Does Elevated Atmospheric CO2 Concentration Inhibit Mitochondrial Respiration in Green Plants?

Total Page:16

File Type:pdf, Size:1020Kb

Does Elevated Atmospheric CO2 Concentration Inhibit Mitochondrial Respiration in Green Plants? Plant, Cell and Environment (1999) 22, 649–657 ORIGINAL ARTICLE OA 220 EN Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? B. G. DRAKE1, J. AZCON-BIETO2, J. BERRY3, J. BUNCE4, P. DIJKSTRA1, J. FARRAR5, R. M. GIFFORD6, M. A. GONZALEZ-MELER7, G. KOCH8, H. LAMBERS9, J. SIEDOW10 & S. WULLSCHLEGER11 1Smithsonian Environmental Research Center, PO Box 28, Edgewater, MD 21037, USA; 2Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; 3Department of Plant Biology Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA; 4USDA/ARS, Climate Stress Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA; 5School of Biological Sciences, University College of North Wales, Bangor, Gwynedd LL57 2UW, UK; 6CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia; 7Developmental, Cell and Molecular Biology Group/Botany Department, Duke University, PO Box 91000, Durham, NC 27708, USA; 8Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; 9Department of Plant Ecology and Evolutionary Biology Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands; 10Dean of Faculty Development, 104 Allen Building, Duke University, Durham, NC, USA; 11Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ABSTRACT respiration per unit DW [µmol g DW–1], Rubisco, ribulose- 1,5-bisphosphate carboxylase/oxygenase; Vc,max, maximum There is abundant evidence that a reduction in mitochon- –2 –1 in vivo rate of carboxylation at Rubisco (µmol m s ). drial respiration of plants occurs when atmospheric CO2 (Ca) is increased. Recent reviews suggest that doubling the present Ca will reduce the respiration rate [per unit INTRODUCTION dry weight (DW)] by 15 to 18%. The effect has two com- There have been indications in the literature of a direct ponents: an immediate, reversible effect observed in effect of elevated atmospheric CO2 concentration (Ca) par- leaves, stems, and roots of plants as well as soil microbes, tially suppressing higher plant respiration since the late and an irreversible effect which occurs as a consequence nineteenth century (Kidd 1916; Mangin 1896 quoted in of growth in elevated Ca and appears to be specific to C3 Murray 1995). Over the last 15 years such an effect has species. The direct effect has been correlated with inhibi- been frequently reported both as rapid reversible responses tion of certain respiratory enzymes, namely cytochrome- to elevated C , and as longer term responses measured on c-oxidase and succinate dehydrogenase, and the indirect a plants grown continuously at elevated Ca (reviewed in or acclimation effect may be related to changes in tissue Amthor 1997; Drake et al. 1997b; Curtis & Wang 1998). composition. Although no satisfactory mechanisms to Inhibition of respiration by elevated Ca has also been explain these effects have been demonstrated, plausible reported for microbial respiration (Drake et al. 1997b). mechanisms have been proposed and await experimental Mechanisms for this inhibition have not yet been demon- testing. These are carbamylation of proteins and direct strated unequivocally, the fast acting reversible response inhibition of enzymes of respiration. A reduction of foliar being particularly mystifying. If there is a significant effect respiration of 15% by doubling present ambient Ca of the globally rising Ca on higher plant or microbial respi- would represent 3 Gt of carbon per annum in the global ration rates then there are likely to be substantial implica- carbon budget. tions for the global carbon cycle and agricultural systems. To quantify the implications and understand them suffi- Key-words: acclimation to rising CO2; dark respiration; global ciently to allow a predictive capability, requires knowledge carbon cycle; rising CO2. not only of respiration and the exact character of the sup- Abbreviations: ATP, adenosine triphosphate; Km, Michaelis- pression, but also of the role of autotrophic and het- Menton coefficient; Ca, concentration of CO2 in the air erotrophic respiration in ecosystem processes. –1 (µmol mol–1); NAD, oxidized nicotin adenine dinucleotide; We use the term respiration (R, µmol g DW ) to mean NADH, reduced nicotin adenine dinucleotide; NADP, oxi- the consumption of O2 or the efflux of CO2 per unit dry dized nicotin adenine phosphate dinucleotide; NADPH, matter and we concentrate on effects observed when Ca is –1 reduced nicotine adenine phosphate dinucleotide; R, rate of in the range of 0–1000 µmol mol . Two kinds of effects of elevated Ca on apparent dark respiration in intact plants or Correspondence: B. G. Drake. tissues have been reported (Amthor 1991; Gonzàlez- This paper was prepared by the participants in a workshop held 8–9 Meler, Drake & Azcon-Bieto 1996a; Drake et al. 1997b): a January 1998 at the Smithsonian Environmental Research Center, direct, immediate effect in which respiration is reversibly Edgewater, Maryland, 21037 USA. reduced by exposure to elevated Ca, and an indirect effect © 1999 Blackwell Science Ltd 649 650 B. G. Drake et al. in which respiration of plants grown in elevated Ca differs expressed on a dry-mass basis. In an expanded meta-anal- from the respiration of plants grown in normal ambient Ca ysis, Curtis & Wang (1998) reported that leaf respiration when measured at a common value of Ca. expressed on a dry-mass basis was reduced by 18% in In this paper, we review the data available on the effect woody plants grown at elevated Ca concentrations. of elevated Ca on respiration, discuss the potential bio- The analyses of Poorter et al. (1992), Curtis (1996), and chemical candidates for a mechanism whereby changes in Curtis & Wang (1998) did not attempt to separate the direct ambient Ca could bring about changes in the rate of respira- effects per se from the indirect effects which probably occur tion, and consider the potential effect of elevated Ca on as a result of acclimation of the plant to elevated Ca. Drake changes in construction, maintenance and transport costs. et al. (1997b) indicated an average 18% direct inhibition for With the aid of a model for the global carbon cycle, we foliage while Amthor’s (1997) analysis of 36 species in 45 evaluate the significance for the global carbon budget of studies reported 15% direct inhibition in shoots, leaves and reduced dark respiration in foliage. We also suggest roots due to a doubling of the Ca. Both Amthor (1997) and research goals for determining the mechanistic basis for Drake et al. (1997b) reported that the indirect effect was the impact of rising Ca on dark respiration of plants. smaller than the direct effect. The acclimation effect gener- ally results in reduced respiration (Baker et al. 1992; Azcón- Bieto et al. 1994), although in some experiments acclimation EVIDENCE FOR THE EFFECT OF ELEVATED led to increased respiration (Thomas et al. 1993). C ON RESPIRATION a Mechanisms suspected to be involved in the direct and An increasing number of studies have reported direct indirect effects (discussed below) include changes in car- and/or acclimation responses of higher plant respiration to bohydrate availability, growth rate and biomass allocation, Ca enrichment (Table 1). These responses have been altered chemical composition of tissues, interactions observed in leaves, whole-plants, roots and in the stems of between Ca and key respiratory enzymes, and dark CO2 woody plants (Gonzàlez-Meler et al. 1996a; Ryan et al. fixation (Amthor 1991). Other aspects of the responses that 1996; Wullschleger, Norby & Hanson 1995). have been explored include the effects of Ca on growth and Poorter et al. (1992), who produced the first quantita- maintenance respiration, the apparent paradox of increased tive analysis of data on the tissue-specific response of res- growth rate and reduced respiration (Bunce 1994) the piration to elevated Ca, reported both increases and potential interaction of nutrients and temperature in the decreases in leaf, root and whole-plant respiration as a responses to Ca (Wullschleger, Ziska & Bunce 1994) and result of exposure to elevated Ca. Estimated changes in the biochemical mechanisms involved in a direct effect of respiration due to elevated Ca averaged across 41 C3 and Ca on mitochondrial respiration (Gonzàlez-Meler, Drake & six C4 species ranged from a 16% stimulation of respira- Azcon-Bieto 1996a). tion when expressed on a leaf-area basis to a 14% inhibi- Is the effect of elevated Ca on respiration an artifact of sys- tion when expressed on a dry-mass basis. By contrast, tematic measurement errors? Two candidates for producing Curtis (1996) conducted a statistical meta-analysis of pub- systematic artifacts in gas exchange systems are dilution of lished data on leaf respiration for trees grown at elevated the air by transpired water vapour and leaks between the Ca and reported a significant reduction in respiration chamber and the surrounding air. Although each of these regardless of whether the data were expressed on a mass could, under certain conditions, produce an apparent reduc- or area basis. This analysis did support the basic conclu- tion in CO2 efflux, in most available studies, insufficient sion of Poorter et al. (1992) that the magnitude of the data are given to conclude whether or to what extent these effect was dependent on how the data were expressed, errors were necessarily a part of the experiment. Moreover, with the apparent elevated Ca-induced effects on area- no one has produced a convincing set of experiments based rates of respiration being only about half those accompanying measurements of respiration to permit us to conclude that these potential sources of artifacts are capable of causing the sort of errors needed to produce the effects Table 1. Estimates of the direct effect (E, %) of elevated Ca on R observed (only the direct effect is involved here since the in leaves of plants. E is expressed as the ratio of Re, the rate of indirect effect could only result from changes in the tissue as respiration measured in tissues grown and measured at elevated Ca, a result of growth in elevated Ca).
Recommended publications
  • Acclimation of Photosynthesis and Respiration to Elevated Atmospheric CO2 in Two Scrub Oaks
    Global Change Biology (2002) 8, 317±328 Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks GRAHAM J. HYMUS, TOM G. SNEAD, DAVID P. JOHNSON, BRUCE A. HUNGATE* and BERT G.DRAKE Smithsonian Environmental Research Center, Mailcode DYN-2, Kennedy Space Center, FL 32899, USA, *Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Box 5640, Northern Arizona University, Flagstaff, AZ 86011- 5640, USA Abstract For two species of oak, we determined whether increasing atmospheric CO2 concen- tration (Ca)would decrease leaf mitochondrial respiration (R)directly, or indirectly owing to their growth in elevated Ca , or both. In particular, we tested whether acclima- tory decreases in leaf-Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current À1 ambient 350 mmol mol ) Ca , in open-top chambers (OTCs). For Q. myrtifolia,an À1 increase in Ca from 360 to 710 mmol mol had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated CaÐthe only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N)concentration for the sun and shade leaves of both the species of oak.
    [Show full text]
  • Exchange Velocity Approach and Obt Formation in Plants During the Daytime
    EXCHANGE VELOCITY APPROACH AND OBT FORMATION IN PLANTS DURING THE DAYTIME Anca Melintescu PhD “Horia Hulubei” National Institute of Physics and Nuclear Engineering, Bucharest - Magurele, ROMANIA [email protected], [email protected] Third Technical Meeting of the EMRAS II, Working Group 7, “Tritium” Accidents, Vienna, Austria, 24 - 28 January 2011 THE DRIVING EQUATIONS FOR TRITIUM TRANSFER IN ATMOSPHERE - SOIL- PLANT CONTINUUM Driving equation for the HTO transfer from atmosphere to leaves: C – HTO concentration in plant water (Bq/kg); 3 depends on canopy resistance Cair – HTO concentration in air (Bq/m ); Cs - HTO concentration in the sap water (Bq/kg); 3 s - saturated air humidity at vegetation temp. (kg/m ); dC Vexc Vexc - air humidity at reference level (kg/m3); 2 (Cair 0.91 sC) (s )Cs Mw – water mass in plant on a unit soil surface (kg/m ); dt M w M w Vexc – exchange velocity from atmosphere to canopy (m/s) the transpiration flux - used for all canopy, ignoring the transfer of air HTO to steam, because the exchange velocity is smaller with one order of magnitude; - Ignores the initial diffusion of leaf water to steams The tritium dynamics at soil surface: depends on soil resistance dCsw,1 Vex,s C - HTO concentration in the first soil layer at the (Bq/kg); (Cair 0.91sat (Ts )Csw,1 ) DF sw,1 Vex,s - exchange velocity from atmosphere to soil (m/s); dt M 3 ws sat(Ts) - saturated air humidity at soil surface temp. (kg/m ); Mws – water mass in the surface soil layer; DF - HTO net flux at the bottom interface of the first soil
    [Show full text]
  • Detailed Temporal Modelling of Carbon and Water Fluxes from Pastures in New Zealand
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Detailed temporal modelling of carbon and water fluxes from pastures in New Zealand: Case study of an experimental dairy farm in the Waikato region A thesis presented in partial fulfilment of the Requirements for the degree of Doctor of Philosophy In Soil Science Massey University, Palmerston North, New Zealand Nicolas Puche 2017 i ii ABSTRACT The terrestrial biosphere is an important pool of carbon, with its size governed by the opposing processes of CO2 uptake through photosynthesis and release through respiration. It is therefore critically important to understand and reliably and accurately model these processes and predict changes in carbon exchange in response to key drivers. Pasture-based livestock production is particularly important for the New Zealand’s economy but it is also a main contributor to NZ’s greenhouse gas budget. My Ph.D. work used half-hourly eddy-covariance (EC) data, previously collected over 2 consecutive years from a grazed pasture in the Waikato region. The main aims of this study were to assess whether there was any bias in gap-filled eddy covariance measurements, to assess whether incomplete capture of cow respiration during grazing events could have led to biased observations, and to quantify the resulting difference on the net carbon budget of the farm. I approached the work by developing a new process-based model, CenW_HH, running at a half-hourly time step, to predict the energy and CO2 exchange of grazed pastures.
    [Show full text]
  • Thermal Acclimation of Leaf and Root Respiration: an Investigation Comparing Inherently Fast- and Slow- Growing Plant Species
    Global Change Biology (2003) 9, 895±910 Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow- growing plant species B. R. LOVEYS1 ,L. J. ATKINSON,D. J. SHERLOCK,R. L. ROBERTS,A. H. FITTER and O. K. ATKIN Department of Biology, The University of York, PO Box 373, York, YO10 5YWUK Abstract We investigated the extent to which leaf and root respiration (R) differ in their response to short- and long-term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long-term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 ÊC. In the short-term (ST) acclimation experi- ment, 9 of those species were grown at 25/20 ÊC (day/night) and then shifted to a 15/10 ÊC for 7 days. Short-term Q10 values (proportional change in R per 10 ÊC) and the degree of acclimation to longer-term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light-saturated photosynthesis (Asat) was also measured in the LT acclimation experi- ment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15±25 ÊC measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter-specific differences in the Q10 or degree of acclimation.
    [Show full text]
  • GROWTH and MAINTENANCE RESPIRATION of PERENNIAL ROOT SYSTEMS in a DRY GRASSLAND DOMINATED by AGROPYRON DASYSTACHYUM (Yiooll,) SCRIBN
    New Phytol (1987) 105, 595-603 595 GROWTH AND MAINTENANCE RESPIRATION OF PERENNIAL ROOT SYSTEMS IN A DRY GRASSLAND DOMINATED BY AGROPYRON DASYSTACHYUM (YiOOlL,) SCRIBN. BY E. G. REEKIE AND R. E. REDMANN Department of Crop Science and Plant Ecology, University of Saskatchewan, Saskatoon, Saskatchewan S7N OWO, Canada {Accepted 17 November 1986) SUMMARY Respiration coefficients were determined for laboratory-grown root systems of Agropyron dasystachyum (Hook.) Scribn. (northern wheatgrass). The growth respiration coefficient (0-85 g g~^) was similar to published rates for species from mesic sites. The maintenance coefficient (0-037 g g"^ d~i) was relatively low, suggesting that plants growing in semi-arid habitats have inherently low maintenance costs per unit of biomass. The proportion of total root biomass requiring maintenance (degradable fraction) was determined by measuring the non- structural root biomass. The degradable fraction (0-13) was substantially lower than published measurements of functional (or 'live') biomass, because the latter include structural biomass, which has no maintenance requirement. Respiration parameters, root growth, degradable root fraction, soil temperature and soil moisture were used to construct a model of root respiration in field-grown roots. The maintenance coefficient was adjusted downward during periods of water stress and low temperature when roots probably were dormant. Parameters in the model, particularly the degradable biomass fraction, explained much of the discrepancy between respiration rates of laboratory-grown and field-grown root systems. Maintenance respiration represents a substantial outlay in the carbon budgets of dry grasslands but is lower than expected considering the large root biomass in these systems. Key words: Agropyron dasystachyum (Hook.) Scribn., carbon budget, grassland ecosystem, growth and maintenance respiration, roots.
    [Show full text]
  • Substrate Utilization and Respiration in Relation to Growth and Maintenance Inhighe R Plants
    «}] substrate utilization and respiration in relation to growth and maintenance inhighe r plants F.W.T. PENNING DE VRIES N08201.571 substrate utilization and respiration in relation to growth and maintenance inhighe r plants F.W.T. PENNING DE VRIES SUBSTRATEUTILIZATIO NAN DRESPIRATIO N INRELATIO N TOGROWT HAN DMAINTENANC E INHIGHE RPLANT S F.W.T.Pennin gd eVrie s PROEFSCHRIFT TERVERKRIJGIN GVA ND EGRAA D VANDOCTO RI ND ELANDBOUWWETENSCHAPPEN , OPGEZA GVA ND ERECTO RMAGNIFICUS , PROF.DR.IR.H.A . LENIGER, INHE TOPENBAA RT EVERDEDIGE NO P VRIJDAG 21DECEMBE R 1973DE SNAMIDDAG SO MVIE RUU R IND EAUL AVA ND ELANDBOUWHOGESCHOO LT EWAGENINGE N STbLUNJiJt - I - leerboeken iter plantenfyaiologie beaehrijven p.cvoonlijk bet begrip "fotoajmthete" te eng alt tie venting van koolhydraten uit kooleuur en water ottder invioed van lichl. liet ia beter "fatoeynlheae" ce defi- nieren *U de too van alle ayntheaeproceaeen die onder onvloed van lichc in de groene plant gebeuren, en dan de verachillende onderdeien, te weten de reductieve koolcuuraaaiedlatie, de nitraatreductie en bijbehorende proceaaen, en de ayrtthese van diverae polyeeren, afsoo- derlijk aan te duiden. (dit proefschrift) - 2 - Bijbe t bestuderen van adesrtalinp,va n planten behoort invee l grolerc •ate dan tot nu toe §c«vo«m ia,nadru k tewordc n geleed ophaa r func- tionele karakter. (dit prf^eCachrIft ) - %- De anelheid van haterotrofc groel van een plant of orgaan Van eenvou- dig en noo deatructiaf worden afgeteid uit stttingen van de adrchalinpa- snelheid. (dit proc(achrift) - 4 - Met isnie t aogelijk raasetiva n de belangrijkste landbouwgewaaaen te kveken die hun aasiailaten efficienter benutten voorbioaynthea e dan dehuidig e rassen.He t iawe l xinvol te zoeken naar planten die lagere onderhoudakoetenhebbe n dan debeataand e planten,o f te proberen een verlaplng van dexe kosten tebewerkstelligen .
    [Show full text]
  • Respiratory Energy Requirements and Rate of Protein Turnover in Vivo Determined by the Use of an Inhibitor of Protein Synthesis and a Probe to Assess Its Effect
    PHYSIOLOGIA PLANTARUM 92: 585-594. 1994 Copyright © Physiologia Plantarum 1994 !SSN 0031-9317 Printed in Denmark - all rights resen1ed Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect T. J. Bouma, R. De Visser, J. H. J. A. Janssen, M. J. De Kock, P. H. Van Leeuwen and H. Lambers Bouma, T. J., De Visser, R., Janssen, J. H. J. A., De Kock, M. J., Van Leeuwen, P. H. and Lambers, H. 1994. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect.- Physiol. Plant. 92: 585-594. Protein turnover is generally regarded as a major maintenance process, but experi­ mental evidence to support this contention is scarce. Here we quantify the component of dark respiration rate associated with overall protein turnover of tissues in vivo. The effect of an inhibitor of cytosolic protein synthesis (cycloheximide, CHM) on dark respiration was tested on a cell suspension from potato (Solanum tuberosum L.) and quantified on leaf discs of expanding and full-grown primary leaves of bean (Phaseo­ lus vulgaris L.). The in vivo effect of CHM on protein biosynthesis was assessed by monitoring the inhibition of the induction of the ethylene-forming enzyme (EFE) activity. The present method yields the energy costs of turnover of the total pool of proteins irrespective of their individual turnover rates. Average turnover rates were derived from the respiratory costs and the specific costs for turnover.
    [Show full text]
  • Plant Respiration Under Low Oxygen
    REVIEW Plant respiration under low oxygen Guillermo Toro1*, and Manuel Pinto2 Respiration is an oxidative process controlled by three pathways: glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Respiratory metabolism is ubiquitous in all organisms, but with differences among each other. For example in plants, because their high plasticity, respiration involves metabolic pathways with unique characteristics. In this way, in order to avoid states of low energy availability, plants exhibit great flexibility to bypass conventional steps of glycolysis, TCA cycle, and OXPHOS. To understand the energetic link between these alternative pathways, it is important to know the growth, maintenance, and ion uptake components of the respiration in plants. Changes in these components have been reported when plants are subjected to stress, such as oxygen deficiency. This review analyzes the current knowledge on the metabolic and functional aspects of plant respiration, its components and its response to environmental changes. Key words: Electron transport chain, hypoxia, Krebs cycle, maintenance respiration. INTRODUCTION its mechanisms of regulation and control still require further elucidation. For instance, studies on the Plants are autotrophic organisms able to use solar enzymatic functionality of glycolysis have determined radiation to split water molecules (H2O) and reduce the importance of phosphoglucomutase (PGM) in starch the carbon dioxide (CO2) compounds that can finally formation processes in both heterotrophic (root and seed) be stored as insoluble polysaccharides (starch) or used and autotrophic tissues as well as the role of hexokinases directly in the synthesis of other compounds. In plants (HXK) and other enzymes such as the glucose signaling glucose is the main substrate for respiration.
    [Show full text]
  • Cellular Respiration 1 Cellular Respiration
    Cellular respiration 1 Cellular respiration Cellular respiration (also known as 'oxidative metabolism') is the set of the metabolic reactions and processes that take place in organisms' cells to convert biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions that involve the oxidation of one molecule and the reduction of another. Respiration is one of the key ways a cell gains useful energy to fuel cellular reformations. Nutrients commonly used by animal and Cellular respiration in a typical eukaryotic cell. plant cells in respiration include, glucose, amino acids and fatty acids, and a common oxidizing agent (electron acceptor) is molecular oxygen (O ). Bacteria 2 and archaea can also be lithotrophs and these organisms may respire using a broad range of inorganic molecules as electron donors and acceptors, such as sulfur, metal ions, methane or hydrogen. Organisms that use oxygen as a final electron acceptor in respiration are described as aerobic, while those that do not are referred to as anaerobic[1] . The energy released in respiration is used to synthesize ATP to store this energy. The energy stored in ATP can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes. Cellular respiration 2 Aerobic respiration Aerobic respiration requires oxygen in order to generate energy (ATP). Although carbohydrates, fats, and proteins can all be processed and consumed as reactant, it is the preferred method of pyruvate breakdown from glycolysis and requires that pyruvate enter the mitochondrion in order to be fully oxidized by the Krebs cycle.
    [Show full text]
  • The Physiology of Adaptation and Yield Expression in Olive
    November 25 pm The Physiology of Adaptation and Yield Expression in Olive D.J. Connor* Instituto de Agricultura Sostenible (CSIC) and Universidad de Córdoba Apartado de Correos 4084 14080 Córdoba, Spain and The Institute of Land and Food Resources The University of Melbourne Victoria 3010, Australia E. Fereres* Instituto de Agricultura Sostenible (CSIC) and Universidad de Córdoba Apartado de Correos 4084 14080 Córdoba, Spain I. INTRODUCTION II. GROWTH AND DEVELOPMENT A. Vegetative Growth B. Floral Induction, Initiation, and Differentiation C. Response of Flowering to Temperature D. Flowering, Pollination, and Fertilization E. Self Compatibility F. Fruit Set, Filling, and Maturation G. Efficiency of Reproductive Strategy III. WATER RELATIONS A. Collection of Water by Root Systems B. Leaf Anatomy and Water Relations C. The Olive Tree as a Hydraulic System D. Control of Transpiration IV. MINERAL NUTRITION A. Deficiencies and Toxicities B Extraction and Cycling of Nutrients in Orchards V. CARBON ACCUMULATION A. Leaf Photosynthesis B. Interception of Radiation C. Tree and Canopy Photosynthesis VI. BIOMASS PARTITIONING AND REALIZATION OF YIELD A. Movement of Assimilates from Leaves B. Above- and Below-Ground Biomass C. Shoots and Fruits D. Assimilate Supply and Oil Formation VII. STRESS PHYSIOLOGY A. Drought B. Low Temperature C. Salinity D. Waterlogging 1 VIII. INTEGRATION OF RESPONSES IX. RECOMMENDATIONS FOR FUTURE RESEARCH A. Phenological Development B. Carbon Assimilation and Partitioning C. Water Relations D. Nutrient Balance X. CONCLUSION *We thank Antonio Hall, Bob Loomis, María-Inés Mínguez, Hava Rapoport, David Smith and four reviewers for comments and suggestions on the manuscript and also Joan Girona, Miguel Pastor, Francisco Villalobos, and Francisco Orgaz for valued discussion.
    [Show full text]
  • Biogeochemical Interactions Governing Terrestrial Net Primary Production
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Chapin F.S., and Eviner V.T. (2014) Biogeochemical Interactions Governing Terrestrial Net Primary Production. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 10, pp. 189-216. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 10.6 Biogeochemical Interactions Governing Terrestrial Net Primary Production FS Chapin III, University of Alaska Fairbanks, Fairbanks, AK, USA VT Eviner, University of California, Davis, CA, USA ã 2014 Elsevier Ltd. All rights reserved. 10.6.1 Introduction 190 10.6.2 General Constraints on NPP 190 10.6.2.1 What is NPP? 190 10.6.2.2 Physiological Controls over NPP 191 10.6.2.3 Environmental Controls over NPP 192 10.6.2.4
    [Show full text]
  • MAINTENANCE RESPIRATION in CROP LEGUMES
    IVAITE INSTITUTE 13'lo 81k LIBRARY MAINTENANCE RESPIRATION iN CROP LEGUMES DONALD E. IRVING B.Sc., M.Sc. Hons. (Auckland) A Thesis submitted for the degree of Doctor of PhilosoPhY in the Faculty of Agricultural Science DePartment of Agronorny, l-laite Agricultural Reseàrch Institute UniversitY of Adelaide 1983 To my l'lother, my late Father, ny Sister and my Brother. CONTEN iS Page Nq. CHAPTER I GENERAL INTRODUCTION 1 CHAPTER II LITERATURE REVIE'.¡l 6 TNTRODUCTTON 6 PATHWAYS 0F C02 EV)LUTÏON 6 Pathuays of Heæose )æid'a.tion 6 qLucolusis 7 the oridatiue pen tose ohosphate pathuau 7 the Lic aeid Le 7 7ther Pathuays InuoLtsed in C0, EuoLution I MII)CH)NDRIAL ELECTR)N TRANSP1RT PATH\"-IIS 9 THE CONCI]PT OF GROI¡TH AND MATNTENANCE RESPIRATION 10 Hi stoz"ilaL Intro ductí on 10 Recent DeueLopments in the Concept of Grouth ortd MeLnteTltmce Respínation 11 Ihe WderLyíng Significance of the Grouth Effiaieney øn'd Maintenøt ce C o e f fi aL ent 74 qrouth effiaieneu t4 the maintenøtee eoeffieient 16 ErperimentaL Deternination of Gtouth øtd MqintenqrLee Coeffieients 16 Assurnptíons Made in CaLeuLating Cz,outh øtd. Maintencnce Coeffíeients 1B Faetov,s Affeetíng the Maintenqnce Coeffieient 20 Ineonsisteneies ín the Concept of Ì,lainterrcmce 2t Py,aeticaL AppLications of the Gv'owth and Mcrintenøtee Coneept in PLøtt Ssience 23 CONCLUSTON 24 CHAPTER III MATERIALS AND METHODS 26 PLANT CALTURE 26 WOLE PLANT GAS EXCHANGE 27 LEAF GNS EXCHANGE - INFA¿, RED GAS ANAT'YSIS 27 LEAE GAS EXCHANGE - BY MA]VOMETRY 28 PLANT ANALYSIS 28 Dzy Weight 28 I'eaf Area 28 ChLorophyLL 28 Carbon Content 2B Nítrogen Content 29 Protein Assøy 29 methods used in eæper"iment one 30 P_age No.
    [Show full text]