Phenylhydrazine Hydrochloride Hazard

Total Page:16

File Type:pdf, Size:1020Kb

Phenylhydrazine Hydrochloride Hazard Common Name: PHENYLHYDRAZINE HYDROCHLORIDE CAS Number: 59-88-1 RTK Substance number: 2659 DOT Number: UN 2572 Date: September 1999 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Phenylhydrazine Hydrochloride can affect you when * Exposure to hazardous substances should be routinely breathed in and by passing through your skin. evaluated. This may include collecting personal and area * Contact can irritate and burn the skin and eyes. air samples. You can obtain copies of sampling results * Breathing Phenylhydrazine Hydrochloride can irritate from your employer. You have a legal right to this the nose, throat and lungs causing coughing, wheezing information under OSHA 1910.1020. and/or shortness of breath. * If you think you are experiencing any work-related health * High levels can interfere with the ability of the blood to problems, see a doctor trained to recognize occupational carry Oxygen causing headache, fatigue, dizziness, and a diseases. Take this Fact Sheet with you. blue color to the skin and lips (methemoglobinemia). Higher levels can cause trouble breathing, collapse and WORKPLACE EXPOSURE LIMITS even death. The following exposure limits are for Phenylhydrazine: * Exposure to Phenylhydrazine Hydrochloride can cause headache, nausea, vomiting, lightheadedness, nervousness, OSHA: The legal airborne permissible exposure limit shaking, seizures, and coma. (PEL) is 5 ppm averaged over an 8-hour * Repeated exposure can damage the red blood cells causing workshift. anemia. * Phenylhydrazine Hydrochloride may cause a skin NIOSH: The recommended airborne exposure limit is allergy. If allergy develops, very low future exposure can 0.14 ppm, which should not be exceeded at any cause itching and a skin rash. time. * Phenylhydrazine Hydrochloride may damage the liver and kidneys. ACGIH: The recommended airborne exposure limit is 0.1 ppm averaged over an 8-hour workshift. IDENTIFICATION Phenylhydrazine Hydrochloride is a white to tan solid with * The above exposure limits are for air levels only. When a weak odor. It is used in the manufacture of dyes and skin contact also occurs, you may be overexposed, even pharmaceuticals. though air levels are less than the limits listed above. REASON FOR CITATION WAYS OF REDUCING EXPOSURE * Phenylhydrazine Hydrochloride is on the Hazardous * Where possible, enclose operations and use local exhaust Substance List because it is cited by EPA. ventilation at the site of chemical release. If local exhaust * Definitions are provided on page 5. ventilation or enclosure is not used, respirators should be worn. HOW TO DETERMINE IF YOU ARE BEING * Wear protective work clothing. EXPOSED * Wash thoroughly immediately after exposure to The New Jersey Right to Know Act requires most employers Phenylhydrazine Hydrochloride and at the end of the to label chemicals in the workplace and requires public workshift. employers to provide their employees with information and * Post hazard and warning information in the work area. In training concerning chemical hazards and controls. The addition, as part of an ongoing education and training federal OSHA Hazard Communication Standard, 1910.1200, effort, communicate all information on the health and requires private employers to provide similar training and safety hazards of Phenylhydrazine Hydrochloride to information to their employees. potentially exposed workers. PHENYLHYDRAZINE HYDROCHLORIDE page 2 of 6 This Fact Sheet is a summary source of information of all MEDICAL potential and most severe health hazards that may result from exposure. Duration of exposure, concentration of the Medical Testing substance and other factors will affect your susceptibility to For those with frequent or potentially high exposure (half the any of the potential effects described below. TLV or greater, or significant skin contact), the following are --------------------------------------------------------------------------- recommended before beginning work and at regular times after that: HEALTH HAZARD INFORMATION * Liver and kidney function tests. Acute Health Effects * Complete blood count. The following acute (short-term) health effects may occur immediately or shortly after exposure to Phenylhydrazine If symptoms develop or overexposure is suspected, the Hydrochloride: following are recommended: * Contact can irritate and burn the skin and eyes. * Blood methemoglobin level. * Breathing Phenylhydrazine Hydrochloride can irritate * Evaluation by a qualified allergist, including careful the nose, throat and lungs causing coughing, wheezing exposure history and special testing, may help diagnose and/or shortness of breath. skin allergy. * High levels can interfere with the ability of the blood to carry Oxygen causing headache, fatigue, dizziness, and a Any evaluation should include a careful history of past and blue color to the skin and lips (methemoglobinemia). present symptoms with an exam. Medical tests that look for Higher levels can cause trouble breathing, collapse and damage already done are not a substitute for controlling even death. exposure. * Exposure to Phenylhydrazine Hydrochloride can cause headache, nausea, vomiting, lightheadedness, nervousness, Request copies of your medical testing. You have a legal shaking, seizures, and coma. right to this information under OSHA 1910.1020. Chronic Health Effects Mixed Exposures The following chronic (long-term) health effects can occur at * Because more than light alcohol consumption can cause some time after exposure to Phenylhydrazine Hydrochloride liver damage, drinking alcohol may increase the liver and can last for months or years: damage caused by Phenylhydrazine Hydrochloride. Cancer Hazard WORKPLACE CONTROLS AND PRACTICES * There is limited evidence that Phenylhydrazine Hydrochloride causes cancer in animals. It may cause Unless a less toxic chemical can be substituted for a hazardous leukemia. substance, ENGINEERING CONTROLS are the most * Many scientists believe there is no safe level of exposure effective way of reducing exposure. The best protection is to to a carcinogen. Such substances may also have the enclose operations and/or provide local exhaust ventilation at potential for causing reproductive damage in humans. the site of chemical release. Isolating operations can also reduce exposure. Using respirators or protective equipment is Reproductive Hazard less effective than the controls mentioned above, but is * According to the information presently available to the sometimes necessary. New Jersey Department of Health and Senior Services, Phenylhydrazine Hydrochloride has not been tested for In evaluating the controls present in your workplace, consider: its ability to affect reproduction. (1) how hazardous the substance is, (2) how much of the substance is released into the workplace and (3) whether Other Long-Term Effects harmful skin or eye contact could occur. Special controls * Repeated exposure can damage the red blood cells causing should be in place for highly toxic chemicals or when anemia. significant skin, eye, or breathing exposures are possible. * Phenylhydrazine Hydrochloride may cause a skin allergy. If allergy develops, very low future exposure can In addition, the following control is recommended: cause itching and a skin rash. * Phenylhydrazine Hydrochloride may damage the liver * Where possible, automatically transfer Phenylhydrazine and kidneys. Hydrochloride from drums or other storage containers to process containers. PHENYLHYDRAZINE HYDROCHLORIDE page 3 of 6 Good WORK PRACTICES can help to reduce hazardous * Wear a face shield along with goggles when working with exposures. The following work practices are recommended: corrosive, highly irritating or toxic substances. * Workers whose clothing has been contaminated by Respiratory Protection Phenylhydrazine Hydrochloride should change into IMPROPER USE OF RESPIRATORS IS DANGEROUS. clean clothing promptly. Such equipment should only be used if the employer has a * Do not take contaminated work clothes home. Family written program that takes into account workplace conditions, members could be exposed. requirements for worker training, respirator fit testing and * Contaminated work clothes should be laundered by medical exams, as described in OSHA 1910.134. individuals who have been informed of the hazards of exposure to Phenylhydrazine Hydrochloride. * Where the potential exists for exposure over 0.14 ppm (as * Eye wash fountains should be provided in the immediate Phenylhydrazine), use a MSHA/NIOSH approved work area for emergency use. supplied-air respirator with a full facepiece operated in a * If there is the possibility of skin exposure, emergency pressure-demand or other positive-pressure mode. For shower facilities should be provided. increased protection use in combination with an auxiliary * On skin contact with Phenylhydrazine Hydrochloride, self-contained breathing apparatus operated in a pressure- immediately wash or shower to remove the chemical. At demand or other positive-pressure mode. the end of the workshift, wash any areas of the body that may have contacted Phenylhydrazine Hydrochloride, HANDLING AND STORAGE whether or not known skin contact has occurred. * Do not eat, smoke, or drink where Phenylhydrazine * Prior to working with Phenylhydrazine Hydrochloride Hydrochloride is handled, processed, or stored, since the you should be trained on its proper handling and storage. chemical can be swallowed.
Recommended publications
  • Supporting Information For
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supporting Information for: 2- Quadruple-CO3 Bridged Octanuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behaviour Experimental Section Synthetic procedures All chemicals were of reagent grade and were used without any further purification. Synthesis of pyrazine-2-carbohydrazide The pyrazine-2-carboxylic acid methyl ester was prepared by a literature procedure described elsewhere. A mixture of pyrazine-2-carboxylic acid methyl ester (1.38 g, 10 mmol) and hydrazine hydrate (85%, 15 ml) in methanol (20 ml) was refluxed overnight, at a temperature somewhat below 80°C. The resulting pale-yellow solution set aside 12 hrs. During this period, a colorless product, i.e. pyrazine-2-carbohydrazide, precipitated from the reaction mixture as a crystalline solid (yield = 0.84 g, 61%). Synthesis of (E)-N'-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide Pyrazine-2-carbohydrazide (2 mmol, 0.276 g) was suspended together with o-vanillin (2 mmol, 0.304 g) in methanol (20 ml), and the resulting mixture was stirred at the room temperature overnight. The pale yellow solid was collected by filtration (yield = 0.56 g, 83%). Elemental analysis (%) calcd for C13H12N4O3: C, 57.35, H, 4.44, N, 20.58: found C, 57.64, H, 4.59, N, 20.39. IR (KBr, cm-1): 3415(w), 3258(w), 1677(vs), 1610(s), 1579(m). 1530(s), 1464(s), 1363(m), 1255(vs), 1153(s), 1051(w), 1021(s), 986(w), 906(m), 938(w), 736(s), 596(m), 498(w). Synthesis of the complex 1 The solution of DyCl3⋅6H2O (56.5 mg, 0.15 mmol) and the H2L (40.5 mg, 0.15 mmol) in 15 ml CH3OH/CH2Cl2 (1:2 v/v) was stirred with triethylamine (0.4 mmol) for 6h.
    [Show full text]
  • Monoamine Oxydases Et Athérosclérose : Signalisation Mitogène Et Études in Vivo
    UNIVERSITE TOULOUSE III - PAUL SABATIER Sciences THESE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE TOULOUSE III Discipline : Innovation Pharmacologique Présentée et soutenue par : Christelle Coatrieux le 08 octobre 2007 Monoamine oxydases et athérosclérose : signalisation mitogène et études in vivo Jury Monsieur Luc Rochette Rapporteur Professeur, Université de Bourgogne, Dijon Monsieur Ramaroson Andriantsitohaina Rapporteur Directeur de Recherche, INSERM, Angers Monsieur Philippe Valet Président Professeur, Université Paul Sabatier, Toulouse III Madame Nathalie Augé Examinateur Chargé de Recherche, INSERM Monsieur Angelo Parini Directeur de Thèse Professeur, Université Paul Sabatier, Toulouse III INSERM, U858, équipes 6/10, Institut Louis Bugnard, CHU Rangueil, Toulouse Résumé Les espèces réactives de l’oxygène (EROs) sont impliquées dans l’activation de nombreuses voies de signalisation cellulaires, conduisant à différentes réponses comme la prolifération. Les EROs, à cause du stress oxydant qu’elles génèrent, sont impliquées dans de nombreuses pathologies, notamment l’athérosclérose. Les monoamine oxydases (MAOs) sont deux flavoenzymes responsables de la dégradation des catécholamines et des amines biogènes comme la sérotonine ; elles sont une source importante d’EROs. Il a été montré qu’elles peuvent être impliquées dans la prolifération cellulaire ou l’apoptose du fait du stress oxydant qu’elles génèrent. Ce travail de thèse a montré que la MAO-A, en dégradant son substrat (sérotonine ou tyramine), active une voie de signalisation mitogène particulière : la voie métalloprotéase- 2/sphingolipides (MMP2/sphingolipides), et contribue à la prolifération de cellules musculaire lisses vasculaires induite par ces monoamines. De plus, une étude complémentaire a confirmé l’importance des EROs comme stimulus mitogène (utilisation de peroxyde d’hydrogène exogène), et a décrit plus spécifiquement les étapes en amont de l’activation de MMP2, ainsi que l’activation par la MMP2 de la sphingomyélinase neutre (première enzyme de la cascade des sphingolipides).
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/Ceo2: Effect of Reaction Parameters on the Activity
    nanomaterials Article Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity Davide Motta 1, Ilaria Barlocco 2 , Silvio Bellomi 2, Alberto Villa 2,* and Nikolaos Dimitratos 3,* 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; [email protected] 2 Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (I.B.); [email protected] (S.B.) 3 Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy * Correspondence: [email protected] (A.V.); [email protected] (N.D.) Abstract: In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime. Citation: Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Keywords: iridium; cerium oxide; hydrous hydrazine; hydrogen production Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • Silybum Marianum (Milk Thistle) Flower in Vitro and on Human Explants
    Molecules 2015, 20, 3549-3564; doi:10.3390/molecules20033549 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Anti-Glycation Activities of Phenolic Constituents from Silybum marianum (Milk Thistle) Flower in Vitro and on Human Explants Seoungwoo Shin, Jung-A Lee, Minkyung Kim, Hyunwoo Kum, Eunsun Jung * and Deokhoon Park * Biospectrum Life Science Institute, Eines Platz 11th FL, 442-13 Sangdaewon Dong, Seoungnam City, Gyunggi Do 462-807, Korea; E-Mails: [email protected] (S.S.); [email protected] (J.-A.L.); [email protected] (M.K.); [email protected] (H.K.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (E.J.); [email protected] (D.P.); Tel.: +82-31-750-9400 (E.J. & D.P.); Fax: +82-31-750-9494 (E.J. & D.P.). Academic Editor: Derek J. McPhee Received: 25 November 2014 / Accepted: 15 February 2015 / Published: 19 February 2015 Abstract: Glycation is an ageing reaction of naturally occurring sugars with dermal proteins, with clinical signs appearing in vivo around age 30, and increasing steadily/regularly with age. The suppleness of the dermis is affected by the formation of bridges between proteins and sugars (Maillard’s reaction). The accumulation of advanced glycation end products (AGEs) in skin plays a very important role in skin ageing. Therefore, natural compounds or extracts that possess antiglycation activities may have great anti-ageing potential. In the present study, Silybum marianum flower extract (SMFE) was demonstrated to possess antiglycation activity. We found that SMFE inhibits glycation reaction between BSA and glucose. In addition, antiglycation activity of SMFE was confirmed in a human skin explants model.
    [Show full text]
  • Toxicological Profile for Hydrazines. US Department Of
    TOXICOLOGICAL PROFILE FOR HYDRAZINES U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 1997 HYDRAZINES ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. HYDRAZINES iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 HYDRAZINES vii CONTRIBUTORS CHEMICAL MANAGER(S)/AUTHOR(S): Gangadhar Choudhary, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Hugh IIansen, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Steve Donkin, Ph.D. Sciences International, Inc., Alexandria, VA Mr. Christopher Kirman Life Systems, Inc., Cleveland, OH THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 1 . Green Border Review. Green Border review assures the consistency with ATSDR policy. 2 . Health Effects Review. The Health Effects Review Committee examines the health effects chapter of each profile for consistency and accuracy in interpreting health effects and classifying end points. 3. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to substance-specific minimal risk levels (MRLs), reviews the health effects database of each profile, and makes recommendations for derivation of MRLs. HYDRAZINES ix PEER REVIEW A peer review panel was assembled for hydrazines. The panel consisted of the following members: 1. Dr.
    [Show full text]
  • Synthetic and Naturally Occurring Hydrazines As Possible Cancer Causative Agents
    [CANCER RESEARCH 35, 3693-3697 December 1975] Synthetic and Naturally Occurring Hydrazines as Possible Cancer Causative Agents Bela Toth' The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68105 SUMMARY SYNTHETIC HYDRAZINES The various synthetic substituted hydrazines, which cause tumors in animals, are briefly enumerated. To date, 19 of Studies on the carcinogenic potentialities of synthetic them have proved to be tumorigenic in animals. A number substituted hydrazines began in 1962, when it was shown of these chemicals are found today in the environment, in that the base compound hydrazine sulfate induced lung industry, in agriculture, and in medicine, and the human neoplasms in mice (1). Subsequently, a series of hydrazine population is exposed to a certain degree to some of them. derivatives were investigated in various laboratories for Hydrazine also occurs in nature in tobacco and tobacco tumor-inducing capabilities. These studies clearly demon smoke. The three other naturally occurring hydrazine strated that these chemicals are indeed powerful tumori compounds are N-methyl-N-formylhydrazine, which oc genic substances in mice, hamsters, and rats, due to their curs in the wild edible mushroom, Gyromitra esculenta, tumor-inducing abilities in the intestines, brain, lungs, and @-N-[―y-L(+)-glutamylJ-4-hydroxymethylphenyl blood vessels, liver, breasts, kidneys, etc. Now, we know of hydrazine and 4-hydroxymethylphenylhydrazine, whkh 19 hydrazine derivatives that have been shown to be tumor are found in the commonly eaten cultivated mushroom, inducers. These include, in addition to hydrazine (1, 32), Agaricus bisporus. Tumorigenesis studies with the natu methyl- (35, 40), 1,2-dimethyl- (6, 27, 36, 46, 52), 1,1- rally occurring hydrazines are in progress.
    [Show full text]
  • Receptor Antagonist
    Europäisches Patentamt *EP001604983A1* (19) European Patent Office Office européen des brevets (11) EP 1 604 983 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: C07D 217/26, C07D 403/06, 14.12.2005 Bulletin 2005/50 C07D 403/12, C07D 491/113, A61K 31/472, A61K 31/4741, (21) Application number: 04721010.9 A61P 43/00, A61P 29/00, (22) Date of filing: 16.03.2004 A61P 35/00, A61P 15/00, A61P 15/08, A61P 15/10, A61P 15/14, A61P 37/00, A61P 5/48, A61P 3/10, A61P 3/02, A61P 3/06, A61P 17/00, A61P 19/02, A61P 19/08 (86) International application number: PCT/JP2004/003496 (87) International publication number: WO 2004/083184 (30.09.2004 Gazette 2004/40) (84) Designated Contracting States: • HINUMA, Shuji AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tsukuba-shi, Ibaraki 3050821 (JP) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • KANZAKI, Naoyuki, c/o Takeda Pharmaceutical Designated Extension States: Yodogawa-ku, Osaka-shi, Osaka (JP) AL LT LV MK • BANNO, Yoshihiro, c/o Takeda Pharmaceutical Yodogawa-ku, Osaka-shi, Osaka (JP) (30) Priority: 17.03.2003 JP 2003072709 • YOSHIDA, Hiromi Yuki-gun, Ibar aki 3002741 (JP) (71) Applicant: Takeda Pharmaceutical Company • MATSUMOTO, Hirokazu Limited Tsukuba-shi, Ibaraki 3050821 (JP) Osaka 541-0045 (JP) (74) Representative: Rickard, Timothy Mark Adrian (72) Inventors: Takeda Euro IP Department, • ITOH, Fumio 11-12 Charles II Street Tsukuba-shi, Ibaraki 3050821 (JP) London SW1Y 4QU (GB) (54) RECEPTOR ANTAGONIST (57) A compound represented by
    [Show full text]
  • Dihydrazides - the Versatile Curing Agent for Solid Dispersion Systems
    Dihydrazides - The Versatile Curing Agent for Solid Dispersion Systems Abe Goldstein A&C Catalysts, Inc Abstract This paper will introduce dihydrazides, a relatively obscure class of curing agents useful in virtually all thermoset resin systems. First described in 1958, by Wear, et al.(1) dihydrazides are useful curing agents for epoxy resins, chain extenders for polyurethanes, and excellent crosslinking agents for acrylics. In one-part epoxy systems, depending on the backbone chain of the chosen dihydrazide, Tg's over 150°C and pot life over 6 months as cure time of less than a minute can be seen. In acrylic emulsions, dihydrazides can be dissolved into the water phase and serve as an additional crosslinker, as the emulsion coalesces and cures. As a chain extender for poylurethanes, dihydrazides can be used to increase toughness and reduce yellowing. Introduction O O | | | | Dihydrazides are represented by the active group: H2NHNC(R) CNHNH2, where R is can be any polyvalent organic radical preferably derived from a carboxylic acid. Carboxylic acid esters are reacted with hydrazine hydrate in an alcohol solution using a catalyst and a water extraction step. The most common dihydrazides include adipic acid dihydrazide (ADH), derived from adipic acid, sebacic acid dihydrazide (SDH), valine dihydrazide (VDH), derived from the amino acid valine, and isophthalic dihydrazide (IDH). The aliphatic R group can be of any length. For example, when R group is just carbon, the resulting compound is carbodihydrazide (CDH), the fastest dihydrazide. Or R as long as C-18 has been reported as in icosanedioic acid dihydrazide (LDH). Some of the more common dihydrazides are represented in Figure 1.
    [Show full text]
  • Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds
    Fluid Phase Behavior from Molecular Simulation: Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds Ekaterina Elts1, Thorsten Windmann1, Daniel Staak2, Jadran Vrabec1 ∗ 1 Lehrstuhl f¨ur Thermodynamik und Energietechnik, Universit¨at Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 2 Lonza AG, Chemical Research and Development, CH-3930 Visp, Switzerland Keywords: Molecular modeling and simulation; vapor-liquid equilibrium; Henry’s law constant; Hy- drazine; Monomethylhydrazine; Dimethylhydrazine; Argon; Nitrogen; Carbon Monoxide; Ammonia; Water Abstract New molecular models for Hydrazine and its two most important methylized derivatives (Monomethyl- hydrazine and Dimethylhydrazine) are proposed to study the fluid phase behavior of these hazardous compounds. A parameterization of the classical molecular interaction models is carried out by using quan- tum chemical calculations and subsequent fitting to experimental vapor pressure and saturated liquid density data. To validate the molecular models, vapor-liquid equilibria for the pure hydrazines and binary hydrazine mixtures with Water and Ammonia are calculated and compared with the available experimen- tal data. In addition, the Henry’s law constant for the physical solubility of Argon, Nitrogen and Carbon Monoxide in liquid Hydrazine, Monomethylhydrazine and Dimethylhydrazine is computed. In general, the simulation results are in very good agreement with the experimental data. ∗ corresponding author, tel.: +49-5251/60-2421, fax: +49-5251/60-3522, email: [email protected] 1 1 Introduction On October 24, 1960, the greatest disaster in the history of rocketry, now also known as Nedelin disaster, occurred [1–3]. At that time, the Soviet newspapers published only a short communique informing that Marshall of Artillery Mitrofan Nedelin has died in an airplane crash.
    [Show full text]
  • 1-Alkyl--1-Phenylhydraz Ines: Their Synthesis And
    1-ALKYL--1-PHENYLHYDRAZ INES: THEIR SYNTHESIS AND OXIDATIVE REARRANGEMENT LACELAN MACLEAN B.Sc. Ph.D. Chemistry UNIVERSITY OF EDINBURGH 1977 To Irod parents ACKNOWLEDGEMENTS I would like to express my gratitude to Dr. A.J. Bellamy for his advice, encouragement. and assistance throughout the duration of this study. I also thank the staff and fellow students of the Chemistry Department for their general helpfulness: in particular Dr. E. Stefaniuk and Mr. C.D. Anderson for supplying samples of 2-forxnylstilbene and pent-3-en-2--one respectively, and Mrs. J. Gorrie for her care in typing this thesis. Finally, I thank the Science Research Council for financial support. L.M. I have composed this thesis which describes my own work. Where the work of other authors is referred to, this is clearly indicated. ABSTRACT OF THESIS Some historical aspects of the oxidation reactions of 1,1-disub- stituted hydrazines are reviewed. In particular, the evidence for the proposed intermediacy of diazenes in these reactions is outlined and the nature of the oxidation products is considered in the broader context of diazene-generating reactions. The synthesis of l-alkyl-l-phenylhydrazines has been examined and several preparative procedures are discussed. The alkylation of the sodium salt of phenyihydrazine with the appropriate alkyl halides was found to be the most successful method; the hydrazines prepared in this way all had substituents of the allylic type. Purification (to remove residual phenyihydrazine) can be achieved by selective recrystallisation of the hydrochloride derivative from benzene. Some limitations of this general method are described. The oxidation studies were carried out using lead tetra-acetate and mercuric oxide.
    [Show full text]