Environmental and Anthropogenic Controls Over Bacterial Communities in Wetland Soils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Blue” Carbon a Revised Guide to Supporting Coastal Wetland Programs and Projects Using Climate Finance and Other Financial Mechanisms
Coastal “blue” carbon A revised guide to supporting coastal wetland programs and projects using climate finance and other financial mechanisms Coastal “blue” carbon A revised guide to supporting coastal wetland programs and projects using climate finance and other financial mechanisms This revised report has been written by D. Herr and, in alphabetic order, T. Agardy, D. Benzaken, F. Hicks, J. Howard, E. Landis, A. Soles and T. Vegh, with prior contributions from E. Pidgeon, M. Silvius and E. Trines. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, Conservation International and Wetlands International concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, Conservation International, Wetlands International, The Nature Conservancy, Forest Trends or the Nicholas Institute for Environmental Policy Solutions. Copyright: © 2015 International Union for Conservation of Nature and Natural Resources, Conservation International, Wetlands International, The Nature Conservancy, Forest Trends and the Nicholas Institute for Environmental Policy Solutions. Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Herr, D. T. Agardy, D. Benzaken, F. Hicks, J. Howard, E. Landis, A. Soles and T. Vegh (2015). Coastal “blue” carbon. -
Metaproteomics Reveals Differential Modes of Metabolic Coupling Among Ubiquitous Oxygen Minimum Zone Microbes
Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes Alyse K. Hawleya, Heather M. Brewerb, Angela D. Norbeckb, Ljiljana Paša-Tolicb, and Steven J. Hallama,c,d,1 aDepartment of Microbiology and Immunology, cGraduate Program in Bioinformatics, and dGenome Sciences and Technology Training Program, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and bBiological and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 Edited by Edward F. DeLong, Massachusetts Institute of Technology, Cambridge, MA, and approved June 10, 2014 (received for review November 26, 2013) Marine oxygen minimum zones (OMZs) are intrinsic water column transformations in nonsulfidic OMZs, providing evidence for features arising from respiratory oxygen demand during organic a cryptic sulfur cycle with the potential to drive inorganic carbon matter degradation in stratified waters. Currently OMZs are expand- fixation processes (13). Indeed, many of the key microbial players ing due to global climate change with resulting feedback on marine implicated in nitrogen and sulfur transformations in OMZs, in- ecosystem function. Here we use metaproteomics to chart spatial cluding Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and temporal patterns of gene expression along defined redox and SUP05/ARCTIC96BD-19 Gammaproteobacteria have the gradients in a seasonally stratified fjord to better understand metabolic potential for inorganic carbon fixation (14–19), and -
Natural Heritage Program List of Rare Plant Species of North Carolina 2012
Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org NATURAL HERITAGE PROGRAM LIST OF THE RARE PLANTS OF NORTH CAROLINA 2012 Edition Edited by Laura E. Gadd, Botanist and John Finnegan, Information Systems Manager North Carolina Natural Heritage Program, Office of Conservation, Planning, and Community Affairs Department of Environment and Natural Resources, 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org Table of Contents LIST FORMAT ......................................................................................................................................................................... 3 NORTH CAROLINA RARE PLANT LIST ......................................................................................................................... 10 NORTH CAROLINA PLANT WATCH LIST ..................................................................................................................... 71 Watch Category -
A-231 Forested Peatland Management in Southeast
15TH INTERNATIONAL PEAT CONGRESS 2016 Abstract No: A-231 FORESTED PEATLAND MANAGEMENT IN SOUTHEAST VIRGINIA AND NORTHEAST NORTH CAROLINA, USA Frederic C. Wurster1, Sara Ward2, and Christine Pickens3 1 U.S. Fish and Wildlife Service, Great Dismal Swamp National Wildlife Refuge, Suffolk, VA, USA 2 U.S. Fish and Wildlife Service, Raleigh Field Office, Raleigh, NC, USA 3 The Nature Conservancy, Kill Devil Hills, NC, USA *Corresponding author: [email protected] SUMMARY The U.S. Fish and Wildlife Service manage 130,000 ha of forested peatlands in southeast Virginia and northeast North Carolina, U.S.A. at three national wildlife refuges: Pocosin Lakes, Alligator River, and Great Dismal Swamp. The refuges contain extensive networks of roads and drainage canals; the legacy of past logging and farming activities. Canals have contributed to peat subsidence and facilitated the conversion of wetland forest communities to upland forest communities. During drought periods, drained peat is prone to wildfires that can burn for several months and pose health risks to neighboring communities. Refuge managers are working to restore historic forest communities and stop peat loss through hydrologic restoration, forest management, and fire management. Following four separate severe peat fires on refuges in 2008 and 2011, emphasis has been placed on improving water control capability to support habitat restoration and fire suppression activities. Keywords: Pocosin, forested peatland, peatland restoration, controlled drainage, national wildlife refuge INTRODUCTION The South Atlantic Coastal plain of the United States is home to extensive forested wetlands on peat soils known as pocosins (Richardson, 1991). Also described as evergreen (or southeastern) shrub bogs, the pocosin vegetation community consists of an open-pine canopy underlain by a dense shrub layer. -
Pocosin Breeding Bird Fauna
P0c0sinbreeding bird fauna Widely recognized for their unique botanical nature, little study has been done on pocosin avifauna. David S. Lee systemsand/or adjacent to estuarine from an Algonquin Indian term systems.Such mixed areas often pro- HE"poquosin"WORD POCOSIN and is oneORIGINATED of the few vide a rich mosaic of wetland habitats Algonquin words used by European involvingbroad zonesof transitionand settlers. Pocosin habitats are defined complex successionalpatterns. Exten- vath difficulty since considerablecon- siveareas called pocosins by naturalists fusion persistsin the use of the term. and environmentalistsare, in fact, often Nevertheless,it is obviouslycritical to composedof swamp forest, hardwood definethese habits accuratelyif mean- or evergreenshrub bog have been used forest, and marshes.Although there lngful habitat comparisonsare to be to describepocosin vegetation types. seemsto be no comprehensivebotanical made. Tooker (1899) provided detailed The term "bay" is particularly con- definition of pocosinmost researchers discussionon the origin, meaning,and fusing becauseit refers to a number agreethat pocosinsare characterizedby usageof the word, and somerecent au- of moderately advanced successional Pond Pine and denseevergreen shrub thors have credited him as translating stages of Southeastern wetlands that vegetationgrowing on deep peat or pocosin as "swamp on a hill." While support several speciesof bay trees sandypeat soilswith protractedhydro- th•s is an interestinginterpretation of (Sweetbay,Redbay, and Loblolly-bay), periods. the word, it was never defined as such whereasthe term Carolina bay, partly Although pocosins are currently by Tooker.In tracingout the earlyusage named for the presenceof bay trees,re- communities of major interest to en- of the term, both.by Native Americans fers to elliptical depressionsthat may vironmentalistsand are widely recog- and early settlers,Tooker found that support pocosin vegetation. -
WRRI Project Nos. 5007Wand 50071 August 1984
(N. C. CEIP Report No. 41) HYDROLOG IC AND WATER QUALITY IMPACTS OF PEAT MINING IN NORTH CAROLINA -L n Jd- J. D. R. W. R. G. Gregory, Skaggs, J1 ~roadheady~ R. H. ~ulbreath," J. R. Bailey," and T. L. Foutzda' 9: Department of Forestry Department of Biological and Agricultural EngineeringJ,* North Carolina State University Raleigh, NC 27695 The work upon which this publication is based was supported by (1) a Coastal Energy Impact Program grant provided by the North Carolina Coastal Management Program through funds authorized by the Coastal Zone Management Act of 1972, as amended, and administered by the Off ice of Coastal Management, National Oceanic and Atmospheric Administration; and (2) by the North Carolina Agricultural Research Service in cooperation with First Colony Farms, Inc. and Peat Methanol Associates. Project administration was provided by the Water Resources Research ~nstituteof The University of North Carolina. NOAA Grants No. NA-79-AA-D-CZ097 and NA-80-AA-D-CZ149 WRRI Project Nos. 5007Wand 50071 August 1984 ACKNOWLEDGMENTS Major support for this research was provided by The National Oceanic and Atmospheric Administration through The Coastal Energy Impact Program and the North Carolina Office of Coastal Management. The support and assistance of James F. Smith, Coordinator North Carolina Coastal Energy Impact Program is gratefully acknowledged. The study was conducted at First Colony Farms, Creswell, North Carolina. We thank Andy Allen and Steve Barnes whose staff installed the flashboard riser structures, constructed and maintained the stilling ponds and provided other assistance in the field work. Additional support was provided by The North Carolina Agricultural Research Service in the form of faculty time. -
Video: the Riparian Zone
Introduction to Wetlands VIDEO: Freshwater Wetlands Adapted from: Freshwater Wetlands-Life at the Waterworks. Educational Media Corporation / North Carolina State Museum of Natural Sciences. Grade Level: Basic ACADEMIC STANDARDS (ENVIRONMENT & ECOLOGY): 7th Grade 4.1.7.D. Explain and describe characteristics of a wetland. Duration: 40 minutes - Identify specific characteristics of wetland plants and soils. - Recognize the common types of plants and animals. Setting: Classroom - Describe different types of wetlands. - Describe the different functions of a wetland. 4.1.7.E. Describe the impact of watersheds and wetlands on people. Summary: Students watch a video - Explain the impact of watersheds and wetlands in flood control, wildlife about different types of freshwater habitats and pollution abatement. wetlands, their soils, flora, and fauna - Explain the influence of flooding on wetlands. and complete a worksheet. 10th Grade 4.1.10.D. Describe the multiple functions of wetlands. Objectives: Students will become - Describe wetlands in terms of their effects (e. g., habitat, flood, buffer zones, familiar with soils, flora, fauna, and prevention areas, nurseries, food production areas). - Explain how a wetland influences water quality, wildlife and water retention. specific threats and issues related to - Analyze wetlands through their indicators (e. g., soils, plants, hydrology). bogs, marshes, pocosins, savannas, 4.1.10.E. Identify and describe natural and human events on watersheds and river floodplains, and seasonal wetlands. wetlands. - Describe how natural events affect a watershed (e. g., drought, floods). - Identify the effects of humans and human events on watersheds. Vocabulary: 12th Grade Hydric soils, hydrophytic vegetation 4.1.12.D. Analyze the complex and diverse ecosystems of wetlands. -
Metabolic Versatility of the Nitrite-Oxidizing Bacterium Nitrospira
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira 2 marina and its proteomic response to oxygen-limited conditions 3 Barbara Bayer1*, Mak A. Saito2, Matthew R. McIlvin2, Sebastian Lücker3, Dawn M. Moran2, 4 Thomas S. Lankiewicz1, Christopher L. Dupont4, and Alyson E. Santoro1* 5 6 1 Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, 7 CA, USA 8 2 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 9 Woods Hole, MA, USA 10 3 Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands 11 4 J. Craig Venter Institute, La Jolla, CA, USA 12 13 *Correspondence: 14 Barbara Bayer, Department of Ecology, Evolution and Marine Biology, University of California, 15 Santa Barbara, CA, USA. E-mail: [email protected] 16 Alyson E. Santoro, Department of Ecology, Evolution and Marine Biology, University of 17 California, Santa Barbara, CA, USA. E-mail: [email protected] 18 19 Running title: Genome and proteome of Nitrospira marina 20 21 Competing Interests: The authors declare that they have no conflict of interest. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Appendix B. Recommendations for Reach 5 to 9
APPENDIX B RECOMMENDATIONS FOR REACHES 5-9 FROM TOWN OPEN SPACE PLAN September 27, 1995 B-1 MONTAUK REACHES 5-9 OPEN SPACE RECOMMENDATIONS Recommended SCTM # 0300- Acres Characteristics Disposition 7-1-2.2 NA parcel consists of 7-1-2.2 & 2.3 (37.6 acres), rezone to A3 Residence Montauk airport, duneland, freshwater wetlands, moorland & downs, State Significant Habitat, adjoins protected open space 7-1-2.3 NA see 7-1-2.2 see 7-1-2.2 7-2-9.22 1.8 underwater land at Reed Pond dreen, State public acquisition under- Significant Habitat water 7-2-9.4 2.6 underwater land adjacent to Town water public acquisition under- access, State Significant Habitat water 9-1-4 16.4 see 9-1-8.2 see 9-1-8.2 9-1-6 19.0 see 9-1-8.2 see 9-1-8.2 9-1-7 5.4 see 9-1-8.2 see 9-1-8.2 9-1-8.2 272 parcel consists of 9-1-4, 6, 7, & 8.2 (272 open space subdivision w/ partial public acres), Fort Pond Bay shorefront, historic acquisition and archaeological resources, Culloden Point, freshwater wetlands, protected species, trails and beach access, beech forest, moorland, State Significant Habitat, proposed Culloden Point subdivision B-2 MONTAUK REACHES 5-9 OPEN SPACE RECOMMENDATIONS Recommended SCTM # 0300- Acres Characteristics Disposition 12-2-2.19 97.7 large moorland block, woodland, freshwater rezone all of property to A3 Residence; open wetlands space subdivision (coordinate access and open space with tract to east)/possible golf course location (site-specific DEIS) 12-3-3 15.3 part of large moorland block, woodland, open space subdivision (coordinate access freshwater -
Being Aquifex Aeolicus: Untangling a Hyperthermophile's Checkered Past
GBE Being Aquifex aeolicus: Untangling a Hyperthermophile’s Checkered Past Robert J.M. Eveleigh1,2, Conor J. Meehan1,2,JohnM.Archibald1, and Robert G. Beiko2,* 1Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada 2Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada *Corresponding author: E-mail: [email protected]. Accepted: November 22, 2013 Abstract Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyper- thermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Downloaded from Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a http://gbe.oxfordjournals.org/ minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. -
Volume 32, Issue 26 Virginia Register of Regulations August 22, 2016 3443 PUBLICATION SCHEDULE and DEADLINES
VOL. 32 ISS. 26 PUBLISHED EVERY OTHER WEEK BY THE VIRGINIA CODE COMMISSION AUGUST 22, 2016 VOL TABLE OF CONTENTS Register Information Page ......................................................................................................................................... 3443 Publication Schedule and Deadlines ....................................................................................................................... 3444 Regulations ....................................................................................................................................................................... 3445 1VAC30-105. Regulations Banning Concealed Firearms in Offices Owned or Occupied by Executive Branch Agencies (Proposed) ............................................................................................................................. 3445 2VAC5-685. Regulations Governing Pesticide Applicator Certification under Authority of Virginia Pesticide Control Act (Final) ............................................................................................................................... 3448 6VAC20-230. Regulations Relating to Special Conservator of the Peace (Final) ................................................................. 3455 8VAC20-440. Regulations Governing the Employment of Professional Personnel (Proposed) ............................................ 3457 8VAC20-441. Regulations Governing the Employment of Professional Personnel (Proposed) ............................................ 3457 9VAC25-260. -
Geographic Classification, 2003. 577 Pp. Pdf Icon[PDF – 7.1
Instruction Manual Part 8 Vital Records, Geographic Classification, 2003 Vital Statistics Data Preparation U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control and Prevention National Center for Health Statistics Hyattsville, Maryland October, 2002 VITAL RECORDS GEOGRAPHIC CLASSIFICATION, 2003 This manual contains geographic codes used by the National Center for Health Statistics (NCHS) in processing information from birth, death, and fetal death records. Included are (1) incorporated places identified by the U.S. Bureau of the Census in the 2000 Census of Population and Housing; (2) census designated places, formerly called unincorporated places, identified by the U.S. Bureau of the Census; (3) certain towns and townships; and (4) military installations identified by the Department of Defense and the U.S. Bureau of the Census. The geographic place of occurrence of the vital event is coded to the state and county or county equivalent level; the geographic place of residence is coded to at least the county level. Incorporated places of residence of 10,000 or more population and certain towns or townships defined as urban under special rules also have separate identifying codes. Specific geographic areas are represented by five-digit codes. The first two digits (1-54) identify the state, District of Columbia, or U.S. Possession. The last three digits refer to the county (701-999) or specified urban place (001-699). Information in this manual is presented in two sections for each state. Section I is to be used for classifying occurrence and residence when the reporting of the geographic location is complete.