Numerical Treatment of Radiation Processes in the Internal Shocks of Magnetized Relativistic Outflows

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Treatment of Radiation Processes in the Internal Shocks of Magnetized Relativistic Outflows Departament d’Astronom´ıa i Astrof´ısica Programa de Doctorat en F´ısica Numerical treatment of radiation processes in the internal shocks of magnetized relativistic outflows Tesi Doctoral feta per Jesus´ Misrayim´ Rueda Becerril dirigida per Dr. Miguel Angel´ Aloy Toras´ Dr. Petar Mimica Juliol de 2017 Miguel A´ ngel Aloy Toras´ , Profesor Titular del Departamento de Astronom´ıa y Astrof´ısica de la Universitat de Valencia` y Petar Mimica, Investigador Asociado al Departamento de Astronom´ıa y Astrof´ısica de la Universitat de Valencia` CERTIFICAN: Que la presente memoria, titulada: Numerical treatment of radiation processes in the internal shocks of magnetized relativistic outflows, ha sido realizada bajo su direccion´ en el Departamento de Astronom´ıa y Astrof´ısica de la Universitat de Valencia` por Jesus´ Misrayim´ Rueda Becerril, y constituye su Tesis Doctoral para optar al grado de Doctor en F´ısica. Y para que conste firman el presente certificado en Burjassot, a 29 de mayo de 2017 Fdo: Miguel Angel´ Aloy Toras´ Fdo: Petar Mimica Abstract Blazars are a type of active galactic nuclei (AGNs) which are among the most en- ergetic and violent astrophysical objects, alongside γ-ray bursts (GRBs). The phys- ical processes, and, in particular, the relativistic jet itself in which the high energy radiation detected by the terrestrial and space observatories is generated, has been attracting the attention and interest of astronomers and astrophysicists since their dis- covery. In the present thesis, we investigate the internal shock (IS) model in which two magnetized shells of plasma, with cylindrical geometry, collide forming shock waves, which propagate throughout the plasma accelerating electrons (thermal and nonthermal) in their wake. Those electrons interact with the magnetic field of the jet producing magnetobremsstrahlung emission, which is detected by observations. In this model we also consider that the surroundings of the jet in which this collision takes place are filled with a monochromatic photon field, which emulates the more complex broad line region (BLR) of the AGN. Both photons from the external field and those produced in situ are Compton upscattered by the accelerated electrons. The main work of the present thesis has been the search of signatures imprinted on the double bump spectral energy distribution (SED) of blazars that may uncover the degree of the shell magnetization and the profile of the electrons energy distribu- tion (EED) injected at the shock front. We have approached the problem numerically, so that a fair fraction of the work has consisted on improving already existing sophis- ticated numerical tools or developing new ones from scratch. We have used these numerical tools to simulate the IS model and reproduce broadband SEDs of blazars. i Abstract To validate our methodology and put bounds on the parameters of our model, ob- servational data has been analyzed so that the generated SEDs are able to reproduce generic observational data and inferred physical trends. From the Compton dominance and the spectral index of γ-ray photons obtained in our models, we infer that a fair fraction of the blazar sequence could be explained by the shells magnetization; the negligibly magnetized models describing the Flat Spectrum Radio Quasars (FSRQs) region, whereas moderately magnetized shells fall into the BL Lacertae object (BL Lac) region. On the other hand, by including thermal electrons into the population of injected particles and using a numerical tool which reproduces the low energy region of the magnetobremsstrahlung (MBS) emission, we have found that the valley which separates the synchrotron and inverse-Compton (IC) components grows deeper when thermal dominated distributions are injected at the shock front. A slightly varying synchrotron peak between 1011–1013 Hz, in contrast with a parameters dependent IC component. These effects induce a scattering in the vertical direction of the Compton dominance-synchrotron peak plane. From this clear fact, we cautiously suggest that the proportions of the thermal/nonthermal electrons have a prominent role explaining the location of blazars in that plane. ii Preface This thesis aims to reveal the physics underlying the phenomenology observed in blazars. The reasons why blazars find themselves among the most appealing Astro- physical objects known and why they are fascinating objects that have stimulated the creativity of several generations of astronomers and astrophysicists will be addressed in Chapter 1. In Chapter 2 we will elaborate on the physical background on which the MBS and the blazars IS model resides. We will start with the dynamics and electrodynamics of a charged particle immersed in a homogeneous magnetic field. We will continue with the description of the dynamics of colliding shells in the IS model, based on Mimica & Aloy (2012). The last part of this chapter gives an overview of the different types of distributions of particles, the model employed for the injection of particles at a shock front and the evolution of particles in a shocked region in two regimes: with and without including a radiative cooling term active over a finite period of time. In Chapter 3 we will enclose a detailed description of the numerical techniques and methods developed and used during my stay in the Computer Aided Modeling of Astrophysical Plasma (CAMAP) research group with Prof. Miguel Angel´ Aloy and Dr. Petar Mimica. The first part of that chapter is focused on the Internal Shocks code developed by Mimica & Aloy (2012), which is the cornerstone of the present work. In the second part we present a detailed description of the code CHAMBA: a new computational tool which intends to reproduce the emissivity out of single charged particles moving with arbitrary speed, and also of distributions of particles of arbi- iii Preface trary profile in a magnetic field. Our published works (Rueda-Becerril et al. 2014b, 2017) are results out of a systematic and consistent use of these tools. Chapter 4 is based on research performed in the CAMAP research group with Prof. Miguel A. Aloy and Dr. Petar Mimica, as a continuation of the previously published work (Mimica & Aloy 2012). The work was published in 2014: J. M. Rueda-Becerril, P. Mimica, & M. A. Aloy. The influence of the magnetic field on the spectral properties of blazars. Monthly Notices of the Royal Astronomical Soci- ety, 438:1856–1869, Feb. 2014b. doi: 10.1093/mnras/stt2335. RMA14. The work consisted in expanding the parameter space for the internal shocks model of blazars previously scanned with the code developed by Dr. Petar Mimica and Prof. Miguel A. Aloy. The aforementioned code was supplemented with the possibility of com- puting the photons spectral index of the synthetic models (described in 4.5.1). The § observational data was obtained from the Fermi LAT Second AGN Catalog (2LAC) database1. We performed all the simulations in this chapter in the supercomputer Tirant. Chapter 5 is based on research performed in the CAMAP research group with Prof. Miguel A. Aloy and Dr. Petar Mimica. The work was published in 2017: J. M. Rueda-Becerril, P. Mimica, & M. A. Aloy. On the influence of a hybrid thermal– non-thermal distribution in the internal shocks model for blazars. Monthly Notices of the Royal Astronomical Society, 468:1169–1182, June 2017. doi: 10.1093/mnras/ stx476. RMA17. The results described correspond to simulations made by using the internal shocks code (Mimica & Aloy 2012) with a hybrid thermal-nonthermal particles distribution injected ( 2.4.2.2), the finite-time particles evolution scheme § ( 2.4.3.2) and the new numerical tool CHAMBA ( 3.2). All the simulations where § § performed using the servers of the Department of Astronomy of Astrophysics of the University of Valencia: Fujiserver1 and ARC1. Astrophysics has meant to me like walking into the wild. I never knew what I was going to find but every step has brought joy and enlightenment. Knowing a bit of the phenomena which take place out there has been like breathing fresh air in the woods, which enriches your lungs and brings you peace, or like a heavy rain, which soaks you with the vital liquid but it is too much that you have to run for shelter. The process of proposing the development of new numerical tools like CHAMBA, has 1https://heasarc.gsfc.nasa.gov/W3Browse/all/fermilac.html iv helped me to get a feeling of what is out there. The process of writing it, on the other hand, has been like climbing a mountain: you never know if you are going to get there or if nature is going to send a storm and make you draw back. We started to climb from high-energy-electrons base camp. We planned the route there, keeping an eye on the weather at all moment for any storm forecast. During the days in base camp we had to deal with fundamental questions like whether it is worth it to go beyond the transrelativistic heights, which so many explorers have gone up and down with great skill over and over for decades, or stay at the foothills of magnetobremsstrah- lung mountain. With a blazarian impulse we decided to leave the tranquility of base camp and hit the crag. We came across unstable (numerical) gravel ravines, climb and rappel steep cliffs and monumental crags. Ergs and ergs of vertical walls. There were moments where no grip was on sight, praying for the rope to hold. Fortunately for our expedition it did, and we made it to the cyclotron peak. JMRB v Contents Abstract i Preface iii Contents vi List of Figures xi List of Tables xiv Acknowledgements xv 1 Introduction 1 1.1 Active Galactic Nuclei . 1 1.1.1 AGNszoo........................... 3 1.2 Blazars ................................ 6 1.2.1 Blazar models . 8 1.2.2 Theblazarzone........................ 9 1.2.3 The blazar sequence .
Recommended publications
  • The Astrology of Space
    The Astrology of Space 1 The Astrology of Space The Astrology Of Space By Michael Erlewine 2 The Astrology of Space An ebook from Startypes.com 315 Marion Avenue Big Rapids, Michigan 49307 Fist published 2006 © 2006 Michael Erlewine/StarTypes.com ISBN 978-0-9794970-8-7 All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. Graphics designed by Michael Erlewine Some graphic elements © 2007JupiterImages Corp. Some Photos Courtesy of NASA/JPL-Caltech 3 The Astrology of Space This book is dedicated to Charles A. Jayne And also to: Dr. Theodor Landscheidt John D. Kraus 4 The Astrology of Space Table of Contents Table of Contents ..................................................... 5 Chapter 1: Introduction .......................................... 15 Astrophysics for Astrologers .................................. 17 Astrophysics for Astrologers .................................. 22 Interpreting Deep Space Points ............................. 25 Part II: The Radio Sky ............................................ 34 The Earth's Aura .................................................... 38 The Kinds of Celestial Light ................................... 39 The Types of Light ................................................. 41 Radio Frequencies ................................................. 43 Higher Frequencies ...............................................
    [Show full text]
  • Appendices Appendix A
    Appendices Appendix A Mathematical Notation Used in this Book This appendix gives a brief description of the mathematical notation used in this book, especially in Chapters 5 to 9. In all cases scalar quantities are presented in simple math mode. Examples are mass m or M; fundamental constants c, G, etc.; and Greek letters γ, δ, φ, etc.. This does not include components of vectors and tensors, which are discussed below. A.1 Vector and Tensor Notation for Two- and Three-Dimensional Spaces Two and three-dimensional space notation is the same, as neither contains a time coordinate. A.1.1 Two- and Three-Dimensional Vector and 1-Form Notation Vectors in two and three dimensions are written as bold capital letters in math mode. Examples are momentum and velocity P and V ; electric and magnetic field E and B; etc. Components of vectors are written in the same font as the geometrical quantity, but not in boldface and with a upper index indicating which component it represents. Examples: P x, V r, Ey, and Bz. Roman subscripts are sometimes added to vectors or their components to distin- guish which object or type of physics problem is being discussed. Examples are the φ velocity of object #2 V2 or orbital velocity in Schwarzschild geometry Vorb,SH. 1-Forms for the above quantities are written in bold lower-case letters, also in math mode. Examples are the momentum and velocity 1-forms p and v; electric and magnetic 1-forms e and b; etc. Components are of these written in the same D.L.
    [Show full text]
  • Stars, Galaxies, and Beyond, 2012
    Stars, Galaxies, and Beyond Summary of notes and materials related to University of Washington astronomy courses: ASTR 322 The Contents of Our Galaxy (Winter 2012, Professor Paula Szkody=PXS) & ASTR 323 Extragalactic Astronomy And Cosmology (Spring 2012, Professor Željko Ivezić=ZXI). Summary by Michael C. McGoodwin=MCM. Content last updated 6/29/2012 Rotated image of the Whirlpool Galaxy M51 (NGC 5194)1 from Hubble Space Telescope HST, with Companion Galaxy NGC 5195 (upper left), located in constellation Canes Venatici, January 2005. Galaxy is at 9.6 Megaparsec (Mpc)= 31.3x106 ly, width 9.6 arcmin, area ~27 square kiloparsecs (kpc2) 1 NGC = New General Catalog, http://en.wikipedia.org/wiki/New_General_Catalogue 2 http://hubblesite.org/newscenter/archive/releases/2005/12/image/a/ Page 1 of 249 Astrophysics_ASTR322_323_MCM_2012.docx 29 Jun 2012 Table of Contents Introduction ..................................................................................................................................................................... 3 Useful Symbols, Abbreviations and Web Links .................................................................................................................. 4 Basic Physical Quantities for the Sun and the Earth ........................................................................................................ 6 Basic Astronomical Terms, Concepts, and Tools (Chapter 1) ............................................................................................. 9 Distance Measures ......................................................................................................................................................
    [Show full text]
  • Thesis Reference
    Thesis Active Galactic Nuclei at hight energies: spectral properties and the cosmic X-ray background ESPOSITO, Valentino Abstract Le thème principal de cette thèse est l'étude des noyaux actifs de galaxies (AGN) dans le domaine des rayons X. Les AGN sont les sources persistantes les plus brillantes de l'Univers et produisant un rayonnement sur la quasi-totalité du spectre éléctromagnétique. J'ai travaillé sur le rayonnement de fond cosmique dans les rayon X (CXB) d'origine extragalactique, qui est du à l'émission intégrée de faibles sources ponctuelles, pour la plupart des AGN. Le spectre du CXB diffère de l'intégration des spectres des sources individuelles, suggérant la présence d'une population de sources fortement obscurcies, non détectées jusqu'à présent. J'ai utilisé des spectres X moyens de AGN avec un grand rapport signal sur bruit, dérivés avec l'instrument Swift/BAT. Les données de BAT montrent que le spectre des AGN moyennement obscurcit comportent une composante de réflexion intense qui contribue de manière significative au CXB. En conséquence, une population d'AGN très absorbés plus grande que celle effectivement détectée n'est pas nécessaire. J'ai aussi travaillé sur le quasar brillant 3C 273, qui est [...] Reference ESPOSITO, Valentino. Active Galactic Nuclei at hight energies: spectral properties and the cosmic X-ray background. Thèse de doctorat : Univ. Genève, 2016, no. Sc. 4945 URN : urn:nbn:ch:unige-860446 DOI : 10.13097/archive-ouverte/unige:86044 Available at: http://archive-ouverte.unige.ch/unige:86044 Disclaimer:
    [Show full text]
  • Far-Infrared Observations of Radio Quasars and Fr Ii Radio Galaxies Y
    The Astrophysical Journal, 629:88–99, 2005 August 10 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. FAR-INFRARED OBSERVATIONS OF RADIO QUASARS AND FR II RADIO GALAXIES Y. Shi,1 G. H. Rieke,1 D. C. Hines,1,2 G. Neugebauer,1 M. Blaylock,1 J. Rigby,1 E. Egami,1 K. D. Gordon,1 and A. Alonso-Herrero1,3 Receivedv 2005 January 12; accepted 2005 April 26 ABSTRACT We report MIPS photometry of 20 radio-loud quasars and galaxies at 24 and 70 m(andoffiveat160m). We combine this sample with additional sources detected in the far-infrared by IRAS and ISO for a total of 47 objects, including 23 steep-spectrum type I AGNs: radio-loud quasars and broad-line radio galaxies; and 24 type II AGNs: narrow-line and weak-line FR II radio galaxies. Of this sample, the far-infrared emission of all but 3C 380 appears to be dominated by emission by dust heated by the AGN and by star formation. The AGN appears to contribute more than 50% of the far-infrared luminosity in most of the sources. It is also expected that the material around the nucleus is optically thin in the far-infrared. Thus, the measurements at these wavelengths can be used to test the orientation-dependent unification model. As predicted by the model, the behavior of the sources is consistent with the presence of an obscuring circumnuclear torus; in fact, we find that it may still have significant optical depth at 24 m. In addition, as expected for the radio-loud quasars, there is a significant correlation between the low-frequency radio (178 MHz) and the 70 m emission, two presumably isotropic indicators of nuclear activity.
    [Show full text]
  • Cambridge University Press 978-1-108-42216-1 — an Introduction to Modern Astrophysics Bradley W
    Cambridge University Press 978-1-108-42216-1 — An Introduction to Modern Astrophysics Bradley W. Carroll , Dale A. Ostlie Index More Information Index υ Andromedae, 849 661–667, 718, 857, 1111, Adams, John Couch, 775 1E1740.7−2942, 932 1123 Adams, Walter, 558 2003 UB313, 827, 828 in an AGN, 1111–1113 Adaptive optics, 159 21-cm radiation, 405 luminosity, 663–664, 693 Adiabatic density fluctuations, 2M1207, 855 radial extent of, 665 1248–1251 2MASS catalog, 891 structure of, 1113 Adiabatic gamma, 320 2MASSWJ1207334−393254, around supermassive black Adiabatic gas law, 320 855 hole, 1112 Adiabatic process, 320 2dF Galaxy Redshift Survey temperature profile, 662–664 Adiabatic sound speed, 321 (2dFGRS), 1076–1077 viscosity, 661 Adiabatic temperature gradient, 3C 236, 1095, 1125 Accretion formation of planets, 321–322, 324 3C 273, 1096, 1097, 1126, 1128 863, 866 Adoration of the Magi (Giotto), 3C 279, 1105 Accretion luminosity, 1111, 1121 817, 818 3C 324, 1065 Accretion shock, 533 Advanced Camera for Surveys 3C 47, 1106 Achondrites, 840 (ACS), 161 47 Tucana, 894 Acoustic frequency, 505 Advanced Satellite for 51 Pegasi, 848 Acoustic oscillations, Cosmology and 55 Cancri, 850 1259–1262, 1273 Astrophysics, 170 61 Cygni, 59, 1038 in early universe, 1252, 1259, AGB, see Asymptotic giant 1263–1267 branch A0035–335, 1006 model of, 1263–1267 Age-metallicity relation, A0620−00, 644, 672, 698 Active corona, 390 885–886 Abell 2199, 1014 Active galactic nuclei (AGN) AGN, see Active galactic nuclei Abell 2218, 1136, 1171, 1255 central engine of, 1109–1110 Airy
    [Show full text]
  • Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission
    Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission A Thesis Submitted to the Faculty of Drexel University by Rachael Marie Kratzer in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2014 c Copyright 2014 Rachael Marie Kratzer. All Rights Reserved ii Dedications To Louie, my dedicated companion since 2004 iii Acknowledgments First and foremost, I thank my thesis adviser, Gordon Richards, for his guidance and limitless patience over the past seven years. I am truly grateful for the opportunities he has made possible. Without his support, this thesis would certainly not exist. I am indebted to David Goldberg for his dedicated mentorship, which extended beyond academia to life, in general. I thank Rick White for providing the FIRST completeness calculations, his object stacking code, and his radio expertise. I am grateful to my remaining committee members, Michael Vogeley and Brigita Urbanc, for their useful feedback and encouragement throughout the development of this research. I thank my colleagues for comments on the manuscript, particularly Bob Becker and Amy Kimball. I also acknowledge Adam Myers for help constructing the Master quasar catalog and Coleman Krawczyk for providing corrected black hole masses for my samples. This work was supported by NSF AAG grant 1108798. Funding for the SDSS and SDSS-II was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England.
    [Show full text]