Forest Habitat Associations of the Golden-Mantled Ground Squirrel: Implications for Fuels Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Propagation and Cultivation of Arctostaphylos in Relation to the Environment in Its Natural Habitat 291
Propagation and Cultivation of Arctostaphylos in Relation to the Environment in its Natural Habitat 291 Propagation and Cultivation of Arctostaphylos in Relation to the Environment in its Natural Habitat in California, U.S.A.© Lucy Hart' School of Horticulture, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB U.K. INTRODUCTION The Mary Helliar Travel Scholarship helped to fund a visit to California to study native plants in their natural habitats and in cultivation. Throughout my study I observed Arctostaphylos, commonly known as manzanita, growing naturally and was able to relate the natural habitats to cultivation conditions in botanic gardens and commercial nurseries where I learnt about the propagation and production of members of the genus. Arctostaphylos is a fundamental genus to California, found almost exclusively in the state, with different species occupying a range of habitats. It is a member of the Ericaceae and is closely related to Arbutus, sharing the same subfamily, Arbutoideae. The generic name is derived from two Greek words — arktos meaning bear and stuphule, a grape. The common name, manzanita (popularly used in California today) is Spanish for "little apple" from the appearance of its berry. There are approximately 60 species, of which several have many subspecies due to frequent hybridisations within the genus (Stuart and Sawyer, 2001). This can make identification difficult in areas where species ranges overlap. Schmidt (1973), a manzanita enthusiast, describes her excitement regarding the future possibilities for more horticultural forms from the natural hybridisations, as a "tantalising prospect." KEY HORTICULTURAL FEATURES The genus includes many forms of evergreen, woody shrubs ranging from low, prostrate, mat-forming types to a few which approach tree size. -
Arctostaphylos Hispidula, Gasquet Manzanita
Conservation Assessment for Gasquet Manzanita (Arctostaphylos hispidula) Within the State of Oregon Photo by Clint Emerson March 2010 U.S.D.A. Forest Service Region 6 and U.S.D.I. Bureau of Land Management Interagency Special Status and Sensitive Species Program Author CLINT EMERSON is a botanist, USDA Forest Service, Rogue River-Siskiyou National Forest, Gold Beach and Powers Ranger District, Gold Beach, OR 97465 TABLE OF CONTENTS Disclaimer 3 Executive Summary 3 List of Tables and Figures 5 I. Introduction 6 A. Goal 6 B. Scope 6 C. Management Status 7 II. Classification and Description 8 A. Nomenclature and Taxonomy 8 B. Species Description 9 C. Regional Differences 9 D. Similar Species 10 III. Biology and Ecology 14 A. Life History and Reproductive Biology 14 B. Range, Distribution, and Abundance 16 C. Population Trends and Demography 19 D. Habitat 21 E. Ecological Considerations 25 IV. Conservation 26 A. Conservation Threats 26 B. Conservation Status 28 C. Known Management Approaches 32 D. Management Considerations 33 V. Research, Inventory, and Monitoring Opportunities 35 Definitions of Terms Used (Glossary) 39 Acknowledgements 41 References 42 Appendix A. Table of Known Sites in Oregon 45 2 Disclaimer This Conservation Assessment was prepared to compile existing published and unpublished information for the rare vascular plant Gasquet manzanita (Arctostaphylos hispidula) as well as include observational field data gathered during the 2008 field season. This Assessment does not represent a management decision by the U.S. Forest Service (Region 6) or Oregon/Washington BLM. Although the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. -
Drought-Tolerant and Native Plants for Goleta and Santa Barbara County’S Mediterranean Climate
Drought-Tolerant and Native Plants for Goleta and Santa Barbara County’s Mediterranean Climate Drought tolerant plants for the Santa Barbara and Goleta area. In the 1500's California went through an 80 year drought. During the winter there were blizzards in Central California, the Salinas River froze solid where it flowed into the Monterey Bay. During the summer there was no humidity, no rain, and temperatures in the hundreds for many months. During one year in the 1840's there was no measurable rain in Santa Barbara. (The highest measured rainfall in an hour also was in Southern California, 11 inches in an hour) The same native plants that lived through that are still on the hillsides of California. California native plants that do not normally live in the creeks and ponds are very drought tolerant. The best way to find your plant is to check www.mynativeplants.com and do not water at all. But if you want a simple list of drought tolerant plants that can work for your garden here are some. Adenostoma fasciculatum, Chamise. Adenostoma sparsifolium, Red Shanks Agave deserti, Desert Agave Agave shawii, Coastal Agave Agave utahensis, Century Plant Antirrhinum multiflorum, Multiflowered Snapdragon Arctostaphylos La Panza, Grey Manzanita Arctostaphylos densiflora Sentinel Manzanita Arctostaphylos glandulosa adamsii, Laguna Manzanita. Arctostaphylos crustacea eastwoodiana, Harris Grade manzanita. Arctostaphylos glandulosa zacaensis, San Marcos Manzanita Arctostaphylos glauca, Big Berry Manzanita. Arctostaphylos glauca, Ramona Manzanita Arctostaphylos glauca-glandulosa, Weird Manzanita. 1 | Page Arctostaphylos pungens, Mexican Manzanita Arctostaphylos refugioensis Refugio Manzanita Aristida purpurea, Purple 3-awn Artemisia californica, California Sagebrush Artemisia douglasiana, Mugwort Artemisia ludoviciana, White Sagebrush Asclepias fascicularis, Narrowleaf Milkweed Astragalus trichopodus, Southern California Locoweed Atriplex lentiformis Breweri, Brewers Salt Bush. -
Arctostaphylos: the Winter Wonder by Lili Singer, Special Projects Coordinator
WINTER 2010 the Poppy Print Quarterly Newsletter of the Theodore Payne Foundation Arctostaphylos: The Winter Wonder by Lili Singer, Special Projects Coordinator f all the native plants in California, few are as glass or shaggy and ever-peeling. (Gardeners, take note: smooth- beloved or as essential as Arctostaphylos, also known bark species slough off old “skins” every year in late spring or as manzanita. This wild Californian is admired by summer, at the end of the growing season.) gardeners for its twisted boughs, elegant bark, dainty Arctostaphylos species fall into two major groups: plants that flowers and handsome foliage. Deep Arctostaphylos roots form a basal burl and stump-sprout after a fire, and those that do prevent erosion and stabilize slopes. Nectar-rich insect-laden not form a burl and die in the wake of fire. manzanita blossoms—borne late fall into spring—are a primary food source for resident hummingbirds and their fast-growing Small, urn-shaped honey-scented blossoms are borne in branch- young. Various wildlife feast on the tasty fruit. end clusters. Bees and hummers thrive on their contents. The Wintershiny, round red fruit or manzanita—Spanish for “little apple”— The genus Arctostaphylos belongs to the Ericaceae (heath O are savored by coyotes, foxes, bears, other mammals and quail. family) and is diverse, with species from chaparral, coastal and (The botanical name Arctostaphylos is derived from Greek words mountain environments. for bear and grape.) Humans use manzanita fruit for beverages, Though all “arctos” are evergreen with thick leathery foliage, jellies and ground meal, and both fruit and foliage have plant habits range from large and upright to low and spreading. -
Presentation
The Ecology and Conservation of California's Maritime Chaparral Evolution and distribution of Archtostaphylos Tom Parker Maritime Chaparral No real definition has stabilized for maritime chaparral. There is Understanding Maritime a continuum of chaparral types distributed along the Chaparral Post-fire at Ft.Ord coast of California. Using Arctostaphylos as the road to and from confusion Summer fog is the one characteristic that links these chaparral types together. Pfeiffer Rock ? Origin within the Ericaceae • The Arbutoideae is a subfamily of the Ericaceae, a widespread and diverse family. The family itself dates beyond 100 MYBP, The recent Arctostaphylos (manzanitas) radiation in and some estimates California has resulted in a confusing group for most place it older. people. As a principal dominant of maritime chaparral, one question is where did all these manzanitas come from? One theory proposed relationships within the family based upon their fungal root mutualists, or mycorrhizae. Using Suggesting single origins for the various mycorrhizal molecular types within the family, the Arbutoideae comes out as sequence one of the oldest lineages. data, these relationships within the Ericaceae were confirmed. Elkhorn Slough Coastal Training Program Workshop January 17, 2003 1 The Ecology and Conservation of California's Maritime Chaparral Evolution and distribution of Archtostaphylos Tom Parker The subfamily Arbutoideae contains 6 What are the relationships among the genera within the Arbutoideae? genera. These genera are found in the northern hemisphere, with most species confined to North America. • Arbutus ~12 species • Arctostaphylos ~60-90 species • Arctous 2 species • Comarostaphylis ~16 species • Ornithostaphylos 1 species • Xylococcus 1 species Molecular sequences suggest Arbutus as the basal genus for the subfamily, and Arbutus Arctostaphylos as the most derived. -
Emergency Petition to List the San Francisco Manzanita (Arctostaphylos Franciscana) As an Endangered Species
EMERGENCY PETITION TO LIST THE SAN FRANCISCO MANZANITA (ARCTOSTAPHYLOS FRANCISCANA) AS AN ENDANGERED SPECIES Building a healthy and sustainable global community for people and the plants and animals that accompany us on Earth PETITIONER December 14, 2009 NOTICE OF PETITION Wild Equity Institute Contact: Brent Plater [email protected] 415-572-6989 Lead petitioner the Wild Equity Institute and co-petitioners the Center for Biological Diversity and the California Native Plant Society formally request that the Fish and Wildlife Service (“FWS”) list the Franciscan or San Francisco manzanita, Arctostaphylos franciscana, as an endangered species under the federal Endangered Species Act (“ESA”) on an emergency basis pursuant to 16 U.S.C. § 1533(b)(7) and 50 CFR § 424.20. If FWS does not find that the species deserves emergency protection, the Wild Equity Institute formally requests that A. franciscana be listed as an endangered species pursuant to the procedures specified at 16 U.S.C. § 1533(b)(3) and 50 C.F.R. § 424.14(b). The Wild Equity Institute formally requests that critical habitat for the species be designated concurrent with this listing. To the extent genetic studies indicate that the recently discovered Arctostaphylos individual in the Presidio near Doyle Drive in San Francisco, CA is a hybrid, the Wild Equity Institute petitions FWS to list the hybrid under FWS’ proposed policy on treatment of intercrosses and intercross progeny, 61 Fed. Reg. 4,710 (Feb. 7, 1996), on an emergency basis, in addition to petitioning to list A. franciscana. To the extent the individual discovered is determined to be a newly discovered species, the Wild Equity Institute petitions to list this previously unknown species on an emergency basis in addition to petitioning to list A. -
MANAGEMENT and SILVICULTURAL PRACTICES AP PLIED to PINE-OAK FOREST in DURANGO, MEXIC01 by Victor M
MANAGEMENT AND SILVICULTURAL PRACTICES AP PLIED TO PINE-OAK FOREST IN DURANGO, MEXIC01 by Victor M. Hernandez C., Francisco J. Hernandez, and Santiango S. Gonzales2 ' StudyAr~o Durango state is located in the northwest region of Mexico. It is surrounded by Chihuahua • state in the North and Northeast, Coahuila and Zacatecas in the East, Jalisco and Nayarit in the South, and Sinaloa in the West (lnegi~ 1988; Zavala, 1985). It has an area of 11,964,800 hectares. Half of Durango territory is located on the Sierra Madre Occidental with a 125 km width, 425 km length and mean altitude of 2500 m. The remaining area is· located on the altiplanicie (high plain) Mexicana. The lowest altitude record is regiStered at Tamazula, Durango, with 250 m and the highest record reaches 3,300 m at the Huehliento Mountain. According to the broad diversity in climatic and phys~ographic conditions throughout the state,·Durango is divided into four regions, each one with characteristic types of vegetation. These physiographic regions are: 1. The Quebradas Region - It is characterized by its tropical type of vegetation (deciduous tropical forest and semi-deciduous tropical forest). It is located on the west side of the Sierra Madre Occidental, in an altitude range from 27 to 500m; with a warm and subhumid climate and a summer rainy season. The annual mean precipitation is 1250 rom in this region (Zavala, Z. 1982, Gonzalez, S. 1985). 2. The Mountains or Central Region - It involves the highest elevations of the . Sierra Madre Occidental, and it is mainly covered by coniferous forest (pure pine forest, mixed pine-oak forest, and grassland-shrubs forest). -
Arctostaphylos Uva-Ursi (L.) Spreng
Scientific Name: Arctostaphylos uva-ursi (L.) Spreng. Family: Ericaceae Common Names: bearberry, kinnikinnick, red bearberry, cowberry, manzanita, mealberry Fruit: Mealy (not juicy) drupe with dry, shell-like skin; 6 to 8 mm diameter, spherical, dull red. Seed: 5 to 6 seeds in a generally united round stone, individual 3.5 x 2 mm, sectioned, rough, porous, yellow brown. Habitat and Distribution Prefers rocky, open woodlands, dry, sandy hills and pine forest (Lady Bird Johnson Wildflower Center 2013). It is adapted to coarse and medium textured soils; has moderate carbonate tolerance and is highly drought tolerant. Can handle pH from 5.5 to 8.0, medium salinity and prefers intermediate shade (USDA NRCS n.d.). Seral Stage: Early, recovers well after fire (Crane 1991, Tannas 1997). Soils: Sandy and well-drained sites in woodlands and throughout the prairie, roadside, exposed rocks. Relatively low shade tolerance. Moderate acid tolerance. Tolerant to a wide range of soil textures. Common on coarse and well drained soils. Preference to gravely and sandy loams (Hardy BBT 1989). Arctostaphylos uva-ursi a. plant habit including flowering branch, leaves and roots b. arrangement of flowers in the inflorescence c. flower d. flower (cut away) e – g. seed. Plant Description Trailing evergreen perennial shrub 7.5 to 10 cm tall; forms mats with prostrate and rooting branches 50 to 100 cm long; alternate leaves, coriaceous, obovate to spatulate 1 to 2 cm long; 1 to 3 cm long drooping urn- shaped flowers nodding in a dense raceme (3 to 10); rhizomatous with nodal feeder roots that form in the second years (Moss 1983). -
State Fo Rester F Orum
BROOM RUSTS Introduction Broom rusts are fungus-caused diseases that result in the formation of witches-brooms in the branches of infected trees. “Witches-broom” is a generic term for a localized proliferation of twigs with short internodes on a branch (Figures 1 & 2). Two broom rusts occur in Idaho. Spruce broom rust, caused by Chrysomyxa arctostaphyli, infects Engelmann spruce. Fir broom rust, caused by Melampsorella caryophyllacearum, can be found on grand and subalpine fir. Figure 2. Witches-broom in true fir. (Photo by Susan K. Hagle, USDA Forest Service, www.forestryimages.org) Disease Recognition Shoots forming witches-brooms grow upright and produce new needles with yellow to light- green coloration each year, making brooms stand out in the spring and summer against a background of relatively healthy, dark-green foliage (Figures 1 & 2). The fungus-infected needles of a broom are shed during fall and winter, but it is not dead. The shoots of a State Forester Forum State Forester broom remain alive over winter and, in early spring, new needles grow from the infected Figure 1. Witches-broom in spruce. (Photo by shoots. Because the fungus is systemic in the Oscar J. Dooling, USDA Forest Service, www.forestryimages.org) broom’s shoots, it grows readily into the new needles. The needles on a broom are shorter Tom Schultz Insect and Disease Craig Foss Director Chief, Bureau of Forestry Idaho Department of Lands No. 10 Assistance 300 N. 6th Street, Suite 103 3284 W. Industrial Loop Boise, ID 83720 September 2014 Coeur d’Alene, ID 83815 Phone: (208) 334-0200 Phone: (208) 769-1525 BROOM RUSTS and thicker than needles on normal branches. -
Plants for a 'Sustainable” -- Low Maintenance – Garden and Landscape in Arroyo Grande
PLANTS FOR A ‘SUSTAINABLE” -- LOW MAINTENANCE – GARDEN AND LANDSCAPE IN ARROYO GRANDE Low water use, minimal fertilizer needs, no special care Large Trees -- Cedrus libanii atlantica ‘Glauca’ BLUE ATLAS CEDAR Cedrus deodara DEODAR CEDAR Cinnamomum camphora CAMPHOR Gingko biloba GINGKO Pinus canariensis CANARY ISLAND PINE Pinus pinea ITALIAN STONE PINE Pinus sabiniana GRAY PINE Pinus torreyana TORREY PINE Quercus ilex HOLLY OAK Quercus suber CORK OAK Medium Trees -- Allocasuarina verticillata SHE-OAK Arbutus ‘Marina’ HYBRID STRAWBERRY TREE Brachychiton populneus KURRAJONG, AUSTRALIAN BOTTLE TREE Brahea armata BLUE HESPER PALM Butia capitata PINDO PALM Eucalyptus nicholii PEPPERMINT GUM Eucalyptus polyanthemos SILVER DOLLAR GUM Calocedrus decurrens INCENSE CEDAR Cupressus arizonica ARIZONA CYPRESS Cupressus forbesii TECATE CYPRESS Geijera parviflora AUSTRALIAN WILLOW Gleditsia triacanthos inermis THORNLESS HONEY LOCUST Juniperus scopulorum ‘Tolleson’s Blue Weeping’ BLUE WEEPING JUNIPER Melaleuca linariifolia FLAXLEAF PAPERBARK Metrosideros excelsus NEW ZEALAND CHRISTMAS TREE Olea europaea OLIVE (only fruitless cultivars such as ‘Majestic Beauty’, ‘Wilsoni’) Pinus halepensis ALEPPO PINE Pistacia chinensis CHINESE PISTACHE Quercus chrysolepis CANYON LIVE OAK Sequoiadendron giganteum GIANT REDWOOD © Copyright Joe Seals 2009 Small Trees Acacia baileyana BAILEY’S ACACIA Acacia pendula WEEPING MYALL Celtis australis EUROPEAN HACKBERRY x Chiltalpa tashkentensis CHILTALPA Cordyline australis CABBAGE PALM Cotinus coggygria SMOKE TREE Eucalyptus -
Phytochemical Investigation of Arctostaphylos Columbiana Piper and Arctostaphylos Patula Greene
AN ABSTRACT OF THE THESIS OF George Harmon Constantine, Jr. for the Ph.D. in Pharmacognosy (Name) (Degree) (Major) Date thesis is presented May 5, 1966 Title PHYTOCHEMICAL INVESTIGATION OF ARCTOSTAPHYLOS COLUMBIANA PIPER AND ARCTOSTAPHYLOS PATULA GREENE Abstract approved Redacted for privacy (Major professor) There are numerous references in the literature concerning the use of various Arctostaphylos species as medicinal plants. One of the species, A. uva-ursi, was listed in the United States official compendia from 18 20 until 1946 as a urinary antiseptic. Many species indigenous to the Pacific Northwest were employed by the Indians for a variety of uses, ranging from consuming the ripe fruits as a food to utilizing the leaves in urinary tract and other infections. Early settlers in the West consequently used the plants for the same purposes. Phytochemical investigations of the genus Arctostaphylos have not been extensive although several members of the family, Ericaceae, yield compounds restricted only to the family. A thorough review of the literature revealed that there has been little phytochemical investigation of species other than Arctostaphylos uva-ursi. Therefore, the purpose of this study was to thoroughly investigate two other Arctostaphylos species, viz. , A. Columbiana and A. patula, for organic components. The devel opment of newer methods of extraction, isolation and identifica tion, as well as, a screening of both plants for possible biological activity was also pursued. A new extraction solvent mixture was utilized in order to extract all of the components of interest in one extraction proce dure. The residue from the extraction was then separated into two fractions; one containing sterol and trite rpenoid compounds; and the other, phenolic components. -
Manzanitas (Arctostaphylos Species) Known to Be Susceptible to Phytophthora Ramorum
April 3, 2020 Manzanitas (Arctostaphylos species) known to be susceptible to Phytophthora ramorum (Many of the species listed below are not yet on the USDA APHIS P. ramorum proven host or associated host list.) Arctostaphylos columbiana (bristly manzanita, hairy manzanita) – On the USDA APHIS P. ramorum associated host list. First reported in February 2006 by Rizzo, UC Davis (DiLeo et al. 2008). Arctostaphylos columbiana is native to the Pacific coast from northern California to British Columbia. Hairy manzanita is often available at native plant and horticultural nurseries. Arctostaphylos glandulosa (Eastwood's manzanita) – First reported with P. ramorum symptoms on Mt. Tamalpais in June 2015 (Rooney-Latham et al. 2017). Arctostaphylos glandulosa is native to the Pacific coast from Baja California to southern Oregon, and includes eleven subspecies (adamsii, atumescens, crassifolia, cushingiana, erecta, gabrielensis, glandulosa, howellii, juarezensis, leucophylla, mollis). Arctostaphylos glandulosa subsp. crassifolia (Del Mar manzanita) is listed as rare, threatened, or endangered in California and elsewhere (CA RPR 1B.1). Arctostaphylos glandulosa subsp. gabrielensis (San Gabriel manzanita) is listed as rare, threatened, or endangered in California and elsewhere (CA RPR 1B.2) and as Sensitive Species for both Bureau of Land Management and U.S. Forest Service. Eastwood's manzanita is often available at native plant nurseries. Arctostaphylos glauca (bigberry manzanita) – First reported as a P. ramorum host by Rooney- Latham and Blomquist, CDFA (publication in prep, 2020). Arctostaphylos glauca is native to California and Baja California, where it grows in chaparral and woodland ecosystems. Bigberry manzanita is often available at nurseries. Cultivars include 'Blue Corgi', 'Dwaine's Dwarf', ' Frazier Park Manzanita', ' Los Angeles', 'Margarita Pearl', ' Ramona'.