Substrate Utilization and Respiration in Relation to Growth and Maintenance Inhighe R Plants

Total Page:16

File Type:pdf, Size:1020Kb

Substrate Utilization and Respiration in Relation to Growth and Maintenance Inhighe R Plants «}] substrate utilization and respiration in relation to growth and maintenance inhighe r plants F.W.T. PENNING DE VRIES N08201.571 substrate utilization and respiration in relation to growth and maintenance inhighe r plants F.W.T. PENNING DE VRIES SUBSTRATEUTILIZATIO NAN DRESPIRATIO N INRELATIO N TOGROWT HAN DMAINTENANC E INHIGHE RPLANT S F.W.T.Pennin gd eVrie s PROEFSCHRIFT TERVERKRIJGIN GVA ND EGRAA D VANDOCTO RI ND ELANDBOUWWETENSCHAPPEN , OPGEZA GVA ND ERECTO RMAGNIFICUS , PROF.DR.IR.H.A . LENIGER, INHE TOPENBAA RT EVERDEDIGE NO P VRIJDAG 21DECEMBE R 1973DE SNAMIDDAG SO MVIE RUU R IND EAUL AVA ND ELANDBOUWHOGESCHOO LT EWAGENINGE N STbLUNJiJt - I - leerboeken iter plantenfyaiologie beaehrijven p.cvoonlijk bet begrip "fotoajmthete" te eng alt tie venting van koolhydraten uit kooleuur en water ottder invioed van lichl. liet ia beter "fatoeynlheae" ce defi- nieren *U de too van alle ayntheaeproceaeen die onder onvloed van lichc in de groene plant gebeuren, en dan de verachillende onderdeien, te weten de reductieve koolcuuraaaiedlatie, de nitraatreductie en bijbehorende proceaaen, en de ayrtthese van diverae polyeeren, afsoo- derlijk aan te duiden. (dit proefschrift) - 2 - Bijbe t bestuderen van adesrtalinp,va n planten behoort invee l grolerc •ate dan tot nu toe §c«vo«m ia,nadru k tewordc n geleed ophaa r func- tionele karakter. (dit prf^eCachrIft ) - %- De anelheid van haterotrofc groel van een plant of orgaan Van eenvou- dig en noo deatructiaf worden afgeteid uit stttingen van de adrchalinpa- snelheid. (dit proc(achrift) - 4 - Met isnie t aogelijk raasetiva n de belangrijkste landbouwgewaaaen te kveken die hun aasiailaten efficienter benutten voorbioaynthea e dan dehuidig e rassen.He t iawe l xinvol te zoeken naar planten die lagere onderhoudakoetenhebbe n dan debeataand e planten,o f te proberen een verlaplng van dexe kosten tebewerkstelligen . (dit proefechrift) - 5- Voorkandidaatspractic a fysiologiebied the texperimentere nme t simulatiemodellenvaa k groteremogelijkhede nda nhe tdoe nva n proevenme treel eobjecten . - 6- Simulereni sd ebeste ,e ntoc hgoedkop eleidraa dbi jhe tbestudere n vanhe tverloo pva nprocesse nbinne nee nbetrekkelij kafgeslote n geheel,da ti ngrot etrekke nbeken dis . - 7- Veelrekencentr a zijnno gnie tingestel do pklante ndi egee nbelan g stelleni nd ewerkwijz eva nd ecomputer . -8 - Plantendi ezij nopgegroei d inklimaatkamer sbi jee n lichtintensiteit ____ _2 —— .•- — ———• • vanminde rda n30 0W m zijnongeschik tvoo rhe tbepale nva nd ein - tensiteitva nprocesse nonde rveldomstandigheden . - 9- 0md egemotiveerdhei dvoo rhe tverlene ne nontvange nva nsteu naa n armelande nt ebevorderen ,i she tnoodzakelij k degeestelijk eafstan d tussenhulpverlenend ee nhulpontvangend egroepe nt everkleinen .Hier - toekunne nhe tuitwissele nva npersone ne nhe tmogelij kmake nva n informatieve,goedkop ereize nbelangrij kbijdragen . - 10- Leidinggevendpersonee li sal senzym-eiwi ti nee nlevend eeel :beid e zijnduu ro mt evorme ne nt eonderhouden ,he taanpassingsvermoge nva n deeenhei dwaarto ez ebehore ni smed eafhankelij kva nhu n"turnover" , enwannee rd egroe istilstaa tleid topeenhopin gva ninactiev eelemen - tento tverstarrin ge nsteed sslechte rfunctioneren . F.W.T.Pennin gd eVrie s Wageningen,2 1decembe r197 3 BEKNOPTESAMENVATTIN GVA NDI TPROEFSCHRIF T Debetekeni s enregulerin gva nademhalingsprocesse ni n planten zijnbestudeer d omvas t testelle nhoevee lva nd ekool - stofdi edoo r fotosynthese isvastgeieg ddoo rademhalin gwee r verloren gaat.He tgrootst edee lva nd eadenihalin gva nveldge - wasseni she t gevolgva ngroeiprocessen .O p theoretische gronden zijnverbande n tussengroei ,substraatgebrui ke nadem ­ halingnauwkeuri gberekend .Experimentee l zijndez e ookbeves - tigd.Ee nande rdee lva nd eademhalin gword tveroorzaak t door onderhoudsprocessen diecelle n intacthouden .Dez e zijnno g weinigonderzocht .Daardoo ri soo kd egroott eva nd eonderhouds - ademhalingno gnie tprecie sbekend .We ii see ninzich t verkregen ind eprocesse n diehierbi jee nro lspelen . CURRICULUMVITA E De auteuri sgebore no p2 6maar t 1946 inNijmegen .I n 1963 behaaldehi jdaa rhe tH.B.S.- B diplomaaa nhe tDominicu sCollege , enbego ndaarn ame td eBiologie-studi e aand eKatholiek eUniver - siteit.He thoofdva kplantenfysiologi e is inWageninge nbewerk t onder leidingva ndr.ir .J.F .Bierhuizen .I nmaar t 1969legd ehi j hetdoctoraa lexame na fe ni napri lva nda tjaa r stelded eLand - bouwhogeschoolhe maa nal swetenschappelij kmedewerke rbi jd e AfdelingTheoretisch eTeeltkunde .Hie rwerk thi jme eaa nhe tver - beterene nuitbouwe nva nsimulatiemodelle n overgewasgroei .He t proefschrift overd ebetekeni sva nd eademhalin gva nplante ni s bewerkt onder leidingva nprof.dr.ir .C.T .d eWit ,hoogleraa r ind eTheoretisch e Teeltkunde aand eLandbouwhogeschoo le n prof.dr.A.H .Stouthamer ,hoogleraa r ind eMicrobiologi c aan deVrij eUniversitei t teAmsterdam .D eproeve nbi jdez eonder - zoekingen genomen,zij nuitgevoer d innauw e samenwerkingme t hetInstituu t voorBiologisc h enScheikundi g Onderzoekva n Landbouwgewassen teWageningen . Thisthesi scomprises : 1.A generalINTRODUCTIO N and SUMMARY inENGLIS H (7pages ) 2.Ee nalgemen eINLEIDIN G enSAMENVATTIN G inhe t NEDERLANDS (7bladzijden ) and threepapers : 3.PRODUCTS ,REQUIREMENT SAN DEFFICIENC Y OFBIOSYNTHESIS , A QUANTITATIVEAPPROACH .Journa lo fTheoretica l Biology, 1974(i npress ) (51pages ) 4.US E OFASSIMILATE S INHIGHE RPLANTS .In :Photosynthesi s andproductivit y indifferen tenvironments .Ed . J.P.Cooper ,Cambridg eUniversit yPress ,197 4(i npress ) (29pages ) 5.TH ECOS TO FMAINTENANC EPROCESSE S INPLAN TCELL S Annalso fBotany , 1974 (inpress ) (38pages ) F.W.T.Pennin gd eVrie s October 1973 SUBSTRATEUTILIZATIO NAN DRESPIRATIO N INRELATIO N TOGROWT HAN DMAINTENANC E INHIGHE RPLANT S FiW.T.Pennin gd eVrie s Departmento fTheoretica lProductio nEcolog y .Agricultura lUniversity ,Wageninge n TheNetherland s Thispape rcontain sa summar y of thereference s3 ,4 an d5 . - 1- Introduction Therecen tdevelopmen t of simulation techniques tostud y growtho f fieldcrop sactualize d thequestio nho wmuc ho fth ecarbo n fixedb yphoto ­ synthesis gets lostb y respiratory processes (1).A coheren tpictur e can hardlyb e constructed fromliteratur edat ao ncarbo ndioxid e production andoxyge nconsumptio n ofdifferen t organs invariou s conditions,an d certainlynon etha tallow sextrapolatio n toothe r situations.Thi s study tries toanswe r thisquestio nb y theinvestigatio n ofth esignificanc ean d regulation ofrespirator yprocesse s inplants .Althoug h thisproble mi s focussed tohighe rplant s iti so fa muc hbroade rnature . Five groupso fprocesse swer e recognized inwhic h carbondioxid e evolutionan d oxygenuptak ear e involved: 1.Processe srelate d toth ebiochemica lconversio no f substrate intoth e compounds found inorganisms ,o rshortly :growt hprocesses .Th ecentra l question isho wman y gramso f carbondioxid e areproduce d andho wman y gramso foxyge nar econsume d if 1.0 gramo fglucos e isconverte d into biomass.Th e questionho wman y gramso fbiomas sar e formed simultaneously isclosel yrelated ,bu t theanswe r toth esecon d questiondoe sno t follow from theanswe r toth e firstbecaus eals owate r isinvolved . 2.Processe srelate d tomaintenanc e ofalread y existing cells and their structures.Energ y for theseprocesse s isprovide db yrespiration .Fro m respirationmeasurement s itappear s that theintensit yo fmaintenanc e processes inplant s islo wcompare d toanimal s andmicro-organisms . Inman y situations,however ,thes eprocesse s doconsum e animportan t fractiono fth eassimilates . 3.Processe s related toactiv e transporto forgani ccompound s across cell membranes and inphloe mvessels .Nearl y allsubstrat e forgrowt hi s transportedbecaus e substrateproductio n usually doesno t occuri n growingcells .Watertranspor ti sa passiv eprocess ,whic h active regulationrequire sver y littlerespirator y energy. 4.Processe swithou tuseful l outcome.A considerabl e fractiono f thecarbo n dioxideevolutio n inplant sha softe nbee nascribe d to"uncouple d respiration":a proces swithou t any (known)use .I ti spressuppose d for this study that theseprocesse s areunimportant ,an d thisi s demonstrated ina fewcases .T odecid e that theseprocesse s areals o absent inothe r conditions,simultaneou smeasurement s are lackingo f rateso frespiration ,protei n turnoveran d ionfluxe s acrossmembranes . - 2- 5.Photorespiration .Th ecalculatio n ofcarbo ndioxid e assimilationo fa canopy isusuall ybase d onth ecarbo ndioxid e assimilation light respons curveo fa singl e leafi nsimila rconditions .A possibl edecreas eo fth e rateo fassimilatio ndu et ophotorespiratio ni salread y includedi n thiscurve ,an dphotorespiratio ni sno timportan tan ylonge r forsuc h calculations.Becaus ei ngenera lphotosynthesizin g cellsd ono tgro w andnon eo rlittl ephotosynthesi s occursi ngrowin g cells,photorespiratio n doesno tcontribut e toformatio no fan yothe rproduc t thansugar san d aminoacids ,whic h amounti sknow nalready . Theenerg y consumptioni nothe r activeprocesse s inplant si s negligible. Inthi swa yth einitia lproble mi srestricte d andclarifie d considerably It isno wver y similar totha to fproduction-microbiologists ,bu ti sstil l newfo rman yplan tphysiologists . Methods Todetermin e theamoun to fbiomas s formed froma certai n amounto f substratean dth econcomitan trespiration ,th e"reactio nequation "o fth e biochemical conversionsma yb ecalculated .Fo rexample ,i flysin ei sth e endproduc tan dglucos ean dammoni asubstrates ,handbook
Recommended publications
  • Acclimation of Photosynthesis and Respiration to Elevated Atmospheric CO2 in Two Scrub Oaks
    Global Change Biology (2002) 8, 317±328 Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks GRAHAM J. HYMUS, TOM G. SNEAD, DAVID P. JOHNSON, BRUCE A. HUNGATE* and BERT G.DRAKE Smithsonian Environmental Research Center, Mailcode DYN-2, Kennedy Space Center, FL 32899, USA, *Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Box 5640, Northern Arizona University, Flagstaff, AZ 86011- 5640, USA Abstract For two species of oak, we determined whether increasing atmospheric CO2 concen- tration (Ca)would decrease leaf mitochondrial respiration (R)directly, or indirectly owing to their growth in elevated Ca , or both. In particular, we tested whether acclima- tory decreases in leaf-Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current À1 ambient 350 mmol mol ) Ca , in open-top chambers (OTCs). For Q. myrtifolia,an À1 increase in Ca from 360 to 710 mmol mol had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated CaÐthe only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N)concentration for the sun and shade leaves of both the species of oak.
    [Show full text]
  • Exchange Velocity Approach and Obt Formation in Plants During the Daytime
    EXCHANGE VELOCITY APPROACH AND OBT FORMATION IN PLANTS DURING THE DAYTIME Anca Melintescu PhD “Horia Hulubei” National Institute of Physics and Nuclear Engineering, Bucharest - Magurele, ROMANIA [email protected], [email protected] Third Technical Meeting of the EMRAS II, Working Group 7, “Tritium” Accidents, Vienna, Austria, 24 - 28 January 2011 THE DRIVING EQUATIONS FOR TRITIUM TRANSFER IN ATMOSPHERE - SOIL- PLANT CONTINUUM Driving equation for the HTO transfer from atmosphere to leaves: C – HTO concentration in plant water (Bq/kg); 3 depends on canopy resistance Cair – HTO concentration in air (Bq/m ); Cs - HTO concentration in the sap water (Bq/kg); 3 s - saturated air humidity at vegetation temp. (kg/m ); dC Vexc Vexc - air humidity at reference level (kg/m3); 2 (Cair 0.91 sC) (s )Cs Mw – water mass in plant on a unit soil surface (kg/m ); dt M w M w Vexc – exchange velocity from atmosphere to canopy (m/s) the transpiration flux - used for all canopy, ignoring the transfer of air HTO to steam, because the exchange velocity is smaller with one order of magnitude; - Ignores the initial diffusion of leaf water to steams The tritium dynamics at soil surface: depends on soil resistance dCsw,1 Vex,s C - HTO concentration in the first soil layer at the (Bq/kg); (Cair 0.91sat (Ts )Csw,1 ) DF sw,1 Vex,s - exchange velocity from atmosphere to soil (m/s); dt M 3 ws sat(Ts) - saturated air humidity at soil surface temp. (kg/m ); Mws – water mass in the surface soil layer; DF - HTO net flux at the bottom interface of the first soil
    [Show full text]
  • Detailed Temporal Modelling of Carbon and Water Fluxes from Pastures in New Zealand
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Detailed temporal modelling of carbon and water fluxes from pastures in New Zealand: Case study of an experimental dairy farm in the Waikato region A thesis presented in partial fulfilment of the Requirements for the degree of Doctor of Philosophy In Soil Science Massey University, Palmerston North, New Zealand Nicolas Puche 2017 i ii ABSTRACT The terrestrial biosphere is an important pool of carbon, with its size governed by the opposing processes of CO2 uptake through photosynthesis and release through respiration. It is therefore critically important to understand and reliably and accurately model these processes and predict changes in carbon exchange in response to key drivers. Pasture-based livestock production is particularly important for the New Zealand’s economy but it is also a main contributor to NZ’s greenhouse gas budget. My Ph.D. work used half-hourly eddy-covariance (EC) data, previously collected over 2 consecutive years from a grazed pasture in the Waikato region. The main aims of this study were to assess whether there was any bias in gap-filled eddy covariance measurements, to assess whether incomplete capture of cow respiration during grazing events could have led to biased observations, and to quantify the resulting difference on the net carbon budget of the farm. I approached the work by developing a new process-based model, CenW_HH, running at a half-hourly time step, to predict the energy and CO2 exchange of grazed pastures.
    [Show full text]
  • Thermal Acclimation of Leaf and Root Respiration: an Investigation Comparing Inherently Fast- and Slow- Growing Plant Species
    Global Change Biology (2003) 9, 895±910 Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow- growing plant species B. R. LOVEYS1 ,L. J. ATKINSON,D. J. SHERLOCK,R. L. ROBERTS,A. H. FITTER and O. K. ATKIN Department of Biology, The University of York, PO Box 373, York, YO10 5YWUK Abstract We investigated the extent to which leaf and root respiration (R) differ in their response to short- and long-term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long-term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 ÊC. In the short-term (ST) acclimation experi- ment, 9 of those species were grown at 25/20 ÊC (day/night) and then shifted to a 15/10 ÊC for 7 days. Short-term Q10 values (proportional change in R per 10 ÊC) and the degree of acclimation to longer-term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light-saturated photosynthesis (Asat) was also measured in the LT acclimation experi- ment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15±25 ÊC measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter-specific differences in the Q10 or degree of acclimation.
    [Show full text]
  • GROWTH and MAINTENANCE RESPIRATION of PERENNIAL ROOT SYSTEMS in a DRY GRASSLAND DOMINATED by AGROPYRON DASYSTACHYUM (Yiooll,) SCRIBN
    New Phytol (1987) 105, 595-603 595 GROWTH AND MAINTENANCE RESPIRATION OF PERENNIAL ROOT SYSTEMS IN A DRY GRASSLAND DOMINATED BY AGROPYRON DASYSTACHYUM (YiOOlL,) SCRIBN. BY E. G. REEKIE AND R. E. REDMANN Department of Crop Science and Plant Ecology, University of Saskatchewan, Saskatoon, Saskatchewan S7N OWO, Canada {Accepted 17 November 1986) SUMMARY Respiration coefficients were determined for laboratory-grown root systems of Agropyron dasystachyum (Hook.) Scribn. (northern wheatgrass). The growth respiration coefficient (0-85 g g~^) was similar to published rates for species from mesic sites. The maintenance coefficient (0-037 g g"^ d~i) was relatively low, suggesting that plants growing in semi-arid habitats have inherently low maintenance costs per unit of biomass. The proportion of total root biomass requiring maintenance (degradable fraction) was determined by measuring the non- structural root biomass. The degradable fraction (0-13) was substantially lower than published measurements of functional (or 'live') biomass, because the latter include structural biomass, which has no maintenance requirement. Respiration parameters, root growth, degradable root fraction, soil temperature and soil moisture were used to construct a model of root respiration in field-grown roots. The maintenance coefficient was adjusted downward during periods of water stress and low temperature when roots probably were dormant. Parameters in the model, particularly the degradable biomass fraction, explained much of the discrepancy between respiration rates of laboratory-grown and field-grown root systems. Maintenance respiration represents a substantial outlay in the carbon budgets of dry grasslands but is lower than expected considering the large root biomass in these systems. Key words: Agropyron dasystachyum (Hook.) Scribn., carbon budget, grassland ecosystem, growth and maintenance respiration, roots.
    [Show full text]
  • Respiratory Energy Requirements and Rate of Protein Turnover in Vivo Determined by the Use of an Inhibitor of Protein Synthesis and a Probe to Assess Its Effect
    PHYSIOLOGIA PLANTARUM 92: 585-594. 1994 Copyright © Physiologia Plantarum 1994 !SSN 0031-9317 Printed in Denmark - all rights resen1ed Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect T. J. Bouma, R. De Visser, J. H. J. A. Janssen, M. J. De Kock, P. H. Van Leeuwen and H. Lambers Bouma, T. J., De Visser, R., Janssen, J. H. J. A., De Kock, M. J., Van Leeuwen, P. H. and Lambers, H. 1994. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect.- Physiol. Plant. 92: 585-594. Protein turnover is generally regarded as a major maintenance process, but experi­ mental evidence to support this contention is scarce. Here we quantify the component of dark respiration rate associated with overall protein turnover of tissues in vivo. The effect of an inhibitor of cytosolic protein synthesis (cycloheximide, CHM) on dark respiration was tested on a cell suspension from potato (Solanum tuberosum L.) and quantified on leaf discs of expanding and full-grown primary leaves of bean (Phaseo­ lus vulgaris L.). The in vivo effect of CHM on protein biosynthesis was assessed by monitoring the inhibition of the induction of the ethylene-forming enzyme (EFE) activity. The present method yields the energy costs of turnover of the total pool of proteins irrespective of their individual turnover rates. Average turnover rates were derived from the respiratory costs and the specific costs for turnover.
    [Show full text]
  • Plant Respiration Under Low Oxygen
    REVIEW Plant respiration under low oxygen Guillermo Toro1*, and Manuel Pinto2 Respiration is an oxidative process controlled by three pathways: glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Respiratory metabolism is ubiquitous in all organisms, but with differences among each other. For example in plants, because their high plasticity, respiration involves metabolic pathways with unique characteristics. In this way, in order to avoid states of low energy availability, plants exhibit great flexibility to bypass conventional steps of glycolysis, TCA cycle, and OXPHOS. To understand the energetic link between these alternative pathways, it is important to know the growth, maintenance, and ion uptake components of the respiration in plants. Changes in these components have been reported when plants are subjected to stress, such as oxygen deficiency. This review analyzes the current knowledge on the metabolic and functional aspects of plant respiration, its components and its response to environmental changes. Key words: Electron transport chain, hypoxia, Krebs cycle, maintenance respiration. INTRODUCTION its mechanisms of regulation and control still require further elucidation. For instance, studies on the Plants are autotrophic organisms able to use solar enzymatic functionality of glycolysis have determined radiation to split water molecules (H2O) and reduce the importance of phosphoglucomutase (PGM) in starch the carbon dioxide (CO2) compounds that can finally formation processes in both heterotrophic (root and seed) be stored as insoluble polysaccharides (starch) or used and autotrophic tissues as well as the role of hexokinases directly in the synthesis of other compounds. In plants (HXK) and other enzymes such as the glucose signaling glucose is the main substrate for respiration.
    [Show full text]
  • Cellular Respiration 1 Cellular Respiration
    Cellular respiration 1 Cellular respiration Cellular respiration (also known as 'oxidative metabolism') is the set of the metabolic reactions and processes that take place in organisms' cells to convert biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions that involve the oxidation of one molecule and the reduction of another. Respiration is one of the key ways a cell gains useful energy to fuel cellular reformations. Nutrients commonly used by animal and Cellular respiration in a typical eukaryotic cell. plant cells in respiration include, glucose, amino acids and fatty acids, and a common oxidizing agent (electron acceptor) is molecular oxygen (O ). Bacteria 2 and archaea can also be lithotrophs and these organisms may respire using a broad range of inorganic molecules as electron donors and acceptors, such as sulfur, metal ions, methane or hydrogen. Organisms that use oxygen as a final electron acceptor in respiration are described as aerobic, while those that do not are referred to as anaerobic[1] . The energy released in respiration is used to synthesize ATP to store this energy. The energy stored in ATP can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes. Cellular respiration 2 Aerobic respiration Aerobic respiration requires oxygen in order to generate energy (ATP). Although carbohydrates, fats, and proteins can all be processed and consumed as reactant, it is the preferred method of pyruvate breakdown from glycolysis and requires that pyruvate enter the mitochondrion in order to be fully oxidized by the Krebs cycle.
    [Show full text]
  • The Physiology of Adaptation and Yield Expression in Olive
    November 25 pm The Physiology of Adaptation and Yield Expression in Olive D.J. Connor* Instituto de Agricultura Sostenible (CSIC) and Universidad de Córdoba Apartado de Correos 4084 14080 Córdoba, Spain and The Institute of Land and Food Resources The University of Melbourne Victoria 3010, Australia E. Fereres* Instituto de Agricultura Sostenible (CSIC) and Universidad de Córdoba Apartado de Correos 4084 14080 Córdoba, Spain I. INTRODUCTION II. GROWTH AND DEVELOPMENT A. Vegetative Growth B. Floral Induction, Initiation, and Differentiation C. Response of Flowering to Temperature D. Flowering, Pollination, and Fertilization E. Self Compatibility F. Fruit Set, Filling, and Maturation G. Efficiency of Reproductive Strategy III. WATER RELATIONS A. Collection of Water by Root Systems B. Leaf Anatomy and Water Relations C. The Olive Tree as a Hydraulic System D. Control of Transpiration IV. MINERAL NUTRITION A. Deficiencies and Toxicities B Extraction and Cycling of Nutrients in Orchards V. CARBON ACCUMULATION A. Leaf Photosynthesis B. Interception of Radiation C. Tree and Canopy Photosynthesis VI. BIOMASS PARTITIONING AND REALIZATION OF YIELD A. Movement of Assimilates from Leaves B. Above- and Below-Ground Biomass C. Shoots and Fruits D. Assimilate Supply and Oil Formation VII. STRESS PHYSIOLOGY A. Drought B. Low Temperature C. Salinity D. Waterlogging 1 VIII. INTEGRATION OF RESPONSES IX. RECOMMENDATIONS FOR FUTURE RESEARCH A. Phenological Development B. Carbon Assimilation and Partitioning C. Water Relations D. Nutrient Balance X. CONCLUSION *We thank Antonio Hall, Bob Loomis, María-Inés Mínguez, Hava Rapoport, David Smith and four reviewers for comments and suggestions on the manuscript and also Joan Girona, Miguel Pastor, Francisco Villalobos, and Francisco Orgaz for valued discussion.
    [Show full text]
  • Biogeochemical Interactions Governing Terrestrial Net Primary Production
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Chapin F.S., and Eviner V.T. (2014) Biogeochemical Interactions Governing Terrestrial Net Primary Production. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 10, pp. 189-216. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 10.6 Biogeochemical Interactions Governing Terrestrial Net Primary Production FS Chapin III, University of Alaska Fairbanks, Fairbanks, AK, USA VT Eviner, University of California, Davis, CA, USA ã 2014 Elsevier Ltd. All rights reserved. 10.6.1 Introduction 190 10.6.2 General Constraints on NPP 190 10.6.2.1 What is NPP? 190 10.6.2.2 Physiological Controls over NPP 191 10.6.2.3 Environmental Controls over NPP 192 10.6.2.4
    [Show full text]
  • MAINTENANCE RESPIRATION in CROP LEGUMES
    IVAITE INSTITUTE 13'lo 81k LIBRARY MAINTENANCE RESPIRATION iN CROP LEGUMES DONALD E. IRVING B.Sc., M.Sc. Hons. (Auckland) A Thesis submitted for the degree of Doctor of PhilosoPhY in the Faculty of Agricultural Science DePartment of Agronorny, l-laite Agricultural Reseàrch Institute UniversitY of Adelaide 1983 To my l'lother, my late Father, ny Sister and my Brother. CONTEN iS Page Nq. CHAPTER I GENERAL INTRODUCTION 1 CHAPTER II LITERATURE REVIE'.¡l 6 TNTRODUCTTON 6 PATHWAYS 0F C02 EV)LUTÏON 6 Pathuays of Heæose )æid'a.tion 6 qLucolusis 7 the oridatiue pen tose ohosphate pathuau 7 the Lic aeid Le 7 7ther Pathuays InuoLtsed in C0, EuoLution I MII)CH)NDRIAL ELECTR)N TRANSP1RT PATH\"-IIS 9 THE CONCI]PT OF GROI¡TH AND MATNTENANCE RESPIRATION 10 Hi stoz"ilaL Intro ductí on 10 Recent DeueLopments in the Concept of Grouth ortd MeLnteTltmce Respínation 11 Ihe WderLyíng Significance of the Grouth Effiaieney øn'd Maintenøt ce C o e f fi aL ent 74 qrouth effiaieneu t4 the maintenøtee eoeffieient 16 ErperimentaL Deternination of Gtouth øtd MqintenqrLee Coeffieients 16 Assurnptíons Made in CaLeuLating Cz,outh øtd. Maintencnce Coeffíeients 1B Faetov,s Affeetíng the Maintenqnce Coeffieient 20 Ineonsisteneies ín the Concept of Ì,lainterrcmce 2t Py,aeticaL AppLications of the Gv'owth and Mcrintenøtee Coneept in PLøtt Ssience 23 CONCLUSTON 24 CHAPTER III MATERIALS AND METHODS 26 PLANT CALTURE 26 WOLE PLANT GAS EXCHANGE 27 LEAF GNS EXCHANGE - INFA¿, RED GAS ANAT'YSIS 27 LEAE GAS EXCHANGE - BY MA]VOMETRY 28 PLANT ANALYSIS 28 Dzy Weight 28 I'eaf Area 28 ChLorophyLL 28 Carbon Content 2B Nítrogen Content 29 Protein Assøy 29 methods used in eæper"iment one 30 P_age No.
    [Show full text]
  • IV .4 Respiration and Growth
    (In: Crop Processes in Controlled Environments. Ed: Rees, Cockshull, Hand and Hurd,Academic Press, London, 1972). IV .4 Respiration and growth F. W. T. PENNING DE VRIES Department cif Theoretical Production Ecology, Agricultural University, Wageningen, The Netherlands I. Introduction As early as 1922 it was observed that the uptake of glucose by AsfJer­ gillus niger is related to its grov.rth (Terroine and VVurmser, 1922). Under a range of conditions the weight of the mycelium formed is about 45% of the weight of the carbohydrates consumed. From the observation that this percentage decreases with the age of the culture, it was concluded that another energy-requiring process occurs to keep the organism function­ ing. This process was calculated to require about 1 °;~ of the mycelium dry weight per hour. Tamiya (1932) and Tamiya and Yamagutchi (1933) were among the first to use and quantify the concepts ''growth respiration" and "maintenance respiration" by measuring glucose uptake, mycelium dry weight, oxygen consumption and carbon dioxide production of a growing Aspergillus niger culture. These workers presented some interest­ ing ideas about basic phenomena of dry matter production. This kind of study is continued in microbiology (Rippel-Baldes, 1952; Bauchop and Elsden, 1960; Payne, 1970), but is very scarce in literature about higher plants. Another approach to the relation between respiration and dry matter production considers the energy contents of compounds and the reactions by which these compounds are formed. It is used in animal physiology (Brody, 1945; Blaxter, 1962; Needham, 1964 ), but is also to be found in the older literature of microbiology (Terroine and Wurmser, 1922; Tamiya, 1932) and in more recent work.
    [Show full text]