Cambridge University Press 978-1-108-42216-1 — an Introduction to Modern Astrophysics Bradley W

Total Page:16

File Type:pdf, Size:1020Kb

Cambridge University Press 978-1-108-42216-1 — an Introduction to Modern Astrophysics Bradley W Cambridge University Press 978-1-108-42216-1 — An Introduction to Modern Astrophysics Bradley W. Carroll , Dale A. Ostlie Index More Information Index υ Andromedae, 849 661–667, 718, 857, 1111, Adams, John Couch, 775 1E1740.7−2942, 932 1123 Adams, Walter, 558 2003 UB313, 827, 828 in an AGN, 1111–1113 Adaptive optics, 159 21-cm radiation, 405 luminosity, 663–664, 693 Adiabatic density fluctuations, 2M1207, 855 radial extent of, 665 1248–1251 2MASS catalog, 891 structure of, 1113 Adiabatic gamma, 320 2MASSWJ1207334−393254, around supermassive black Adiabatic gas law, 320 855 hole, 1112 Adiabatic process, 320 2dF Galaxy Redshift Survey temperature profile, 662–664 Adiabatic sound speed, 321 (2dFGRS), 1076–1077 viscosity, 661 Adiabatic temperature gradient, 3C 236, 1095, 1125 Accretion formation of planets, 321–322, 324 3C 273, 1096, 1097, 1126, 1128 863, 866 Adoration of the Magi (Giotto), 3C 279, 1105 Accretion luminosity, 1111, 1121 817, 818 3C 324, 1065 Accretion shock, 533 Advanced Camera for Surveys 3C 47, 1106 Achondrites, 840 (ACS), 161 47 Tucana, 894 Acoustic frequency, 505 Advanced Satellite for 51 Pegasi, 848 Acoustic oscillations, Cosmology and 55 Cancri, 850 1259–1262, 1273 Astrophysics, 170 61 Cygni, 59, 1038 in early universe, 1252, 1259, AGB, see Asymptotic giant 1263–1267 branch A0035–335, 1006 model of, 1263–1267 Age-metallicity relation, A0620−00, 644, 672, 698 Active corona, 390 885–886 Abell 2199, 1014 Active galactic nuclei (AGN) AGN, see Active galactic nuclei Abell 2218, 1136, 1171, 1255 central engine of, 1109–1110 Airy disk, 146 Abell 370, 1136 classes of, 1107 Airy, Sir George, 146, 775 Abell 697, 1171 evolution of, 1129–1130 Albedo, 350, 725 Aberrations, 144, 150–151 galactic companions, 1129 Aldebaran, 222–224 Absolute magnitude, 61 polarization, 1104 Alexandre Correia, Alexandre, Absorption, 241 spectra of, 1087, 1114, 741 Absorption coefficient, 241 1116–1120 Alfvén speed, 379 Absorption lines, 112, 126, 203 superluminal velocities, 1125 Alfvén waves, 378, 379 photosphere, 362 synchrotron radiation, 1114 Alfvén radius, 692 Abundance of elements timescales of variability, 1104 Alfvén, Hannes, 378, 820 in Sun, 541–542 unified model of, 1108–1121 Algols, 672 Acceleration equation, 1161, X-ray generation by, 1115 ALH84001, 764–766, 842, 862 1192 Active galaxies, 1085–1139 Allende meteorite, 838–839, 862 Accretion, 423 Active optics, 156 Allowed transitions, 136 Accretion disks, 429, 643, Active prominences, 388 ALMA (Atacama Large I-1 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42216-1 — An Introduction to Modern Astrophysics Bradley W. Carroll , Dale A. Ostlie Index More Information I-2 Index Millimeter Array), 167 Apogalacticon, 904 transparency, 167 Alpher, Ralph, 1162, 1164 Apparent magnitude, 60, 75 of Triton, 800 Altitude–azimuth coordinate Archaeoastronomy, 15–16 of Uranus, 778, 785 system, 8 Arcseconds (unit), 58 of Venus, 741–743 Altitude–azimuth mount, 158 Arcturus, 112 Atmospheric escape parameter, Alvarez, Luis, 843 Arecibo Observatory, 163, 164 728 Alvarez, Walter, 843 Aristarchus, 5 Atomic mass units, 299 AM Herculis stars, 675, 685 Arnett, W. David, 983 Atomic structure, 119–127 Amalthea, 722 Asteroid belt, 716–717 Bohr atom, 121–125 Ambipolar diffusion, 421 Asteroids, 717, 830–838 early models, 119 Amorphous galaxies, 945 Amors, 832 electron orbitals, 133 Anders–Grevesse abundances, Apollos, 832 excited state, 124 250 Atens, 832 first excited state, 212 Anderson, Carl, 136, 550 classification, 835–837 ground state, 124, 212 Andromeda galaxy, 887, 888, Hirayama families, 833 orbits, 124 959, 966, 1059, 1060 internal heating, 837 transitions, 136 Angle of inclination, 184, 185, Kirkwood gaps, 831 AU (astronomical unit), 25 188–190 reflection spectra, 841 Aurora, 753 Angles spacecraft missions to study, australis, 373 law of cosines, 17 833–835 borealis, 373 law of sines, 17 Asteroseismology, 512 Australian Virtual Observatory, Angstrom (unit), 65 Asthenosphere, 751, 752 172 Angular diameter distance, Astigmatism, 151 Autumnal equinox, 10, 11 1215–1217 Astrogrid, 172 Avogadro’s number, 318 Angular magnification, 154 Astrometric binary star system, Azimuth, 8 Angular momentum, 43, 133 181 of black hole, 640 Astrometry, 59 B2FH, 1164 in Solar System, 858–859 Astronomical unit (AU), 25 Baade’s window, 892 quantization, 121, 123 Astrophysical Virtual Baade, Walter, 578, 892, 1041, quantum numbers, 133 Observatory project, 172 1163 Angular power spectrum, Asymptotic giant branch (stellar Babcock, Horace, 391 1267–1270 evolution), 463, 478 Backer, Donald, 701 Anomalous Zeeman effect, 135 early, 463, 464 Bahcall, John, 357, 360, 1183 Ant nebula, 473 mass loss and, 467–468 Bahcall–Soneira model, 980 Antenna pattern Atacama Large Millimeter Array Baker, Norman, 496 radio telescope, 165 (ALMA), 167 Baldwin, Ralph, 842 Antennae galaxies, 1009, 1011 Atlas, 805 Balmer jump, 247 Antimatter, 136, 308 Atmosphere Balmer series (Balmer lines), matter–antimatter of Earth, 746–749 120, 121, 126, 127, 203, annihilation, 1246 of Europa, 796 204, 215, 217 matter–antimatter asymmetry of giant planets, 778, 785, 788 Balmer, Johann, 120, 125 in early universe, of Jupiter, 777, 785 Bappu, K. Vainu, 1039 1245–1247 of Mars, 767 Barium binaries, 673 Antineutrinos, 308 of Neptune, 778, 785 Barnard, Edward, 1040 Antonucci, Robert, 1108 of extrasolar planets, 854 Barnes, Joshua, 1012 Apastron, 557 of Pluto, 816 Barred spiral galaxies, 942, 946, Aperture, 145 of Saturn, 777, 785 947 of telescope, 154, 163 of Sun, 777 Barrier penetration, 132 Aphelion, 26, 47 of Titan, 797–798 Barringer’s Crater, 843 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42216-1 — An Introduction to Modern Astrophysics Bradley W. Carroll , Dale A. Ostlie Index More Information Index I-3 Baryonic matter, 1150, 1152, Binding energy, 299 Blue magnitude, 75, 76 1179 per nucleon, 314–315 Blue stragglers, 478 Baryons, 1230 Birkhoff’s theorem, 1161 Blue supergiant stars (BSG), 522 Basalts, 756 Birkhoff, G. D., 1161 Blueshift, 98 BCDs, see Blue compact dwarf Birth line, 429 Bode’s rule, 716, 717 galaxies BL Lac objects, 1106, 1107 Bode, Johann Elert, 716 Bell, Jocelyn, 586, 587, 589 BL Lacertae, 1105 Bohr atom, 121–125 Bender, Ralf, 989 Black holes, 534, 583, 633–646 Bohr radius, 124 Benz, Willy, 740 angular momentum of, 640 Bohr, Niels, 121, 122 BeppoSAX spacecraft, 546 binary supermassive black Bok globules, 408, 409 Bernoulli, Johann, 30 holes, 1015–1016 Bok, Bart, 408 Beryllium defined, 635 Bolometric correction, 75–77 abundance in Sun, 541 ergosphere, 641 Bolometric magnitude, 60, 75 Bessel, Friedrich, 59, 557, 1038 evaporation, 136 Boltzmann equation, 209–213, β Cephei stars, 491, 498 event horizon, 635 215 Beta Pictoris, 437, 439, 440, 857 formation, 689 Boltzmann factor, 209 Betelgeuse, 68, 69, 203, 221, 224 frame dragging, 640 Boltzmann, Ludwig, 70, 206 Bethe, Hans, 311, 1162 Hawking radiation, 644–646 Bolyai, János, 1185 Big Bang, 19, 1057–1058, 1163 magnetic field of, 1114–1115 Bondi, Hermann, 1163 ,see also Early universe mass ranges of, 639 Bonnor–Ebert mass, 414 cooling of the universe “no hair” theorem, 640 Boomerang observatory, 1263 following, 1164 primordial, 639, 645 Boron flatness problem, 1238, 1244 proof of existence of, 643–644 abundance in Sun, 541 horizon problem, 1236, 1243 Schwarzschild radius, 635 Bose, S. N., 136 monopole problem, 1238, singularity, 635 Bose–Einstein statistics, 294 1244 stellar-mass, 639, 643, 645, Bosons, 136, 294, 1230, 1231 nucleosynthesis, 1177–1179 698 Bottom-up galaxy formation, problems with, 1236–1238 supermassive black hole in 1256–1258 solutions to problems with, Sgr A*, 929–931 Bound–bound transitions, 245 1243–1245 supermassive black holes, Bound–free absorption, 245 Big blue bump, 1089, 1098, 959–962 Boundary conditions 1113, 1114 Black widow pulsars, 702 stellar structure equations, 332 Binary Maker (software), 195 Blackbody, 68 Boxiness, 989–991 Binary stars, 180–195 Blackbody radiation, 68–74, 119, Brachistochrone problem, 31 accretion disks, 661–667 232, 234, 237 Brahe, Tycho, 23, 24, 59, 524 classification, 180–182, 658, energy density, 234 Bremsstrahlung, 246 659 radiation pressure, 236–237, Brightness computer modeling, 193–195 295 magnitude scales, 60–63 computer program for, source function, 257 of image in telescope, A-18–A-22 Blandford, Roger, 1114 151–154 evolution, 669–670 Blandford–Znajek mechanism, Broad-line radio galaxies interacting, 668–673 1115, 1122 (BLRGs), 1092, 1107, mass determination, 183–185 Blazars, 1105, 1107, 1114, 1128 1116 mass function, 188 Blizzard line, 860 Broadening mass transfer rate, 658–661 BLRGs, see Broad-line radio of spectral lines, 268–271 radial velocity, 186–187 galaxies Brown dwarfs, 204, 428 Binary X-ray systems, 689 Blue compact dwarf galaxies distinguishing from extrasolar eclipsing, 694–696 (BCDs), 984, 985 planets, 855 pulsars, 691 Blue edge, 497 Brown, Mike, 826 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42216-1 — An Introduction to Modern Astrophysics Bradley W. Carroll , Dale A. Ostlie Index More Information I-4 Index Bruno, Giordano, 195 CCDs (charge-coupled devices), 827 Brunt–Väisälä frequency, 508 160–161 density and compensation, 814 BSG, see Blue supergiant stars cD galaxies, 984, 985, discovery of, 813 Bulk modulus, 321 1013–1015 formation of, 815 Bunsen, Robert, 111 CDM, see Cold dark matter orbit, 814–816 Buoyancy frequency, 508 Celestial equator, 3, 10, 12 Chauvin,
Recommended publications
  • Galaxy Clusters in Radio → Non-Thermal Phenomena
    GalaxyGalaxy ClustersClusters inin radioradio ÎÎ NonNon--thermalthermal phenomenaphenomena Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Tonanzintla, GH2005, 4-5 July 2005 Lecture 4 : Radio emission from cluster galaxies: Classical radio galaxies Radio – X-ray interaction Distorted structures: NAT and WAT Radio galaxies filling X-ray cavities Confinement : Trigger of radio emission: radio luminosity function Enhancement of star formation RadiogalaxiesRadiogalaxies X-ray:X-ray: ThermalThermal ggasas Radio:Radio: AA 119119 (z(z == 0.0441)0.0441) RadioRadio GalaxiesGalaxies PerseusPerseus X-rayX-ray ROSAROSATT PSPCPSPC HotHot gasgas NGC 1265 RadioRadio WSRTWSRT 4949 cmcm RadioRadio galaxiesgalaxies NGC 1275 IC310 RadioRadio galaxiesgalaxies ooff highhigh andand lowlow ppowerower havehave quitequite differentdifferent morphologiesmorphologies onon thethe largelarge scalescale (Fanaroff(Fanaroff && RileyRiley 11974)974) CygCyg AA FRFR IIII 24.24.55 -1-1 HighHigh popowewer:r: PP1.41.4 GHzGHz >> 1010 WW HzHz 3C3C 444499 24.524.5 -1-1 LowLow power:power: PP1.41.4 GHzGHz << 1010 WW HzHz FRFR II RADIORADIO GALAXIESGALAXIES ATAT INCREASINGINCREASING RADIORADIO POWERPOWER 1024 W Hz-1 at 1.4 GHz 3C 31 DA 240 4C 73.08 1026.5 W Hz-1 From Atlas of P.Leahy, powers computed With H0=75, q0=0.5 Owen and Ledlow 1994 TheThe radioradio emissionemission fromfrom INDIVIDUALINDIVIDUAL GALAXIESGALAXIES isis foufoundnd ttoo extendextend WELLWELL BEYONDBEYOND thethe physicalphysical sizesize ofof thethe hosthost opticaloptical galaxygalaxy (>(> oror
    [Show full text]
  • Searching for Diffuse Light in the M96 Group
    Draft version June 30, 2016 Preprint typeset using LATEX style emulateapj v. 5/2/11 SEARCHING FOR DIFFUSE LIGHT IN THE M96 GALAXY GROUP Aaron E. Watkins1, J. Christopher Mihos1,Paul Harding1,John J. Feldmeier2 Draft version June 30, 2016 ABSTRACT We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of µB = 30:1 and µV = 29:5, we find no diffuse, large-scale optical counterpart to the “Leo Ring”, an extended HI ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface-brightness (µB & 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition we present detailed surface photometry of each of the group’s most massive members – M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351) – out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the HI ring, in agreement with HI data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo HI Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.
    [Show full text]
  • RADIO ASTRONOMY OBERVTORY Quarterly Report CHARLOTTESVILLE, VA
    1 ; NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia t PROPERTY OF TH E U.S. G - iM RADIO ASTRONOMY OBERVTORY Quarterly Report CHARLOTTESVILLE, VA. 4 OCT 2 2em , July 1, 1984 - September 30, 1984 .. _._r_.__. _.. RESEARCH PROGRAMS 140-ft Telescope Hours Scheduled observing 1853.75 Scheduled maintenance and equipment changes 205.00 Scheduled tests and calibration 145.25 Time lost due to: equipment failure 122.00 power 3.25 weather 0.25 interference 14.50 The following continuum program was conducted during this quarter. No. Observer Program W193 N. White (European Space Observations at 6 cm of the eclipsing Agency) RS CVn system AR Lac. J. Culhane (Cambridge) J. Kuijpers (Utrecht) K. Mason (Cambridge) A. Smith (European Space Agency) The following line programs were conducted during this quarter. No. Observer Program B406 M. Bell (Herzberg) Observations at 13.9 GHz in search of H. Matthews (Herzberg) C6 H in TMC1. T. Sears (Brookhaven) B422 M. Bell (Herzberg) Observations at 3 cm to search for H. Matthews (Herzberg) C5 H in TMC1 and examination of T. Sears (Brookhaven) spectral features in IRC+10216 thought to be due to HC 9 N or C5 H. B423 M. Bell (Herzberg) Observations at 9895 MHz in an attempt H. Matthews (Herzberg) to detect C3 N in absorption against Cas A. 2 No. Observer Program B424 W. Batria Observations at 9.1 GHz of a newly discovered comet. C216 F. Clark (Kentucky) Observations at 6 cm and 18 cm of OH S. Miller (Kentucky) and H20 to study stellar winds and cloud dynamics.
    [Show full text]
  • Galaxy Transformation in Clusters
    GGaalalaxxyy TTrarannssfoformrmaatiotionn inin CClulusstetersrs Coma CL0939 z=0.41 U. Fritze, PostGrad UH 2008 FFroromm GGrorouuppss toto CluClusterssters The Local Group : 35 members around Milky Way & M31 within 1 Mpc Nearby groups : Sculptor group : 6 members D~1.8 Mpc M81 group : 8 members D~3.1 Mpc Centaurus group : 17 members D~3.5 Mpc M101 group : 5 members D~7.7 Mpc M66+M96 group : 10 members D~9.4 Mpc NGC 1023 group : 6 members D~9.6 Mpc Census very incomplete : low – luminosity dwarfs like Sag dSph cannot be detected beyond our Local Group galaxy group <50 members, galaxy cluster >50 members U. Fritze, PostGrad UH 2008 LLoocalcal GGalaxyalaxy CluClusterssters Virgo (W. Herschel 18th century) 10° × 10° D~16 Mpc ~ 250 normal galaxies > 2000 dwarf galaxies irregular cluster : 2 big Es: M87 & NGC 4479, not particularly rich Coma : regular rich cluster (+ substructure) D~ 90 Mpc ~ 10,000 galaxies U. Fritze, PostGrad UH 2008 AbAbellell CataloCatalogg ooff GGalaxyalaxy CluClusterssters G. Abell 1958: POSS northern sky w/o Milky Way disk (extinction) Cluster := >50 members within m3 and m3+2 mag, rd m3 := mag of 3 brightest member, within angular radius qA=1.7'/z, z=redshift estimate (from 10th brightest galaxy assumed to be universal) 1682 galaxy clusters within 0.02 < z < 0.2 (z>0.02 --> cluster fits on ~6° ´ 6° POSS plate, z<0.2 --> sensitivity limit of POSS plates) extended to include 4076 clusters by Abell, Corwin, Olowin 1989 both catalogs not free from projection effects !!! U. Fritze, PostGrad UH 2008 GGalaxyalaxy CluClusterssters Galaxy Clusters : Rcl~ 2 - 10 Mpc, Ngal = 50 .
    [Show full text]
  • Can There Be Additional Rocky Planets in the Habitable Zone of Tight Binary
    Mon. Not. R. Astron. Soc. 000, 1–10 () Printed 24 September 2018 (MN LATEX style file v2.2) Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant? B. Funk1⋆, E. Pilat-Lohinger1 and S. Eggl2 1Institute for Astronomy, University of Vienna, Vienna, Austria 2IMCCE, Observatoire de Paris, Paris, France ABSTRACT Locating planets in Habitable Zones (HZs) around other stars is a growing field in contem- porary astronomy. Since a large percentage of all G-M stars in the solar neighborhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional hab- itable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host ad- ditional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885A. HD 196885 B can be considered a slightly more promising tar- get in the search forEarth-twins.Gliese 86 A turned out to be a very good candidate, assuming that the system’s history has not been excessively violent. For HD 41004 we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system.
    [Show full text]
  • Astronomical Evidence for an Alternative to Dark Matter?
    Astronomical Evidence for an Alternative to Dark Matter? by Alphonsus J. Fagan St. John's NL, Canada Abstract Unexplained gravitational potentials in deep space have been generally attributed to dark matter. This paper explores an alternative that unites the concepts of dark matter and dark energy, and is rooted in the idea that space is a tangible ‘substance’ that is being created at different rates at different locations. The concept of congenital gravitational structure ('structural gravity') is introduced and the possibility that antimatter experiences anti-gravity is discussed. Among other things, the conjectures predict the phenomenon of 'inverse gravitational lensing' and possible examples are identified — in particular as associated with the peculiar galaxy known as Hoag's Object. The conjectures also offer possible explanations for a number of poorly understood phenomena, including: the antimatter cloud; dark matter halos; the vacuum catastrophe; counter-rotating galaxies; the Hubble radius; and, large scale cosmic features. Although the ideas are mainly discussed at a conceptual level, the proposed model also makes a number of testable predictions. Keywords: cosmology; modified gravity; time; dark energy; dark matter; antimatter; diffuse x-ray background; ring galaxies; Hoag's Object; vacuum catastrophe; cosmic horizon Author’s Note: The ideas presented herein are a condensed form of a larger model presented in a (2020) book “Mind Openers 2.0: A Conceptual Reinterpretation of Modern Physics”: currently available at Mind Openers 2.0 on Amazon 1. Introduction 1.1 Unexplained Gravity As first pointed out by Fritz Zwicky in the 1930s, and later confirmed by Vera Rubin and Kent Ford in the 1960s and 70s, the amount of ordinary matter in galaxies and intergalactic gas and dust, does not provide sufficient gravitational potential to account for galactic rotation curves, or the velocities of galaxies within clusters.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • GMRT 610 Mhz Observations of Galaxy Clusters in the ACT Equatorial Sample
    MNRAS 000,1{26 (2018) Preprint 20 March 2019 Compiled using MNRAS LATEX style file v3.0 GMRT 610 MHz observations of galaxy clusters in the ACT equatorial sample Kenda Knowles,1? Andrew J. Baker,2 J. Richard Bond,3 Patricio A. Gallardo,4 Neeraj Gupta,5 Matt Hilton,1 John P. Hughes,2 Huib Intema,6 Carlos H. L´opez- Caraballo,7;8 Kavilan Moodley,1 Benjamin L. Schmitt,9 Jonathan Sievers,10 Crist´obal Sif´on,4;11 Edward Wollack,12 1Astrophysics & Cosmology Research Unit, School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Durban, 3690, South Africa 2Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA 3Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON, M5S 3H8, Canada 4Department of Physics, Cornell University, Ithaca, NY USA 5IUCAA, Post Bag 4, Ganeshkhind, Pune 411007, India 6Leiden Observatory, Leiden University, PO Box 9513, NL2300 RA Leiden, Netherlands 7Instituto de Astrof´ısica and Centro de Astro-Ingenier´ıa, Facultad de F´ısica, Pontificia Universidad Cat´olica de Chile, Av. Vicu~na Mackenna 4860, 7820436 Macul, Santiago, Chile 8Departamento de Matem´aticas, Universidad de La Serena, Av. Juan Cisternas 1200, La Serena, Chile 9Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA 10Astrophysics & Cosmology Research Unit, School of Chemistry & Physics, University of KwaZulu-Natal, Durban, 3690, South Africa 11Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA 12NASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA Accepted XXX.
    [Show full text]
  • Experimentalphysik I: Mechanik
    Experimentalphysik I: Mechanik Prof. Dr. Thomas Muller¨ , Dr. Frank Hartmann Vorlesung Wintersemester 2001/2002 Letzte Aktualisierung und Verbesserung: 5. M¨arz 2004 Skript der Vorlesung Experimentalphysik I von Herrn Prof. Dr. Thomas Muller¨ im Wintersemester 2001/2002 von Marco Schreck. Dieses Skript erhebt keinen Anspruch auf Vollst¨andigkeit und Korrektheit. Kommentare, Fehler, Vorschl¨age und konstruktive Kritik bitte an [email protected]. Inhaltsverzeichnis 1 Einleitung 5 1.1 Grundbegriffe der Physik . 5 1.1.1 Dimensionsbetrachtungen . 7 1.2 Messungen und Datenauswertung . 9 1.2.1 Zentraler Grenzwertsatz . 10 1.2.2 Fehlerfortpflanzung . 10 1.3 Physikalische Gr¨oßen/Einfuhrung¨ in die Vektorrechnung . 11 2 Klassische Mechanik 17 2.1 Mechanik von Massenpunkten . 17 2.1.1 Bewegung in einer Dimension . 17 2.1.2 2-dimensionale Bewegung . 20 2.1.3 Dreidimensionale Bewegung . 20 2.1.4 Sonderfall Kreisbewegung . 22 2.1.5 Sonderfall: Konstante Kreisbewegung . 23 2.2 Die Newtonschen Gesetze . 25 2.2.1 Anwendungen von Newtons Gesetzen . 26 2.2.2 Das Federpendel . 33 2.2.3 Reibung . 36 2.2.4 Rotationsdynamik . 37 2.2.5 Arbeit und Energie . 41 2.3 Systeme von Massenpunkten . 55 2.3.1 Schwerpunkt und Impuls (CM=center of mass) . 55 2.3.2 Elastische und unelastische St¨oße . 61 2.4 Rotationen . 66 2.4.1 Rotationskinematik . 66 2.4.2 Rotationsdynamik . 68 2.4.3 Rotierende Bezugssysteme . 76 2.4.4 Rollen . 77 2.4.5 Mechanische Stabilit¨at . 81 3 Gravitation 85 3.1 Das Gravitationsgesetz . 85 3.1.1 Der historische Weg zum Gravitationsgesetz .
    [Show full text]
  • Numerical Treatment of Radiation Processes in the Internal Shocks of Magnetized Relativistic Outflows
    Departament d’Astronom´ıa i Astrof´ısica Programa de Doctorat en F´ısica Numerical treatment of radiation processes in the internal shocks of magnetized relativistic outflows Tesi Doctoral feta per Jesus´ Misrayim´ Rueda Becerril dirigida per Dr. Miguel Angel´ Aloy Toras´ Dr. Petar Mimica Juliol de 2017 Miguel A´ ngel Aloy Toras´ , Profesor Titular del Departamento de Astronom´ıa y Astrof´ısica de la Universitat de Valencia` y Petar Mimica, Investigador Asociado al Departamento de Astronom´ıa y Astrof´ısica de la Universitat de Valencia` CERTIFICAN: Que la presente memoria, titulada: Numerical treatment of radiation processes in the internal shocks of magnetized relativistic outflows, ha sido realizada bajo su direccion´ en el Departamento de Astronom´ıa y Astrof´ısica de la Universitat de Valencia` por Jesus´ Misrayim´ Rueda Becerril, y constituye su Tesis Doctoral para optar al grado de Doctor en F´ısica. Y para que conste firman el presente certificado en Burjassot, a 29 de mayo de 2017 Fdo: Miguel Angel´ Aloy Toras´ Fdo: Petar Mimica Abstract Blazars are a type of active galactic nuclei (AGNs) which are among the most en- ergetic and violent astrophysical objects, alongside γ-ray bursts (GRBs). The phys- ical processes, and, in particular, the relativistic jet itself in which the high energy radiation detected by the terrestrial and space observatories is generated, has been attracting the attention and interest of astronomers and astrophysicists since their dis- covery. In the present thesis, we investigate the internal shock (IS) model in which two magnetized shells of plasma, with cylindrical geometry, collide forming shock waves, which propagate throughout the plasma accelerating electrons (thermal and nonthermal) in their wake.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • Australia Telescope National Facility Annual Report 2002
    Australia Telescope National Facility Australia Telescope National Facility Annual Report 2002 Annual Report 2002 © Australia Telescope National CSIRO Australia Telescope National Facility Annual Report 2002 Facility ISSN 1038-9554 PO Box 76 Epping NSW 1710 This is the report of the Steering Australia Committee of the CSIRO Tel: +61 2 9372 4100 Australia Telescope National Facility for Fax: +61 2 9372 4310 the calendar year 2002. Parkes Observatory PO Box 276 Editor: Dr Jessica Chapman, Parkes NSW 2870 Australia Telescope National Facility Design and typesetting: Vicki Drazenovic, Australia Australia Telescope National Facility Tel: +61 2 6861 1700 Fax: +61 2 6861 1730 Printed and bound by Pirion Printers Pty Paul Wild Observatory Narrabri Cover image: Warm atomic hydrogen gas is a Locked Bag 194 major constituent of our Galaxy, but it is peppered Narrabri NSW 2390 with holes. This image, made with the Australia Australia Telescope Compact Array and the Parkes radio telescope, shows a structure called Tel: +61 2 6790 4000 GSH 277+00+36 that has a void in the atomic Fax: +61 2 6790 4090 hydrogen more than 2,000 light years across. It lies 21,000 light years from the Sun on the edge of the [email protected] Sagittarius-Carina spiral arm in the outer Milky Way. www.atnf.csiro.au The void was probably formed by winds and supernova explosions from about 300 massive stars over the course of several million years. It eventually grew so large that it broke out of the disk of the Galaxy, forming a “chimney”. GSH 277+00+36 is one of only a handful of chimneys known in the Milky Way and the only one known to have exploded out of both sides of the Galactic plane.
    [Show full text]