The Physiology of Adaptation and Yield Expression in Olive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Olive Leaf Complex
COMPLIMOliveEN LeafT ComplexARY COPY OLIVE LEAF Amazingly Potent - Super Antioxidant OLIVE LEAF COMPLEX by Jonny Bowden, PHD, CNS Booklet Courtesy of Barlean’s Ferndale, Washington 98248 • (800) 445-3529 Disclaimer: The material in this presentation is for informational purposes only and not intended to treat or diagnose any disease. Please visit a qualified medical or other health professional for individual health issues. Olive Leaf Complex Amazingly Potent - Super Antioxidant “What is the secret behind olive trees living thousands of years and resisting attacks from bacteria, virus, fungus and a range of micro-organisms? It’s the same cell-protecting, super- antioxidants in Olive Leaf Complex – a must for maintaining a healthy immune system, I recommend it to all of my patients during cold and flu season.” − Dr. Robert Wildman, best-selling author of The Nutritionist: Food, Nutrition & Optimal Health, Sport & Fitness Nutrition and Handbook of Nutraceuticals and Functional Foods “To optimally support one’s immune system, first consume a diet rich in nature’s immune-enhancing foods; and then supplement with nature’s arsenal of immune-supportive ingredients such as the Olive Leaf.” − Ashley Koff, RD “Most people are accustomed to reaching for Vitamin C when they think of bolstering their immune systems. This is because many of us are just learning about the benefits of Olive Leaf, including its super-antioxidant properties and support for immune system health. Barlean’s Olive Leaf Complex combines the immune system strengthening benefits of Olive Leaf with the delicious taste of peppermint; it’s the new, natural choice for immune system health.” −Dr. -
Acclimation of Photosynthesis and Respiration to Elevated Atmospheric CO2 in Two Scrub Oaks
Global Change Biology (2002) 8, 317±328 Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks GRAHAM J. HYMUS, TOM G. SNEAD, DAVID P. JOHNSON, BRUCE A. HUNGATE* and BERT G.DRAKE Smithsonian Environmental Research Center, Mailcode DYN-2, Kennedy Space Center, FL 32899, USA, *Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Box 5640, Northern Arizona University, Flagstaff, AZ 86011- 5640, USA Abstract For two species of oak, we determined whether increasing atmospheric CO2 concen- tration (Ca)would decrease leaf mitochondrial respiration (R)directly, or indirectly owing to their growth in elevated Ca , or both. In particular, we tested whether acclima- tory decreases in leaf-Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current À1 ambient 350 mmol mol ) Ca , in open-top chambers (OTCs). For Q. myrtifolia,an À1 increase in Ca from 360 to 710 mmol mol had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated CaÐthe only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N)concentration for the sun and shade leaves of both the species of oak. -
Exchange Velocity Approach and Obt Formation in Plants During the Daytime
EXCHANGE VELOCITY APPROACH AND OBT FORMATION IN PLANTS DURING THE DAYTIME Anca Melintescu PhD “Horia Hulubei” National Institute of Physics and Nuclear Engineering, Bucharest - Magurele, ROMANIA [email protected], [email protected] Third Technical Meeting of the EMRAS II, Working Group 7, “Tritium” Accidents, Vienna, Austria, 24 - 28 January 2011 THE DRIVING EQUATIONS FOR TRITIUM TRANSFER IN ATMOSPHERE - SOIL- PLANT CONTINUUM Driving equation for the HTO transfer from atmosphere to leaves: C – HTO concentration in plant water (Bq/kg); 3 depends on canopy resistance Cair – HTO concentration in air (Bq/m ); Cs - HTO concentration in the sap water (Bq/kg); 3 s - saturated air humidity at vegetation temp. (kg/m ); dC Vexc Vexc - air humidity at reference level (kg/m3); 2 (Cair 0.91 sC) (s )Cs Mw – water mass in plant on a unit soil surface (kg/m ); dt M w M w Vexc – exchange velocity from atmosphere to canopy (m/s) the transpiration flux - used for all canopy, ignoring the transfer of air HTO to steam, because the exchange velocity is smaller with one order of magnitude; - Ignores the initial diffusion of leaf water to steams The tritium dynamics at soil surface: depends on soil resistance dCsw,1 Vex,s C - HTO concentration in the first soil layer at the (Bq/kg); (Cair 0.91sat (Ts )Csw,1 ) DF sw,1 Vex,s - exchange velocity from atmosphere to soil (m/s); dt M 3 ws sat(Ts) - saturated air humidity at soil surface temp. (kg/m ); Mws – water mass in the surface soil layer; DF - HTO net flux at the bottom interface of the first soil -
Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea Europaea L
nutrients Review Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Annalisa Romani 1,*, Francesca Ieri 1, Silvia Urciuoli 1, Annalisa Noce 2,* , Giulia Marrone 2,3 , Chiara Nediani 4 and Roberta Bernini 5 1 PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy 2 UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy 3 PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy 4 Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy 5 Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy * Correspondence: annalisa.romani@unifi.it (A.R.); [email protected] (A.N.); Tel.: +39-055-457377 (A.R.); +39-06-20902188 (A.N.); Fax: +39-055-2751525 (A.R.); +39-06-20902096 (A.N.) Received: 14 July 2019; Accepted: 28 July 2019; Published: 1 August 2019 Abstract: Olea europaea L. fruit is a peculiar vegetal matrix containing high levels of fatty acids (98–99% of the total weight of extra-virgin olive oil, EVOO) and low quantities (1–2%) of phenolics, phytosterols, tocopherols, and squalene. Among these minor components, phenolics are relevant molecules for human health. This review is focused on their beneficial activity, in particular of hydroxytyrosol (HT), oleuropein (OLE), oleocanthal (OLC), and lignans found in EVOO, olive oil by-products and leaves. -
Detailed Temporal Modelling of Carbon and Water Fluxes from Pastures in New Zealand
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Detailed temporal modelling of carbon and water fluxes from pastures in New Zealand: Case study of an experimental dairy farm in the Waikato region A thesis presented in partial fulfilment of the Requirements for the degree of Doctor of Philosophy In Soil Science Massey University, Palmerston North, New Zealand Nicolas Puche 2017 i ii ABSTRACT The terrestrial biosphere is an important pool of carbon, with its size governed by the opposing processes of CO2 uptake through photosynthesis and release through respiration. It is therefore critically important to understand and reliably and accurately model these processes and predict changes in carbon exchange in response to key drivers. Pasture-based livestock production is particularly important for the New Zealand’s economy but it is also a main contributor to NZ’s greenhouse gas budget. My Ph.D. work used half-hourly eddy-covariance (EC) data, previously collected over 2 consecutive years from a grazed pasture in the Waikato region. The main aims of this study were to assess whether there was any bias in gap-filled eddy covariance measurements, to assess whether incomplete capture of cow respiration during grazing events could have led to biased observations, and to quantify the resulting difference on the net carbon budget of the farm. I approached the work by developing a new process-based model, CenW_HH, running at a half-hourly time step, to predict the energy and CO2 exchange of grazed pastures. -
Valorisation of Olea Europaea L. Olive Leaves Through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity
foods Article Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity Mónica Sánchez-Gutiérrez 1,2,* , Isabel Bascón-Villegas 1,2 , Alejandro Rodríguez 2 , Fernando Pérez-Rodríguez 1, África Fernández-Prior 3 , Antonio Rosal 4 and Elena Carrasco 1 1 Food Science and Technology Department, Universidad de Córdoba, Darwin Building, 14014 Córdoba, Spain; [email protected] (I.B.-V.); [email protected] (F.P.-R.); [email protected] (E.C.) 2 BioPrEn Group, Chemical Engineering Department, Universidad de Córdoba, Marie-Curie Building, 14014 Córdoba, Spain; [email protected] 3 Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; [email protected] 4 Molecular Biology and Biochemical Engineering Department, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; [email protected] * Correspondence: [email protected] Abstract: Olea europaea L. leaves constitute a source of bioactive compounds with recognized benefits for both human health and technological purposes. In the present work, different extracts from olive leaves were obtained by the application of two extraction methods, Soxhlet and microwave-assisted extraction (MAE), and six solvents (distilled water, ethanolic and glycerol mixtures solvents). MAE Citation: Sánchez-Gutiérrez, M.; was applied under 40, 60 and 80 ◦C for 3, 6.5 and 10 min. The effect of the extraction method, solvent Bascón-Villegas, I.; Rodríguez, A.; and treatment factors (the latter in MAE) on the total phenol content (TPC), the antioxidant activity Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E. -
Thyroid-Modulating Activities of Olive and Its Polyphenols: a Systematic Review
nutrients Review Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review Kok-Lun Pang 1,† , Johanna Nathania Lumintang 2,† and Kok-Yong Chin 1,* 1 Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] 2 Faculty of Applied Sciences, UCSI University Kuala Lumpur Campus, Jalan Menara Gading, Taman Connaught, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-3-91459573 † These authors contributed equally to this work. Abstract: Olive oil, which is commonly used in the Mediterranean diet, is known for its health benefits related to the reduction of the risks of cancer, coronary heart disease, hypertension, and neurodegenerative disease. These unique properties are attributed to the phytochemicals with potent antioxidant activities in olive oil. Olive leaf also harbours similar bioactive compounds. Several studies have reported the effects of olive phenolics, olive oil, and leaf extract in the modulation of thyroid activities. A systematic review of the literature was conducted to identify relevant studies on the effects of olive derivatives on thyroid function. A comprehensive search was conducted in October 2020 using the PubMed, Scopus, and Web of Science databases. Cellular, animal, and human studies reporting the effects of olive derivatives, including olive phenolics, olive oil, and leaf extracts on thyroid function were considered. The literature search found 445 articles on this topic, but only nine articles were included based on the inclusion and exclusion criteria. All included articles were animal studies involving the administration of olive oil, olive leaf extract, or olive pomace residues orally. -
Thermal Acclimation of Leaf and Root Respiration: an Investigation Comparing Inherently Fast- and Slow- Growing Plant Species
Global Change Biology (2003) 9, 895±910 Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow- growing plant species B. R. LOVEYS1 ,L. J. ATKINSON,D. J. SHERLOCK,R. L. ROBERTS,A. H. FITTER and O. K. ATKIN Department of Biology, The University of York, PO Box 373, York, YO10 5YWUK Abstract We investigated the extent to which leaf and root respiration (R) differ in their response to short- and long-term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long-term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 ÊC. In the short-term (ST) acclimation experi- ment, 9 of those species were grown at 25/20 ÊC (day/night) and then shifted to a 15/10 ÊC for 7 days. Short-term Q10 values (proportional change in R per 10 ÊC) and the degree of acclimation to longer-term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light-saturated photosynthesis (Asat) was also measured in the LT acclimation experi- ment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15±25 ÊC measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter-specific differences in the Q10 or degree of acclimation. -
GROWTH and MAINTENANCE RESPIRATION of PERENNIAL ROOT SYSTEMS in a DRY GRASSLAND DOMINATED by AGROPYRON DASYSTACHYUM (Yiooll,) SCRIBN
New Phytol (1987) 105, 595-603 595 GROWTH AND MAINTENANCE RESPIRATION OF PERENNIAL ROOT SYSTEMS IN A DRY GRASSLAND DOMINATED BY AGROPYRON DASYSTACHYUM (YiOOlL,) SCRIBN. BY E. G. REEKIE AND R. E. REDMANN Department of Crop Science and Plant Ecology, University of Saskatchewan, Saskatoon, Saskatchewan S7N OWO, Canada {Accepted 17 November 1986) SUMMARY Respiration coefficients were determined for laboratory-grown root systems of Agropyron dasystachyum (Hook.) Scribn. (northern wheatgrass). The growth respiration coefficient (0-85 g g~^) was similar to published rates for species from mesic sites. The maintenance coefficient (0-037 g g"^ d~i) was relatively low, suggesting that plants growing in semi-arid habitats have inherently low maintenance costs per unit of biomass. The proportion of total root biomass requiring maintenance (degradable fraction) was determined by measuring the non- structural root biomass. The degradable fraction (0-13) was substantially lower than published measurements of functional (or 'live') biomass, because the latter include structural biomass, which has no maintenance requirement. Respiration parameters, root growth, degradable root fraction, soil temperature and soil moisture were used to construct a model of root respiration in field-grown roots. The maintenance coefficient was adjusted downward during periods of water stress and low temperature when roots probably were dormant. Parameters in the model, particularly the degradable biomass fraction, explained much of the discrepancy between respiration rates of laboratory-grown and field-grown root systems. Maintenance respiration represents a substantial outlay in the carbon budgets of dry grasslands but is lower than expected considering the large root biomass in these systems. Key words: Agropyron dasystachyum (Hook.) Scribn., carbon budget, grassland ecosystem, growth and maintenance respiration, roots. -
Substrate Utilization and Respiration in Relation to Growth and Maintenance Inhighe R Plants
«}] substrate utilization and respiration in relation to growth and maintenance inhighe r plants F.W.T. PENNING DE VRIES N08201.571 substrate utilization and respiration in relation to growth and maintenance inhighe r plants F.W.T. PENNING DE VRIES SUBSTRATEUTILIZATIO NAN DRESPIRATIO N INRELATIO N TOGROWT HAN DMAINTENANC E INHIGHE RPLANT S F.W.T.Pennin gd eVrie s PROEFSCHRIFT TERVERKRIJGIN GVA ND EGRAA D VANDOCTO RI ND ELANDBOUWWETENSCHAPPEN , OPGEZA GVA ND ERECTO RMAGNIFICUS , PROF.DR.IR.H.A . LENIGER, INHE TOPENBAA RT EVERDEDIGE NO P VRIJDAG 21DECEMBE R 1973DE SNAMIDDAG SO MVIE RUU R IND EAUL AVA ND ELANDBOUWHOGESCHOO LT EWAGENINGE N STbLUNJiJt - I - leerboeken iter plantenfyaiologie beaehrijven p.cvoonlijk bet begrip "fotoajmthete" te eng alt tie venting van koolhydraten uit kooleuur en water ottder invioed van lichl. liet ia beter "fatoeynlheae" ce defi- nieren *U de too van alle ayntheaeproceaeen die onder onvloed van lichc in de groene plant gebeuren, en dan de verachillende onderdeien, te weten de reductieve koolcuuraaaiedlatie, de nitraatreductie en bijbehorende proceaaen, en de ayrtthese van diverae polyeeren, afsoo- derlijk aan te duiden. (dit proefschrift) - 2 - Bijbe t bestuderen van adesrtalinp,va n planten behoort invee l grolerc •ate dan tot nu toe §c«vo«m ia,nadru k tewordc n geleed ophaa r func- tionele karakter. (dit prf^eCachrIft ) - %- De anelheid van haterotrofc groel van een plant of orgaan Van eenvou- dig en noo deatructiaf worden afgeteid uit stttingen van de adrchalinpa- snelheid. (dit proc(achrift) - 4 - Met isnie t aogelijk raasetiva n de belangrijkste landbouwgewaaaen te kveken die hun aasiailaten efficienter benutten voorbioaynthea e dan dehuidig e rassen.He t iawe l xinvol te zoeken naar planten die lagere onderhoudakoetenhebbe n dan debeataand e planten,o f te proberen een verlaplng van dexe kosten tebewerkstelligen . -
The Effect of Ultrasound Application and Addition of Leaves in The
a Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/1678-457X.22916 The effect of ultrasound application and addition of leaves in the malaxation of olive oil extraction on the olive oil yield, oxidative stability and organoleptic quality Hafize Ayla SARI1*, Raci EKINCI2 Abstract This research examines the effect of adding olive leaf on the yield and quality of the olive oil extracted from malaxation and ultrasound application during the olive oil extraction process. The olive variety Ayvalık was used in the trials, which included leaf addition of 2% and 5% and ultrasound application of 5, 10, 15, 20, 25, 30, 35, and 40 minutes (min). Several values, such as maturity index and oil yield, as well as olive oil parameters, including free acidity, peroxide value, oxidative stability, and specific ultraviolet absorption, were analyzed and examined. We also carried out sensory analyses on the extracted olive oils. The results show that the product extracted has no sensory defects and exhibits a fruitiness level greater than 0. The research showed that, in terms of yield and quality, a time span of 15 min with addition of 2% olive leaf would provide optimum conditions in ultrasound assisted olive oil extraction with olive leaf addition. The olive oils produced in this process fall into the category of “extra virgin olive oil”. Keywords: olive oil; olive leaves; ultrasound; olive oil quality; sensory analysis. Practical Application: Ultrasound application and leaf addition can be used to increase oil yield and sensory properties. 1 Introduction The olive tree is found in diverse habitats in certain regions different malaxation temperatures and times, can change the in the world, but the Mediterranean basin is the usual habitat content of volatile compounds in the oil (Angerosa et al., 2001; of olive tree, and the species has become naturalized in this Di Giovacchino et al., 2002; Kalua et al., 2006; Ranalli et al., favorable ecological environment (Cronquist, 1981). -
Mediterranean Clonal Selections Evaluated for Modern Hedgerow Olive Oil Production in Spain
UC Agriculture & Natural Resources California Agriculture Title Mediterranean clonal selections evaluated for modern hedgerow olive oil production in Spain Permalink https://escholarship.org/uc/item/4nm4h1b7 Journal California Agriculture, 65(1) ISSN 0008-0845 Authors Tous, Joan Romero, Agusti Hermoso, Juan Francisco et al. Publication Date 2011 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE ▼ Mediterranean clonal selections evaluated for modern hedgerow olive oil production in Spain by Joan Tous, Agusti Romero, Juan Francisco Hermoso and Antonia Ninot Paul M. Vossen M. Paul Traditional olive oil production is limited by its high cost, mainly due to labor expenses for harvesting and pruning. A new olive planting system based on hedgerows and harvesting machines could decrease production costs while maintaining high quality. To improve the effi ciency of the continuousstraddle mechanical harvesters, vigor must be managed to limit tree size. However, few cultivars are adapted to this system. Selections from three cultivars are typically used in these superhigh density orchards. We fi eldtested Olive trees have been cultivated for centuries in Mediterranean climates, including California’s Central Valley (shown). New super-high-density hedgerow systems allow for mechanical ‘Arbequina i18’, ‘Arbosana i43’ harvesting, greatly reducing labor costs. and ‘Koroneiki i38’ in an irrigated, other countries. Clonal selections of varieties — ‘Arbequina’ and ‘Arbosana’ superhighdensity