An Open-Source Transcriptomics Landscape for Phylogenetically
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Karyomorphometric Analysis of Somatic Chromosomes of Selected
Aquatic Botany 133 (2016) 45–49 Contents lists available at ScienceDirect Aquatic Botany jou rnal homepage: www.elsevier.com/locate/aquabot Short communication Karyomorphometric analysis of somatic chromosomes of selected seagrasses of families Hydrocharitaceae and Cymodoceaceae ∗ K. Vanitha, Pon. Subhashini, T. Thangaradjou Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Cuddloare, India a r t i c l e i n f o a b s t r a c t Article history: Chromosome numbers of eleven seagrass species were determined. The highest chromosome number Received 22 July 2015 was recorded in Halodule spp. (2n = 44) and the lowest chromosome number was observed in Cymodocea Received in revised form 15 May 2016 rotundata (2n = 14). Chromosome numbers were identical or closely related among different species in Accepted 17 May 2016 the same genus. Karyomorphology was mapped for nine species (Halodule pinifolia, Halodule uninervis, Available online 24 May 2016 Halodule wrightii, Syringodium isoetifolium, Enhalus acoroides, Halophila beccarii, Halophila ovalis (subsp. ovalis and ramamurthiana) Halophila ovata and Thalassia hemprichii). Length of the chromosomes of these Keywords: species varied from 7.81 to 336.63 m while the fundamental arm number ranged between 36 and 85. Marine angiosperms Cytogenetics The results confirm the karyotypic variation among the studied species, indicating that this characteristic Karyomorphology can be used to confirm taxonomic identity of species which are morphologically very similar (eg. Halodule Karyotypic formula spp.). All tested species were diploid, except for Cymodocea rotundata. Indian ocean © 2016 Elsevier B.V. All rights reserved. 1. Introduction bers indicates inconsistency for the same species, however such information would add knowledge on the evolution of the genera Seagrasses represents the paraphyletic group of marine and family in the world. -
Partial Flora Survey Rottnest Island Golf Course
PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge -
The 16Th International Congress on Marine Corrosion and Fouling
16th Annual International Congress on Marine Corrosion and Fouling ABSTRACT SUMMARIES The 16th International Congress on Marine Corrosion and Fouling 24-28- June 2012 in Seattle, Washington ORGANIZED ON BEHALF OF COMITÉ INTERNATIONAL PERMANENT PUR LA RECHERCHE SU LA PRÉSERVATION DES MATÉRIAUX EN MILIEU MARIN (COIPM) The COIPM Committee consists of: Chair 2010-2012: . Geoff Swain Florida Institute of Technology Secretary and Vice Chair: . Andrew Scardino Defence Science and Technology Organisation Treasurer: . Claire Hellio University of Portsmouth Committee Members: . Maureen Callow University of Birmingham . Tony Clare Newcastle University . Ricardo Coutinho Instituto de Estudos do Mar Almirante Paulo Moreira . Brenda Little Naval Research Laboratory . Steve McElvany Office of Naval Research . Marianne Pereira Hempel . Kiyoshi Shibata Chiba Institute of Technology . Serena Teo National University of Singapore . David Williams International Paint, Ltd Student Committee: . Emily Ralston Florida Institute of Technology . Sheelagh Conlan Liverpool John Moores University i ABSTRACT SUMMARIES 16th Annual International Congress on Marine Corrosion and Fouling Organization Congress Chairman: . Steve McElvany The Office of Naval Research Local Organizing Committee: . Geoff Swain Florida Institute of Technology . Linda Chrisey The Office of Naval Research . Paul Armistead The Office of Naval Research . Shaoyi Jiang The University of Washington . Brenda Little Naval Research Laboratory . Kristin Grehawick Strategic Analysis, Inc. Anthony Brennan -
Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species
ORIGINAL RESEARCH published: 23 August 2017 doi: 10.3389/fpls.2017.01446 Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species Catherine J. Collier 1*, Yan X. Ow 1, 2, 3, Lucas Langlois 1, Sven Uthicke 3, Charlotte L. Johansson 3, Katherine R. O’Brien 4, Victoria Hrebien 2 and Matthew P. Adams 4 1 Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University Cairns, Cairns, QLD, Australia, 2 College of Marine and Environmental Sciences, James Cook University Townsville, Townsville, QLD, Australia, 3 Australian Institute of Marine Science, Townsville, QLD, Australia, 4 School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia Rising sea water temperature will play a significant role in responses of the world’s seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at ◦ Edited by: temperatures ranging from 15 to 43 C. The temperature-dependence of photosynthesis Richard K. F. Unsworth, and respiration was fitted to empirical models to obtain maximum metabolic rates and Swansea University, United Kingdom thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, Reviewed by: ◦ Michael Joseph Durako, which is more commonly distributed in sub-tropical to temperate regions, was 31 C. -
Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica. -
Reassessment of Seagrass Species in the Marshall Islands1
Micronesica 2016-04: 1–10 Reassessment of Seagrass Species in the Marshall Islands 1 ROY T. TSUDA Department of Natural Sciences, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA [email protected] NADIERA SUKHRAJ U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd., Honolulu, HI 96850, USA [email protected] Abstract—Recent collections of specimens of Halophila gaudichaudii J. Kuo, previously identified as Halophila minor (Zollinger) den Hartog, from Kwajalein Atoll in September 2016 and the archiving of the specimens at BISH validate the previous observation of this seagrass genus in the Marshall Islands. Previously, no voucher specimen was available for examination. Molecular analyses of the Kwajalein Halophila specimens may demonstrate conspecificity with Halophila nipponica J. Kuo with H. gaudichaudii relegated as a synonym. Herbarium specimens of Cymodocea rotundata Ehrenberg and Hemprich ex Ascherson from Majuro Atoll were found at BISH and may represent the only specimens from the Marshall Islands archived in a herbarium. Cymodocea rotundata, however, has been documented in past literature and archived via digital photos in its natural habitat in Majuro. The previous validation of Thalassia hemprichii (Ehrenberg) Ascherson with specimens, and the recent validation of Halophila gaudichaudii and Cymodocea rotundata with specimens reaffirm the low coral atolls and islands of the Marshall Islands as the eastern limit for the three species in the Pacific Ocean. Introduction In a review of the seagrasses in Micronesia, Tsuda et al. (1977) reported nine species of seagrasses in Micronesia with new records of Thalassodendron ciliatum (Forsskål) den Hartog from Palau, and Syringodium isoetifolium (Ascherson) Dandy and Cymodocea serrulata (R. -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Karyotype Variations in Seagrass (Halodule Wrightii Ascherson¬タヤ
Aquatic Botany 136 (2017) 52–55 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot Short communication Karyotype variations in seagrass (Halodule wrightii Ascherson—Cymodoceaceae) a b,∗ a Silmar Luiz da Silva , Karine Matos Magalhães , Reginaldo de Carvalho a Graduate Program in Botany—PPGB and Cytogenetic Plant Laboratory of the Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900, Recife, Pernambuco, Brazil b Aquatic Ecosystems Laboratory of the Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900, Recife, Pernambuco, Brazil a r t i c l e i n f o a b s t r a c t Article history: Karyotype variations in plants are common, but the results of cytological studies of some seagrasses Received 26 June 2015 remain unclear. The nature of the variation is not clearly understood, and the basic chromosomal num- Received in revised form 5 August 2016 ber has still not been established for the majority of the species. Here, we describe karyotype variations in Accepted 15 September 2016 the seagrass Halodule wrightii, and we suggest potentially causative mechanisms involving cytomixis and Available online 16 September 2016 B chromosomes. We prepared slides using the squashing technique followed by conventional Giemsa and C-banding, and silver nitrate and a CMA/DAPI staining. Based on intraspecific analysis, the diploid chromo- Keywords: some number of H. wrightii exhibited a variation from 2n = 24 to 2n = 39; 2n = 38 was the most frequent. In Cytomixis Seagrass general, we characterized the karyotype as an asymmetrical, semi-reticulated interphase nucleus with a chromosomally uniform condensation pattern. -
Genome-Wide Survey of the Seagrass Zostera Muelleri Suggests Modification of the Ethylene Signalling Network
Journal of Experimental Botany, Vol. 66, No. 5 pp. 1489–1498, 2015 doi:10.1093/jxb/eru510 Advance Access publication 6 January 2015 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEArCH PApEr Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network Agnieszka A. Golicz1,2,*, Martin Schliep3,*, Huey Tyng Lee1,2, Anthony W.D. Larkum3, Rudy Dolferus4, Jacqueline Batley1,5, Chon-Kit Kenneth Chan1,5, Gaurav Sablok3, Peter J. Ralph3 and David Edwards1,2,5,† 1 School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia 2 Australian Centre for Plant Functional Genomics, School of Land, Crop and Food Sciences, University of Queensland, Brisbane, QLD 4067, Australia 3 Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia 4 CSIRO Agriculture Flagship, GPO Box 1600, Canberra ACT 2601, Australia 5 School of Plant Biology, University of Western Australia, WA 6009, Australia * These authors contributed equally to this work. † To whom correspondence should be addressed. E-mail: [email protected] Received 18 August 2014; Revised 28 November 2014; Accepted 2 December 2014 Abstract Seagrasses are flowering plants which grow fully submerged in the marine environment. They have evolved a range of adaptations to environmental challenges including light attenuation through water, the physical stress of wave action and tidal currents, high concentrations of salt, oxygen deficiency in marine sediment, and water-borne pollination. Although, seagrasses are a key stone species of the costal ecosystems, many questions regarding seagrass biology and evolution remain unanswered. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Of Abu Dhabi Emirate, United Arab Emirates MARINE and COASTAL ENVIRONMENTS of ABU DHABI EMIRATE, UNITED ARAB EMIRATES
of Abu Dhabi Emirate, United Arab Emirates MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES Page . II of Abu Dhabi Emirate, United Arab Emirates Page . III MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES Page . IV MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES H. H. Sheikh Khalifa bin Zayed Al Nahyan President of the United Arab Emirates Page . V MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES Page . VI MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES H. H. Sheikh Mohammed bin Zayed Al Nahyan Crown Prince of Abu Dhabi, Deputy Supreme Commander of the UAE Armed Forces Page . VII MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES Page . VIII MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES H. H. Sheikh Hamdan bin Zayed Al Nahyan Deputy Prime Minister Page . IX MARINE AND COASTAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES s\*?*c*i]j6.%;M"%&9+~)#"$*&ENL`\&]j6. =';78G=%1?%&'12= !"##$" 9<8*TPEg-782#,On%O)6=]KL %&'( )*+,-. 2#,On#X%3G=FON&$4#*.%&9+~)#"$*&XNL %?)#$*&E, &]1TL%&9+%?)':5=&4O`(.#`g-78 %!/ اﻷوراق اﻟﻘﻄﺎﻋﻴﺔ fJT=V-=>?#Fk9+*#$'&= /%*?%=*<(/8>OhT7.F 012(.%34#56.%-78&9+:;(<=>=?%@8'-/ABC $L#01i%;1&&!580.9,q@EN(c D)=EF%3G&H#I7='J=:KL)'MD*7.%&'-(8=';78G=NO D)$8P#"%;QI8ABCRI7S;<#D*T(8%.I7)=U%#$#VW'.X JG&Bls`ItuefJ%27=PE%u%;QI8)aEFD)$8%7iI=H*L YZZ[\&F]17^)#G=%;/;!N_-LNL`%3;%87VW'.X NL]17~Is%1=fq-L4"#%;M"~)#"G=,|2OJ*c*TLNLV(ItuG= )aE0@##`%;Kb&9+*c*T(`d_-8efJG=g-78012 -
Seagrass Taxonomytaxonomy
SeagrassSeagrass TaxonomyTaxonomy By Dr. Roy L. Lehman Texas A&M University - Corpus Christi TheThe InternationalInternational CodeCode ofof BotanicalBotanical NomenclatureNomenclature Rules for the use of scientific names are maintained and updated periodically at meetings of botanists called International Botanical Congress. Updated rules are published after congress in each new edition of The International Code of Botanical Nomenclature. Now can be found online as a web site. © Dr. Roy L. Lehman BackgroundBackground InformationInformation AuthorAuthor NamesNames Scientific names are often written with their author or authors, the individuals who are responsible for having given the plants their names • Lotus corniculatus L. • Lotus heermanii (Dur. & Hilg.) Greene z Both cases the generic name is Lotus, a genus in the pea family. z First specific epithet is an adjective that in Latin means “bearing a horn-like projection”. z The second was named in honor of A L. Heermann, a 19th century plant collector. z The name means Heermann’s lotus © Dr. Roy L. Lehman AuthorAuthor NamesNames The name or names of the authors follow the binomials z SurnamesSurnames areare oftenoften abbreviatedabbreviated •• asas L.L. forfor LinnaeusLinnaeus © Dr. Roy L. Lehman SecondSecond ExampleExample The second example is a little more complicated. Originally named by two naturalists: z E. M. Durand and z T. C. Hilgard z as Hosackia heermannii. Several years later, E. L. Greene concluded that the genus Hosackia should be merged with Lotus and transferred the specific epithet, heermannii from Hosackia to Lotus. © Dr. Roy L. Lehman SecondSecond ExampleExample Durand and Higard (the parenthetical authors) get credit for having published the epithet, heermannii.