Development of Enzyme-Based Biosensors for the Detection Of

Total Page:16

File Type:pdf, Size:1020Kb

Development of Enzyme-Based Biosensors for the Detection Of DEVELOPMENT OF ENZYME-BASED BIOSENSORS FOR THE DETECTION OF ORGANOPHOSPHATE NEUROTOXINS Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary, restricted or classified information. ______________________________ Sheetal Paliwal Certificate of Approval: _________________________ _________________________ Jeffrey Fergus Aleksandr Simonian, Chair Associate Professor Professor Materials Engineering Materials Engineering _________________________ _________________________ Barton Prorok William Moar Associate Professor Professor Materials Engineering Entomology _________________________ _________________________ Vitaly Vodyanoy George T. Flowers Professor Dean Anatomy, Physiology and Graduate School Pharmacology DEVELOPMENT OF ENZYME-BASED BIOSENSORS FOR THE DETECTION OF ORGANOPHOSPHATE NEUROTOXINS Sheetal Paliwal A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 19, 2008 DEVELOPMENT OF ENZYME-BASED BIOSENSORS FOR THE DETECTION OF ORGANOPHOSPHATE NEUROTOXINS Sheetal Paliwal Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights. _________________________ Signature of Author _________________________ Date of Graduation iii VITA Sheetal Paliwal, daughter of Sri. Hansraj Paliwal and Smt. Savita Paliwal, was born on March 8, 1980, in Hyderabad, India. She graduated from Ratna Junior College, Hyderabad, India in May 1997. She joined MJCET, Osmania University, Hyderabad, India in November 1997 and graduated with a Bachelor of Engineering in Mechanical Engineering in May 2001. She graduated with a Masters in Industrial Engineering from Arizona State University in May 2003. She joined the doctoral program in Materials Engineering at Auburn University in August 2003 under the guidance of Dr. Simonian. She is married to Sai Vamshidhar Nudurupati, son of Sri. Saibaba Nudurupati and Smt. Sarada Nudurupati. iv DISSERTATION ABSTRACT DEVELOPMENT OF ENZYME-BASED BIOSENSORS FOR THE DETECTION OF ORGANOPHOSPHATE NEUROTOXINS Sheetal Paliwal Doctor of Philosophy, December 19, 2008 (M.S, Arizona State University, 2003) (B.E, MJCET, Osmania University, 2001) 183 Typed pages Directed by Aleksandr Simonian Elevated concerns of ecological safety and environmental pollution have facilitated massive research in the area of chemical and biological agent detection. Large numbers of anthropogenic chemicals were introduced in the environment within last 50 years, which posed a serious threat to the natural ecological balance. The series of unfortunate events in the past could have been avoided or minimized by the availability of adequately selective and sensitive detectors, capable of discriminating between common use pesticides and chemical warfare agents. Organophosphates (OPs) in particular are more of a concern because of their toxicity and inhibition of esterase enzymes which are involved in nerve transmission. They have been an integral part of agricultural industry for past decades owing to their specificity. In addition, to their wide usage, they have also been exploited for the development of chemical warfare agents. Consequently, there is an emergent need for rapid and sensitive detection methods. v Enzyme-based studies have been investigated in an effort to develop simple, rapid, user-friendly and sensitive detection of OPs. The methods described have been developed using OPH, an enzyme capable of hydrolyzing OPs. A rapid detection method using a fiber-optic waveguide and a portable fluorimeter Analyte 2000 was developed. Immobilization of OPH was accomplished using avidin-biotin chemistry. Change in fluorescence intensity was observed upon hydrolysis of substrate by OPH, concentration as low as 0.05µM paraoxon (PX) was qualitatively measured. A novel detection method for p-nitrophenol and p-nitrophenyl substituent OPs based on fluorescence quenching of coumarin1, a dye similar in structure to some OPs have also been developed. Decrease in fluorescence intensity of coumarin1 was proportional to paraoxon concentration in the range of 0.7–170 µM. To preserve OPH activity and stability, encapsulation using lysozyme-mediated silica nanoparticles was accomplished and detection limit for PX was found to be 20µM. To improve site accessibility and sensor sensitivity, orientation-specific immobilization of OPH was achieved using site-specific antibodies and different variants of OPH. Finally, the potential use of carbon nanotubes for the electrochemical biosensing of OPs has been exploited OPH was covalently immobilized on the surface of these nanotubes and a detection limit of 2.3 µM was obtained for PX. Results demonstrated that the immobilized enzyme retained a significant degree of enzymatic activity, and displayed remarkable stability with only 8% decrease in signal over a period of 10 days. vi ACKOWLEDGEMENTS I would like to express my earnest gratitude to Dr. Aleksandr Simonian for his continuous support and guidance throughout the course of my degree. I would like to acknowledge my committee members, Dr. William Moar, Dr. Jeffrey Fergus, Dr. Vitaly Vodyanoy, and Dr. Bart Prorok for their valuable time and support. My sincere gratitude to Dr. Holly Ellis for acting as an external reader. I would like to extend my special thanks to Maj. Leamon Viveros, who spent effortless hours helping me understand concepts underlying this work and his continued support for all these years. I sincerely acknowledge Dr. James Wild, Dr. Melinda Wales and Dr. Janet Grimsley for providing me the enzyme without which this work was not possible. My nanotube work would not be possible without gracious help from Dr. Dhriti Nepal. Appreciation goes to my entire research group for their help and support. I am deeply indebted to my family, who went far beyond their extremities to provide me with all comforts. I thank them for all the sacrifices they have made and their devotion. The unconditional love and support of my siblings, Richa and Mitrank helped me accomplish this degree. My parents-in law, deserve a special mention for their immense support and affection. Words fail to express my appreciation to my husband, Vamshi whose commitment and persistence have helped me realize my aspirations. His endless love and patience kept me focused and always steered me in right direction. I consider myself fortunate to have him as my life partner. Thanks to one and all. Finally, thanks to Lord Sri Sairam for his grace and blessings. vii Style manual or journal used Sensors and Actuators B Computer software used Microsoft Office XP, Endnote X and OriginPro 8.0 viii TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... xvi LIST OF FIGURES .................................................................................................... xvii 1. INTRODUCTION AND LITERATURE REVIEW .................................................. 1 1.1. INTRODUCTION TO BIOSENSORS ............................................................... 1 1.2. CLASSIFICATION OF BIOSENSORS .............................................................. 2 1.2.1. Biocatalysis-based biosensors ................................................................... 3 1.2.2. Bioaffinity-based biosensors ..................................................................... 4 1.2.3. Microbe-based biosensors ......................................................................... 4 1.2.4. Electrochemical transducers ..................................................................... 4 1.2.4.1. Potentiometric ............................................................................... 4 1.2.4.2. Amperometric .............................................................................. 5 1.2.4.3. Conductometric ............................................................................ 5 1.2.5. Optical transducers ................................................................................... 5 1.2.5.1. Absorption .................................................................................... 5 1.2.5.2. Fluorescence ................................................................................. 6 1.2.5.3. Luminescence ............................................................................... 6 1.2.5.4. Surface plasmon resonance (SPR) ................................................ 6 1.2.6. Piezo-electric transducers ......................................................................... 7 1.2.7. Enthalpymetric transducers ....................................................................... 7 ix 1.3. ENZYME .......................................................................................................... 8 1.4. IMMOBILIZATION OF ENZYMES.................................................................. 9 1.4.1. Physical adsorption ................................................................................. 10 1.4.2. Cross linking ......................................................................................... 11 1.4.2.1. Avidin-biotin system ................................................................... 11 1.4.2.2. Crosslinking using gluteraldehyde..............................................
Recommended publications
  • Environmental Properties of Chemicals Volume 2
    1 t ENVIRONMENTAL 1 PROTECTION Esa Nikunen . Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 1 O O O O O O O O OO O OOOOOO Ol OIOOO FINNISH ENVIRONMENT INSTITUTE • EDITA Esa Nikunen e Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 HELSINKI 1000 OlO 00000001 00000000000000000 Th/s is a second revfsed version of Environmental Properties of Chemica/s, published by VAPK-Pub/ishing and Ministry of Environment, Environmental Protection Department as Research Report 91, 1990. The pubiication is also available as a CD ROM version: EnviChem 2.0, a PC database runniny under Windows operating systems. ISBN 951-7-2967-2 (publisher) ISBN 952-7 1-0670-0 (co-publisher) ISSN 1238-8602 Layout: Pikseri Julkaisupalvelut Cover illustration: Jussi Hirvi Edita Ltd. Helsinki 2000 Environmental properties of chemicals Volume 2 _____ _____________________________________________________ Contents . VOLUME ONE 1 Contents of the report 2 Environmental properties of chemicals 3 Abbreviations and explanations 7 3.1 Ways of exposure 7 3.2 Exposed species 7 3.3 Fffects________________________________ 7 3.4 Length of exposure 7 3.5 Odour thresholds 8 3.6 Toxicity endpoints 9 3.7 Other abbreviations 9 4 Listofexposedspecies 10 4.1 Mammais 10 4.2 Plants 13 4.3 Birds 14 4.4 Insects 17 4.5 Fishes 1$ 4.6 Mollusca 22 4.7 Crustaceans 23 4.8 Algae 24 4.9 Others 25 5 References 27 Index 1 List of chemicals in alphabetical order - 169 Index II List of chemicals in CAS-number order
    [Show full text]
  • Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects
    EN58CH06-Casida ARI 5 December 2012 8:11 Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects John E. Casida1,∗ and Kathleen A. Durkin2 1Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, 2Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley, California 94720; email: [email protected], [email protected] Annu. Rev. Entomol. 2013. 58:99–117 Keywords The Annual Review of Entomology is online at acetylcholinesterase, calcium channels, GABAA receptor, nicotinic ento.annualreviews.org receptor, secondary targets, sodium channel This article’s doi: 10.1146/annurev-ento-120811-153645 Abstract Copyright c 2013 by Annual Reviews. Neuroactive insecticides are the principal means of protecting crops, people, All rights reserved livestock, and pets from pest insect attack and disease transmission. Cur- ∗ Corresponding author rently, the four major nerve targets are acetylcholinesterase for organophos- phates and methylcarbamates, the nicotinic acetylcholine receptor for neonicotinoids, the γ-aminobutyric acid receptor/chloride channel for by Public Health Information Access Project on 04/29/14. For personal use only. Annu. Rev. Entomol. 2013.58:99-117. Downloaded from www.annualreviews.org polychlorocyclohexanes and fiproles, and the voltage-gated sodium channel for pyrethroids and dichlorodiphenyltrichloroethane. Species selectivity and acquired resistance are attributable in part to structural differences in binding subsites, receptor subunit interfaces, or transmembrane regions. Additional targets are sites in the sodium channel (indoxacarb and metaflumizone), the glutamate-gated chloride channel (avermectins), the octopamine receptor (amitraz metabolite), and the calcium-activated calcium channel (diamides). Secondary toxic effects in mammals from off-target serine hydrolase inhibi- tion include organophosphate-induced delayed neuropathy and disruption of the cannabinoid system.
    [Show full text]
  • Determination of Age-Related Differences in Activation and Detoxication of Organophosphates in Rat and Human Tissues
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 8-10-2018 Determination of Age-Related Differences in Activation and Detoxication of Organophosphates in Rat and Human Tissues Edward Caldwell Meek Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Meek, Edward Caldwell, "Determination of Age-Related Differences in Activation and Detoxication of Organophosphates in Rat and Human Tissues" (2018). Theses and Dissertations. 1339. https://scholarsjunction.msstate.edu/td/1339 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Template A v3.0 (beta): Created by J. Nail 06/2015 Determination of age-related differences in activation and detoxication of organophosphates in rat and human tissues By TITLE PAGE Edward Caldwell Meek A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Toxicology in the College of Veterinary Medicine Mississippi State, Mississippi August 2018 Copyright by COPYRIGHT PAGE Edward Caldwell Meek 2018 Determination of age-related differences in activation and detoxication of organophosphates in rat and human tissues By APPROVAL PAGE Edward Caldwell Meek
    [Show full text]
  • Appendix H EPA Hazardous Waste Law
    Appendix H EPA Hazardous Waste Law This Appendix is intended to give you background information on hazardous waste laws and how they apply to you. For most U.S. Environmental Protection Agency (EPA) requirements that apply to the University, the Safety Department maintains compliance through internal inspections, record keeping and proper disposal. In Wisconsin, the Department of Natural Resources (DNR) has adopted the EPA regulations, consequently EPA and DNR regulations are nearly identical. EPA defines This Appendix only deals with "hazardous waste" as defined by the EPA. hazardous waste as Legally, EPA defines hazardous waste as certain hazardous chemical waste. This hazardous chemical Appendix does not address other types of regulated laboratory wastes, such as waste; radioactive, infectious, biological, radioactive or sharps. Chapter 8 descibes disposal procedures infectious and biohazardous waste for animals. Chapter 9 describes disposal procedures for sharps and other waste that are regulated by can puncture tissue. Chapter 11 discusses Radiation and the Radiation Safety for other agencies. Radiation Workers provides guidelines for the disposal of radioactive waste. Procedures for medical waste are written by the UW Hospital Safety Officer. The Office of Biological Safety can provide guidance for the disposal of infectious and biological waste. EPA regulations focus on industrial waste streams. As a result, many laboratory chemical wastes are not regulated by EPA as hazardous chemical waste. However, many unregulated chemical wastes do merit special handling and disposal If a waste can be procedures. Thus, Chapter 7 and Appendix A of this Guide recommend disposal defined as: procedures for many unregulated wastes as if they were EPA hazardous waste.
    [Show full text]
  • Development of a Heterologous Enzyme-Linked Immunosorbent Assay for Organophosphorus Pesticides with Phage-Borne Peptide
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptRSC Adv Author Manuscript. Author manuscript; Author Manuscript available in PMC 2015 August 17. Published in final edited form as: RSC Adv. 2014 January 1; 4(80): 42445–42453. doi:10.1039/C4RA07059C. Development of a heterologous enzyme-linked immunosorbent assay for organophosphorus pesticides with phage-borne peptide Xiude Huaa,b, Xiaofeng Liua,b, Haiyan Shia,b, Yanru Wangc, Hee Joo Kimc, Shirley J. Geec, Minghua Wanga,b,*, Fengquan Liud,*, and Bruce D. Hammockc aCollege of Plant Protection (State & Local Joint Engineering Research Center of Green Pesticide Invention and Application), Nanjing Agricultural University, Nanjing 210095, China bKey Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education cDepartment of Entomology and UCD Cancer Center, University of California, Davis, California 95616, United States dInstitute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China Abstract An enzyme-linked immunosorbent assay (ELISA) was developed to detect organophosphorus pesticides using a phage-borne peptide that was isolated from a cyclic 8-residue peptide phage −1 library. The IC50 values of the phage ELISA ranged from 1.4 to 92.1 μg L for eight organophosphorus pesticides (parathion-methyl, parathion, fenitrothion, cyanophos, EPN, paraoxon-methyl, paraoxon, fenitrooxon). The sensitivity was improved 120- and 2-fold compared to conventional homologous and heterologous ELISA, respectively. The selectivity of the phage ELISA was evaluated by measuring its cross-reactivity with 23 organophosphorus pesticides, among which eight were the main cross-reactants. The spike recoveries were between 66.1% and 101.6% for the detection of single pesticide residues of parathion-methyl, parathion and fenitrothion in Chinese cabbage, apple and greengrocery, and all of the coefficient of variation were less than or equal to 15.9%.
    [Show full text]
  • The List of Extremely Hazardous Substances)
    APPENDIX A (THE LIST OF EXTREMELY HAZARDOUS SUBSTANCES) THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 75-86-5 ACETONE CYANOHYDRIN 500 10 1752-30-3 ACETONE THIOSEMICARBAZIDE 500/500 1,000 107-02-8 ACROLEIN 500 1 79-06-1 ACRYLAMIDE 500/500 5,000 107-13-1 ACRYLONITRILE 500 100 814-68-6 ACRYLYL CHLORIDE 100 100 111-69-3 ADIPONITRILE 500 1,000 116-06-3 ALDICARB 100/500 1 309-00-2 ALDRIN 500/500 1 107-18-6 ALLYL ALCOHOL 500 100 107-11-9 ALLYLAMINE 500 500 20859-73-8 ALUMINUM PHOSPHIDE 500 100 54-62-6 AMINOPTERIN 500/500 500 78-53-5 AMITON 500 500 3734-97-2 AMITON OXALATE 100/500 100 7664-41-7 AMMONIA 500 100 300-62-9 AMPHETAMINE 500 1,000 62-53-3 ANILINE 500 5,000 88-05-1 ANILINE,2,4,6-TRIMETHYL- 500 500 7783-70-2 ANTIMONY PENTAFLUORIDE 500 500 1397-94-0 ANTIMYCIN A 500/500 1,000 86-88-4 ANTU 500/500 100 1303-28-2 ARSENIC PENTOXIDE 100/500 1 THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 1327-53-3 ARSENOUS OXIDE 100/500 1 7784-34-1 ARSENOUS TRICHLORIDE 500 1 7784-42-1 ARSINE 100 100 2642-71-9 AZINPHOS-ETHYL 100/500 100 86-50-0 AZINPHOS-METHYL 10/500 1 98-87-3 BENZAL CHLORIDE 500 5,000 98-16-8 BENZENAMINE, 3-(TRIFLUOROMETHYL)- 500 500 100-14-1 BENZENE, 1-(CHLOROMETHYL)-4-NITRO- 500/500 500 98-05-5 BENZENEARSONIC ACID 10/500 10 3615-21-2 BENZIMIDAZOLE, 4,5-DICHLORO-2-(TRI- 500/500 500 FLUOROMETHYL)- 98-07-7 BENZOTRICHLORIDE 100 10 100-44-7 BENZYL CHLORIDE 500 100 140-29-4 BENZYL CYANIDE 500 500 15271-41-7 BICYCLO[2.2.1]HEPTANE-2-CARBONITRILE,5-
    [Show full text]
  • 12.2% 116000 125M Top 1% 154 4200
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,200 116,000 125M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter 14 Evolution and Expectations of Enzymatic Biosensors for Pesticides Rafael Vargas-Bernal, Esmeralda Rodríguez-Miranda and Gabriel Herrera-Pérez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/46227 1. Introduction The successful use of pesticides around the world has been due to their excellent control of pests such as insects, algaes, bacterias, viruses, rodents, or nematodes in agriculture, medicine, household, and industry. Since 9 of the 12 most dangerous and persistent organic pollutants are pesticides, therefore their qualitative and/or quantitative detection continue being one of the most strategic technological areas, given that these can be found in substances in contact with humans and other animals. The effects associated with their consumption and control, are related to human health and environmental toxicity. One of the most important contributions of the environmental chemistry is the control of pesticide residues and metabolites in food, water and soil; where plants, animal and human contacts are possible. Several methods to detect pesticides have been developed, chromatographic methods such as gas chromatography (GC) and high performance liquid chromatography (HPLC), which are coupled with mass spectrometry (MS).
    [Show full text]
  • Organophosphate Insecticides
    CHAPTER 4 HIGHLIGHTS Organophosphate Insecticides Acts through phosphorylation of the acetylcholinesterase enzyme Since the removal of organochlorine insecticides from use, organophosphate at nerve endings insecticides have become the most widely used insecticides available today. More Absorbed by inhalation, than forty of them are currently registered for use and all run the risk of acute ingestion, and skin and subacute toxicity. Organophosphates are used in agriculture, in the home, penetration in gardens, and in veterinary practice. All apparently share a common mecha- Muscarinic, nicotinic & CNS nism of cholinesterase inhibition and can cause similar symptoms. Because they effects share this mechanism, exposure to the same organophosphate by multiple routes or to multiple organophosphates by multiple routes can lead to serious additive Signs and Symptoms: toxicity. It is important to understand, however, that there is a wide range of Headache, hypersecretion, toxicity in these agents and wide variation in cutaneous absorption, making muscle twitching, nausea, specific identification and management quite important. diarrhea Respiratory depression, seizures, loss of consciousness Toxicology Miosis is often a helpful Organophosphates poison insects and mammals primarily by phosphory- diagnostic sign lation of the acetylcholinesterase enzyme (AChE) at nerve endings. The result is a loss of available AChE so that the effector organ becomes overstimulated by Treatment: the excess acetylcholine (ACh, the impulse-transmitting substance) in the nerve Clear airway, improve tissue ending. The enzyme is critical to normal control of nerve impulse transmission oxygenation from nerve fibers to smooth and skeletal muscle cells, glandular cells, and Administer atropine sulfate autonomic ganglia, as well as within the central nervous system (CNS).
    [Show full text]
  • Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2
    catalysts Review Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2 Marek Matula 1, Tomas Kucera 1 , Ondrej Soukup 1,2 and Jaroslav Pejchal 1,* 1 Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; [email protected] (M.M.); [email protected] (T.K.); [email protected] (O.S.) 2 Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, 500 05 Hradec Kralove, Czech Republic * Correspondence: [email protected] Received: 26 October 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: The organophosphorus substances, including pesticides and nerve agents (NAs), represent highly toxic compounds. Standard decontamination procedures place a heavy burden on the environment. Given their continued utilization or existence, considerable efforts are being made to develop environmentally friendly methods of decontamination and medical countermeasures against their intoxication. Enzymes can offer both environmental and medical applications. One of the most promising enzymes cleaving organophosphorus compounds is the enzyme with enzyme commission number (EC): 3.1.8.2, called diisopropyl fluorophosphatase (DFPase) or organophosphorus acid anhydrolase from Loligo Vulgaris or Alteromonas sp. JD6.5, respectively. Structure, mechanisms of action and substrate profiles are described for both enzymes. Wild-type (WT) enzymes have a catalytic activity against organophosphorus compounds, including G-type nerve agents. Their stereochemical preference aims their activity towards less toxic enantiomers of the chiral phosphorus center found in most chemical warfare agents. Site-direct mutagenesis has systematically improved the active site of the enzyme. These efforts have resulted in the improvement of catalytic activity and have led to the identification of variants that are more effective at detoxifying both G-type and V-type nerve agents.
    [Show full text]
  • Environmental Health Criteria 63 ORGANOPHOSPHORUS
    Environmental Health Criteria 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION Please note that the layout and pagination of this web version are not identical with the printed version. Organophophorus insecticides: a general introduction (EHC 63, 1986) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1986 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination
    [Show full text]
  • Combined Pre-And Posttreatment of Paraoxon Exposure
    molecules Article Combined Pre- and Posttreatment of Paraoxon Exposure Dietrich E Lorke 1,2,* , Syed M Nurulain 3 , Mohamed Y Hasan 4, Kamil Kuˇca 5 and Georg A Petroianu 2,6 1 Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, P O Box 127788, Abu Dhabi, UAE 2 Herbert Wertheim College of Medicine, Department of Cellular Biology & Pharmacology, Florida International University, University Park GL 495, 11200 SW 8th St, Miami, FL 33199, USA; [email protected] 3 Bio Science Department, COMSATS Institute of Information Technology, Bio Sciences Block, CUI, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; [email protected] 4 Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain 15551, UAE; [email protected] 5 Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62/26, 500 03 Hradec Kralove, Czech Republic; [email protected] 6 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, P O Box 127788, Abu Dhabi, UAE * Correspondence: [email protected]; Tel.: +971-2-501-8381 Academic Editors: Pascal Houzé and Frédéric J. Baud Received: 5 March 2020; Accepted: 25 March 2020; Published: 27 March 2020 Abstract: Aims: Organophosphates (OPCs), useful agents as pesticides, also represent a serious health hazard. Standard therapy with atropine and established oxime-type enzyme reactivators is unsatisfactory. Experimental data indicate that superior therapeutic results can be obtained when reversible cholinesterase inhibitors are administered before OPC exposure. Comparing the protective efficacy of five such cholinesterase inhibitors (physostigmine, pyridostigmine, ranitidine, tacrine, or K-27), we observed best protection for the experimental oxime K-27.
    [Show full text]
  • Decontamination of Cyanophos Residues from Water Containing Catfish (Clarias Lazera) Using Activated Charcoal and Rice Husk Ash
    Journal of Applied Sciences Research 5(7): 820-826, 2009 © 2009, INSInet Publication Decontamination of Cyanophos Residues from Water Containing Catfish (Clarias Lazera) Using Activated Charcoal and Rice Husk Ash 1 Ahmed A. Romeh, 2 Mohamed B. Ashour, 2 Mohamed Y.Hendawi and 1Rady A. Ramadan 1Plant Protection Depart. Efficient Productivity. Inst., Zagazig Univ., Egypt. 2 Plant Protection Dept. Faculty of Agriculture. Zagazig Univ. Egypt. Abstract: The effect of activated charcoal and rice husk ash addition on the residues of cyanophos in water and some organs of catfish (clarias lazera) and their effect on some biochemical changes in blood serum were studies under laboratory conditions. The obtained results indicated that cyanophos showed high degradation in aquaria water compared with tap water. This was pronounced with the all considered post- treatment intervals. The average concentration of cyanophos in tap water and in water containing fish 2hrs after treatment was 8.73 and 6.60 Ug/ml respectively. These amounts were significantly decreased by time till reached 4.13 and 1.20 Ug/ml after 144hrs, representing 55.73and 87.14% dislodges of the initial amounts, respectively. Penetrated amount of cyanophos significantly increased and accumulated in the inner organs as time lapsed to reach the maximum level in the gills after 24 hrs (17.39 ug/gm) and in the liver during 48 hrs (24.51 ug/gm) while in muscles during 96 hrs (7.98 ug/gm) of experimental span. Thereafter, cyanophos began to disappear from the gills, liver and muscles gradually till the end of the experimental period (144 hrs).Addition of activated charcoal and rice husk ash to water contaminated with anilophos reduced clearly levels of residues in water and in fish gills, liver and muscles.
    [Show full text]