following energy sources, in chrono- logical order: 1. Food for human beings; 2. Firewood; 3. Feed for work animals; 4. Wind; 5. Water; 6. Fossil sources; 7. Primary electricity. These energy sources make up, so to speak, the successive layers on which our modern energy system is based.4 The first 3 I have already put forward this approach to energy quantification in preindustrial Europe in Malanima (1996 and 2001). The method is quite similar to that used for Sweden by Kander (2002). 4 For some general information on the history of energy exploitation, see, among many others, Débeir, Deléage, Hémery (1986), Smil (1994), Energy sources 11 energy source was food, which has remained the indispensa- ble basis for any human activity ever since the dawn of the human species 4 or 5 million years ago. Later, between 1 mil- lion and 500,000 years ago, human beings gained mastery over fire and thus became capable of exploiting fuels, espe- cially firewood, the second source, and, until recently, the main energy carrier. Feed for working animals was the third main source of energy to be exploited by human beings, ever since they began to harness oxen, horses, mules, camels, etc., for agricultural work or transportation. The exploitation of animals began at the start of the Neolithic agricultural revolu- tion, and spread rapidly especially in the 4th millennium b.C., i.e., in the age of the first Near East agrarian empires. Wind had been exploited to propel sailing ships long before, but began to be widely used for this purpose only in the 4th mil- lennium, and to drive mills from the 7th century A.D. onward. Water power began to be exploited for mills in the 1st century b.C.5 For several millennia, all of these carriers together formed the energy basis of pre-modern agrarian civilizations. Ultimately derived from the Sun, they were the source of all human activities (Figure 1.1). Two centuries ago, the massive introduction of fossil sources inaugurated a new age of change. These sources, while already known previously, began to be utilized on a large scale only at the turn of the 18th century, with the First Industrial Revolution.6 Later, at the end of the 19th century, the spread of electricity and oil coincided with the so-called Second Industrial Revolution. Nuclear energy is a very re- cent addition to the energy basis. Caracciolo-Morelli (1996), and, with specific reference to Europe, Ma- lanima (1996). 5 Although it has been recently suggested that the water-mill may have existed as early as the 3rd century b.C.: Wilson (2002). 6 Malanima (2006). 12 Paolo Malanima Figure 1.1. Sun, soil and traditional energy sources Food for men Firewood Fodder for HUMAN SUN Soil animals WORK Energy from wind Energy from water Military energy consumption for weapons, although im- portant, is not included today in modern energy balances and is hence disregarded in the following calculations. Still, the military consumption of energy definitely calls for the histo- rian’s attention, and could become a stimulating subject for future research. It is important to stress that in the following time series, I have only taken into consideration energy sources having a cost (not just in monetary terms) for human beings. I have disregarded free energy sources -e.g., solar light- sometimes included in similar studies examining the theme of energy from a biological, ecological, or physical point of view. An- nual production of biomass not exploited by human beings or working animals as an energy source is not included ei- ther. Thus, I have not regarded as part of the energy balance the annual production of biomass not collected by human Energy sources 13 beings in a forest (or collected for construction purposes), or the grass of a meadow not consumed by the animals ex- ploited by human beings for food or work. On the contrary, the grass eaten by an ox used by peasants becomes part of human energy consumption, either as “fuel” for the animal, if the animal is used for work, or as food if it or its products are eaten (whether in the form of milk, cheese, or meat).
Recommended publications
  • ISES-ITALIA Section of the International Solar Energy Society (1964-1980)
    ISES–Italia (1964 – 1980) 235 Chapter 10 ISES-ITALIA Section of the International Solar Energy Society (1964-1980) by Cesare Silvi GSES (Gruppo per la Storia dell’ Energia Solare) Via Nemorense, 18 00199 Roma, Italy e-mail: [email protected] Abstract This chapter reports the story of the Italian Section of ISES from 1964 to 1980. The first part outlines the history of solar energy in Italy from before the introduction of fossil fuels, to the 1950s, when the country launched its programs for the use of nuclear energy. The second part describes: • the creation of the Italian Section of ISES, in 1964, on the initiative of Vittorio Storelli, an industrial engineer interested in what he called “the science of the Sun;” • the Section's activities before and after the 1973 oil shock, when growing interest in solar energy led to a rapid expansion of the Section’s role; • the legal adoption of the by-laws of the association in 1978 and—as major Italian energy companies and agencies (including ENI and ENEL) joined—its transformation at a time when large-scale solar projects were starting up in Italy (among them the 1 MW “Eurelios” solar thermoelec- tric plant built in the Sicilian town of Adrano, whose construction was completed in December of 1980). 236 History of ISES – Volume 1 10.1 History of Solar Energy in Italy, and Solar-related Activities Until the Early 1960s 10.1.1 Solar energy before fossil fuels Many historical sources preserved in Italy testify to interest in solar ener- gy from the earliest times.
    [Show full text]
  • State-Of-The-Art Report on Social Acceptance of Wind Energy, Italy
    IEA WIND TASK 28 SOCIAL ACCEPTANCE OF WIND ENERGY PROJECTS ”Winning Hearts and Minds” STATE-OF-THE-ART REPORT Country report of ITALY Editors: Cristina Cavicchioli 1 and Elisabetta Garofalo (RSE) 1 To whom correspondence should be sent: [email protected] 1 / 18 Content: FRAMING THE ISSUE ........................................................................................................................ 3 0. Introduction ........................................................................................................................................ 3 1. Definitions .......................................................................................................................................... 4 INDUSTRY STATUS AND STAKEHOLDERS ................................................................................ 6 2. National Wind Energy Concepts ........................................................................................................... 6 3. Stakeholders / target groups ............................................................................................................... 9 VARIABLES INFLUENCING SOCIAL ACCEPTANCE ................................................................ 12 4. Well‐being ......................................................................................................................................... 12 5. Distributional justice ......................................................................................................................... 13 6. Procedural
    [Show full text]
  • THE ISLAMIC CIVILIZATION Qadar Bakhsh Baloch
    Qadar Bakhsh Baloch The Dialogue THE ISLAMIC CIVILIZATION Qadar Bakhsh Baloch “Thus we have appointed you a mid-most nation, that you may be witnesses upon mankind.” (Quran, 11:43) ISLAM WAS DESTINED to be a world religion and a civilisation, stretched from one end of the globe to the other. The early Muslim caliphates (empires), first the Arabs, then the Persians and later the Turks set about to create classical Islamic civilisation. In the 13th century, both Africa and India became great centres of Islamic civilisation. Soon after, Muslim kingdoms were established in the Malay-Indonesian world, while Muslims flourished equally in China. Islamic civilisation is committed to two basic principles: oneness of God and oneness of humanity. Islam does not allow any racial, linguistic or ethnic discrimination; it stands for universal humanism. Besides Islam have some peculiar features that distinguish it form other cotemporary civilisations. SALIENT FEATURES OF ISLAMIC CIVILISATION MAIN CHARACTERISTICS that distinguish Islamic civilisation from other civilisations and give it a unique position can be discerned as: • It is based on the Islamic faith. It is monotheistic, based on the belief in the oneness of the Almighty Allah, the Creator of this universe. It is characterised by submission to the will God and service to humankind. It is a socio-moral and metaphysical view of the world, which has indeed contributed immensely to the rise and richness of this civilisation. The author is a Ph. D. Research Scholar, Department of International Relations, University of Peshawar, N.W.F.P. Pakistan, the Additional Registrar of Qurtuba University and Editor of The Dialogue.
    [Show full text]
  • In and Around the Watermill
    In and around the watermill Our beautiful and historic watermill stands beside the River Rosaro in the small village of Posara. Peaceful and secluded, yet part of the village, the mill is just a mile or so from the walled medieval town of Fivizzano with its cafés, restaurants and shops. This is the heart of Lunigiana, in the North-west of Tuscany, a truly unspoilt part of Italy. Set in a gentle valley with mountain peaks in the background, the mill is a peaceful spot, surrounded by the National Park of the Tuscan-Emilian Appennines and The Regional Pak of the Apuan Alps, home of the marble mountains of Carrara. The Watermill is a complex of elegant and historic Tuscan buildings, around a sunny courtyard with an adjoining vine verandah, rose pergola and sun-filled walled garden. More gardens lead to walks along the river and the sun-dappled millstream. We have lovingly restored the historic buildings and created eight beautiful bedrooms with en suite bathrooms, plus two self-contained apartment suites, each with a double bedroom, bathroom and sitting room, ideal for couple or friends sharing. The bright and airy rooms are well decorated and tastefully furnished. Many contain original artworks and all enjoy lovely views of the river, the gardens or the mountains. Our graceful communal Sitting Room, with its gallery of paintings by our inspiring tutors, is ideal for post-prandial conversation and digestivi. Our courtyard dining room is the unique setting for leisurely breakfasts and mouth-watering evening meals. There is also a communal kitchen, with chilled water and facilities for personal tea-/coffee-making.
    [Show full text]
  • Italian Agricultural Uses of Geothermal Energy
    Bulletin d’Hydrog6ologie No 17 (1999) Centre d’Hydrogdologie, Universitd de Neuckritel EDITIONSPET ER LANG Italian agricultural uses of geothermal energy by *Roberto Carella’ & Claudio Sommaruga’ ’ Unione Geotermica Italiana, 58 Via Caracciolo, 20155 Milano, Italy ’Geothermal consultant, 62 Via Sismondi, 20133 Milano, Italy ABSTRACT Non electric uses of geothermal energy in Italy are mainly connected to the spa business, but a large share is also related, beside residential heating, to agricultural activities, including fish farming. The main ongoing applications in agribusiness are greenhouses heating, the most important facilities being in Amiata (Tuscany) and at Puntani (next to Rome) and fish farming at Orbetello (Tuscany coast) and in Apulia shore. A small but interesting integrated project, combining greenhouse and aquaculture heating is running in Rodigo (Lombardy). Concerning the immediate future, some greenhouses are being built or planned near new geothermal power stations in Northern Latium. Factors affecting the growth of geothermal use in Italian agriculture (as well as in other sectors) include the low price of energy, the mining risk, the technological hnow-how needed, bureaucratic hurdles, lack of information and insufficient support at the various Governmental levels, and, last but not least, the health status of the heat-assisted agri- industry as a whole. KEYWORDS Italy, agriculture, geothermal heat uses Introduction Non-electric uses of geothermal energy worldwide, with an installed capacity of 9,000 Mwt, amounted in 1995 to 31,000 GWhly, corresponding to a substitution of 2,4 million TOE/y. The agricultural share (including aquaculture) was 27%; second only to residential beating (34%)(FREESTON 1996). CARELLA& SOMMARUGA : ITALIAN AGRICULTURALUSES OF GEOTHERMALENERGY In Italy, where direct uses amount to about 240,000 TOWy, agricultural applications (60,000 TOE/y) represent 25% of the total, after balneological-spa uses (52%) but ahead of residential heating (16% of which 10% connected with spa hotels in the Abuno (Veneto area).
    [Show full text]
  • Large Scale Photovoltaic Market Analysis in Italy
    Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology TRITA-ITM-EX 2021:14 Division of Heat and Power Technology SE-100 44 STOCKHOLM Large Scale Photovoltaic Market Analysis In Italy Federico Annese Feb 2021 Master of Science Thesis TRITA-ITM-EX 2021:14 Large Scale Photovoltaic Market Analysis In Italy Federico Annese Approved Examiner Supervisor Björn Laumert Rafael Guédez Commissioner Contact person Abstract The environmental targets set by Europe of reaching a net zero carbon emission by 2050 and the European Green Deal have increased the environmental targets previously set. The Italian government managed to reach the targets set by 2020 in advance and started to work on the 2030 targets in 2017. Nevertheless, after the EU agreement on the Green Deal, the strategy has been revised and the Integrated National Energy and Climate Plan has been published with the aim of setting clear targets to reach by 2030 in compliance with the strategy of the European Union. The Italian strategy will strongly rely on solar and wind energy: the government intends reaching 51 GW of installed solar capacity from the 20.8 GW currently installed. The cost-competitiveness of solar energy is well known, and it has already reached the grid parity stage in Italy. This study is aimed at giving in the first part an insight on the current status and future trends of photovoltaic technology. In the second part, the analysis has been focused on the Italian photovoltaic energy, market schemes and permitting phase. The biggest threats to the deployment of large scale photovoltaic are: the land procurement due to the national and regional/municipal constraints and the impossibility of knowing a priori the availability of connection capacity.
    [Show full text]
  • Broschüre Final.Indd
    The Renewable Energy Network Project Guide: The Renewable Energy Market in Italy Preface The exploitation and development of renewable energies are On the assumption that the response to a global problem among the fundamental themes of modern society, taking such as that energy can be found only at the international into account the environmental and socio-economic implica- level, this project supports concrete and targeted actions of tions. international co-operation in the renewable energies field. In Italy the energy problem has a structural nature; encou- This guide, edited as part of the project, wants precisely to raging the use of renewable energies and the development highlight, among international trading and institutional ope- of related technologies becomes an economic priority, which rators, the Italian potential in developing the industry. The ul- regards, at various levels, the whole country. timate goal is to set up both international collaboration aimed at increasing long-term competitiveness of Italian firms, and Italy is a net importer of raw materials, especially energy. Be- to draw the attention of foreign investors to our country. cause of the sharp rise in world prices over the previous two year period the energy trade balance recorded a sharp wor- The Ministry of Economic Development sening. Moreover, not including the energy component, the Directorate General for the Promotion of Trade Italian trade balance remains largely in surplus. During the last year, despite the appreciation of the Euro, Italy has recovered Dr. Gianfranco Caprioli slightly even in terms of world share. Director General In this context, the Ministry of Economic Development sup- ports the activities of the Italian Chambers of Commerce abroad and, in particular, wants to enhance the project „re- newable energy“.
    [Show full text]
  • EDISON-RS-2012-ENG Letter.Pdf
    Sustainability Report Sustainability Report 2012 2012 Edison Spa Foro Buonaparte, 31 20121 Milan tel. +39 02 6222.1 www.edison.it Contents 4 Growth despite the crisis 6 Edison Sustainable Development Policy 47 People as a resource 7 The challenges, the goals 48 Empower the human capital 50 Choosing to improve 54 Health and safety 13 We at Edison. 56 Industrial relations 14 Energy and responsibility 57 Personnel involvement 16 Actors on today’s stage 18 Activities and Projects in the Hydrocarbon Sector 22 Sustainability and Governance 59 The market is our benchmark 27 Stakeholders: our point of reference 60 Edison’s Product Offers for the Market 29 The wealth we create 64 The quality of customer service 67 We seek for comparison 31 Environment means responsibility 32 Our commitments to the environment 69 Respecting the community 34 Mitigating significant environmental impacts 70 Local community relations 39 A systematic approach to biodiversity 82 Shareholders and financers 84 Suppliers 86 Institutions 89 Note on methodology 90 Performance indicators 104 GRI Index 108 Report of the Independent Auditors 110 Edison on line Sustainability Report 2012 Sustainability Report Edison 2012 Edison in Italy... HEADQUARTERS OPERATING COMPANY KHR PLANT (Edison 20%) PRATI DI VIZZE THERMOELECTRIC POWER PLANT EL.IT.E CURON BRUNICO HYDROELECTRIC POWER PLANT GLORENZA MARLENGO WIND FARM LASA PONTE GARDENA SONICO CASTELBELLO PREMESA PHOTOVOLTAIC SYSTEM PIEVE CAMPO BELVISO TAIO VERGONTE CEDEGOLO VENINA R&D CENTER ALBANO MEZZOCORONA VAL MEDUNA (5 plants) BATTIGGIO ARMISA GANDA POZZOLAGO MERCHANT LINE EL.I.TE. VEDELLO CIVIDATE TORVISCOSA MONZA ZAPPELLO VAL CAFFARO (4 plants) COLLALTO COLOGNO MONZESE PUBLINO Selvazzano MARGHERA COMPRESSOR STATION SESTO S.G.
    [Show full text]
  • Italian Consumers' Willingness to Pay for Renewable Energy Sources
    Munich Personal RePEc Archive Italian consumers’ willingness to pay for renewable energy sources Bigerna, Simona and Polinori, Paolo Department of Economics, Finance and Statistics, University of Perugia, Faculty of Economics, Uninettuno University, Rome 30 October 2011 Online at https://mpra.ub.uni-muenchen.de/34408/ MPRA Paper No. 34408, posted 31 Oct 2011 15:00 UTC Italian Consumers’ Willingness to Pay for Renewable Energy Sources§ Simona Bigerna(1) and Paolo Polinori(2) (1) Faculty of Economics, UTIU, [email protected] (2) Department of Economics, Finance and Statistics, University of Perugia, [email protected] .H (corresponding author) Abstract EU Directive 2009/72/CE imposes to the European Countries environmental and energy targets. The Italian goal is to attain a 17% share in electricity production from renewable energy sources (RES) by 2020. To make investment in renewables attractive, market prices must be profitable and the gap between the private and social costs of renewables must be filled using “persuasive” tools. The acceptance of such a burden may be controversial because it results in an increase in prices. It is interesting to estimate the consumer’s willingness to pay (WTP) for green electricity. We based our research on a national survey conducted in November 2007 in Italy. We used a stochastic payment card (SPC) including a “certainty correction” and proposing five degrees of acceptance. An empirical analysis shows that there is a substantial willingness among Italian consumers to partially cover the cost of achieving the RES goal. Key Words: contingent valuation, interval data, stochastic payment card, renewable energy sources. JEL: Q26 Q41 §The authors are thankful to Carlo Andrea Bollino, with whom we developed many of the ideas presented in this paper and to the PRIN 2007 seminar participants (Milano, June, 27th 2011), especially Paolo Bruno Bosco, for their helpful suggestions.
    [Show full text]
  • Working with Watermills" Lesson Explores How Watermills Have Helped Harness Energy from Water Through the Ages
    IEEE Lesson Plan: W or k i ng w i t h W at e r m i ll s Explore other TryEngineering lessons at www.tryengineering.org Lesson Focus Lesson focuses on how watermills generate power. Student teams design and build a working watermill out of everyday products and test their design in a basin. Student watermills must be able to sustain three minutes of rotation. As an extension activity, older students may design a gear system that is powered by the watermill. Students then evaluate the effectiveness of their watermill and those of other teams, and present their findings to the class. Lesson Synopsis The "Working with Watermills" lesson explores how watermills have helped harness energy from water through the ages. Students work in teams of "engineers" to design and build their own watermill out of everyday items. They test their watermill, evaluate their results, and present to the class. A g e L e v e l s 8-18. Objectives Learn about engineering design. Learn about planning and construction. Learn about teamwork and working in groups. Anticipated Learner Outcomes As a result of this activity, students should develop an understanding of: structural engineering and design problem solving teamwork Lesson Activities Students learn how watermills have been used throughout the ages to harness the power of water. Students work in teams to develop a their own watermill out of everyday items, then test their watermill, evaluate their own watermills and those of other students, and present their findings to the class. Working with Watermills Provided by IEEE as part of TryEngineering www.tryengineering.org © 2018 IEEE – All rights reserved.
    [Show full text]
  • WATER MILL Working, Metal Working, Textiles Carding, Discharge: 70-150 Lps Areas
    Day time (approx 40% load) SPECIFICATIONS OF MPPU FOR A ABOUT AHEC Alternate Hydro Energy Centre (AHEC) was set TYPICAL SITE up at Indian Institute of Technology Roorkee (formerly Increased milling capacity, oil expelling, rice University of Roorkee) by the Ministry of Non- hulling, spice-hulling, processing of dairy and Site Details: Conventional Energy Sources (MNES), Govt. of India, food products, workshop machines : wood in the year 1982 to promote power generation through Head: 7.0-15.0 m the development of small hydro in hilly as well as in plain WATER MILL working, metal working, textiles carding, Discharge: 70-150 lps areas. AHEC offers a variety of services in the field of commercial cooking etc. small hydro power development and other Power developed: upto 10.0 kW interdisciplinary areas. Small Hydro Power Evening time (approx 20% load) * Refurbishment, renovation and modernisation of SHP stations. * Detailed project reports, engineering designs and Electricity generation : lighting, cooking construction drawings. * Technical specifications. Night time (approx 40% load) * Pre-feasibility reports. * Planning, designs and execution. * Techno-economic appraisal. Electricity generation : lighting, battery * Monitoring of projects. charging. * Remote sensing and GIS based applications. Other Fields Heating for : drying, house heating, horticultural * Power system planning and operation. glass houses, hot water for washing, for laundry, LAYOUT OF A TYPICAL MPPU SITE * Energy Auditing. Details of Machine : * Drainage/irrigation related projects. cooking water, fish farming, chick rearing. * Environment impact assessment and Ecorestoration. Cold storage for : crops for sale, produce from Turbine * R&D in the field of other renewable energy sources traders. Type of turbine: Open Cross Flow (Solar, Biomass, Wind etc.) Runner dia: 300 mm Human Resources Development Pumping water : irrigation, drinking.
    [Show full text]
  • An Overview of Italy's Energy
    Gouvernance européenne et géopolitique de l’énergie An Overview of Italy’s Energy Mix Corrado Cammi Mattia Assanelli June 2012 . © Tous droits réservés – www.ifri.org – www.connaissancedesenergies.org The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental and a non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With offices in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-36567-034-0 © All rights reserved, Ifri, 2012 IFRI IFRI-BRUXELLES 27, RUE DE LA PROCESSION RUE MARIE-THERESE, 21 75740 PARIS CEDEX 15 – FRANCE 1000 – BRUSSELS – BELGIUM Tel: +33 (0)1 40 61 60 00 Tel: +32 (0)2 238 51 10 Fax: +33 (0)1 40 61 60 60 Fax: +32 (0)2 238 51 15 Email: [email protected] Email: [email protected] WEBSITE: Ifri.org © Tous droits réservés – www.ifri.org – www.connaissancedesenergies.org Foreword Italy is currently hit by an unprecedented economic, political and social crisis. This changing and uncertain environment affects more than ever the ability to define an energy strategy, which has never really benefitted from a clear vision and a solid organization.
    [Show full text]