A STUDY of ENGINEERING EDUCATION Googie

Total Page:16

File Type:pdf, Size:1020Kb

A STUDY of ENGINEERING EDUCATION Googie rii kol #168 E CARNEGIE FOUNDATION OR THE ADVANCEMENT OF TEACHING A STUDY OF ENGINEERING EDUCATION BY CHARLES RIBORG MANN BULLETIN NUMBER ELEVEN 1918 • Digitized by GoogIe A STUDY OF ENGINEERING EDUCATION PREPARED FOR THE JOINT COMMITTEE ON ENGINEERING EDUCATION OF THE NATIONAL ENGINEERING SOCIETIES BY CHARLES RIBORG MANN BULLETIN NUMBER ELEVEN e NEW YORK CITY 576 FIFTH AVENUE Digitized by Google D. B. UPDIKE • THE MERRYMOUNT PRESS • BOSTON Digitized by G4 le CONTENTS PAGE PREFACE V By the PRESIDENT OF THE CARNEGIE FOUNDATION INTRODUCTION 1X By the JOINT COMMITTEE ON ENGINEERING EDUCATION of the National Engi- neering Societies PART I PRESENT CONDITIONS CHAPTER I. The Development of Engineering Schools in the United States 8 II. Aims and Curricula of the Early Schools 9 III. The Struggle for Resources and Recognition 15 IV. Development of the Curriculum into its Present Form 21 V. Methods of Administration in Engineering Schools 27 VI. Student Elimination and Progress 82 VII. Types of Instruction in Engineering Schools 87 PART II THE PROBLEMS OF ENGINEERING EDUCATION VIII. Admission 47 IX. The Time Schedule 54 X. Content of Courses 60 XI. Testing and Grading 67 XII. Shopwork 75 PART III SUGGESTED SOLUTIONS XIII. The Curriculum 87 XIV. Specialization 95 XV. Teachers 101 X VI. The Professional Engineer 106 Digitized by Google iv CONTENTS APPENDIX Objective Tests 117 SELECTED BIBLIOGRAPHY 127 INDEX 131 Digitized by GoOgle PREFACE THE present bulletin has been prepared under conditions somewhat different from other publications and bulletins of the Carnegie Foundation. This study of Engineer- ing Education arose out of the action of a joint committee on engineering education, representing the principal engineering societies. More than three years ago the Com- mittee had gathered a considerable amount of material bearing on the subject, and had come to the opinion that the work could be best carried out by the employment of some one trained in applied science, who should devote his entire attention to the study, working under the general direction of the Committee and in touch with it. The Carnegie Foundation agreed to appoint such a man and to bear the expense of the study. Professor Charles R. Mann, of the University of Chicago, undertook the work under these conditions, and the report which follows is the outcome of his studies under the general supervision of the Committee. The discussion of Professor Mann's report by the Committee forms the introductory chapter. It will be understood that the report did not contemplate a study or examination of the engineering schools of the United States, altho a limited number of typical schools were visited and studied by Professor Mann. The point of view from which the study was undertaken was the following: Fifty years ago, when the engineering schools of the United States were inaugurated, they began their work upon a definite teaching plan and one that had at least pedagogic consistency. The course was four years. The first two were spent mainly in the fundamental sciences—chemistry, phy- sics, mathematics, and mechanics; the last two years mainly in the applications of these sciences to theoretical and practical problems. In the half century that has passed this course of study has been overlaid with a great number of special studies intended to enable the student to deal with the con- stantly growing applications of science to the industries. While the original teaching plan remains as the basis of the four-year engineering curriculum, the courses given in most schools have been greatly modified in the effort to teach special subjects. As a result, the load upon the student has become continually heavier and bears unequally in different places and in different parts of the course. In addition there is a wide- spread feeling that under this pressure the great body of students fail to gain, on the one hand, a satisfactory grounding in the fundamental sciences; and on the other hand, do not fulfil the expectations of engineers and manufacturers in dealing with the practical problems with which they are confronted on leaving the engineering schools. It is out of this situation that the Committee of the Engineering Societies began its study, whose purpose is not so much to record the details of engineering teaching in the various schools as to examine the fundamental question of the right methods of teaching and of the preparation of young men for the engineering professions: in other words, to question anew the pedagogic solution of fifty years ago, to examine Digitized by Google n vi PREFACE the curriculum of to-day and the methods of teaching now employed, and to suggest in the light of fifty years of experience the pedagogic basis of the course of study intended to prepare young men for the work demanded of the engineer of to-day. In the effort to do this, the point of view of the teacher, of the engineer, and of the manufacturer and employer has been kept in view. While the report and the introduction of the Committee deal with many matters of detail in the formation and development of a suitable curriculum, and suggest vari- ous methods for simplifying the present courses of study, three questions of impor- tance are raised which are closely related to the primary purpose for which the engi- neering school exists. Professor Mann argues that the present arrangement, under which the fundamental sciences are taught in advance of their applications, is the wrong method of teaching, and that the engineering education will never be satisfactory until theory and prac- tice are taught simultaneously. For example, mathematics is the most important tool of the engineer. It is taught for two years in the engineering school in separate courses—higher algebra, coiirdi- nate geometry, the calculus, and mechanics. The splitting up of mathematics into sepa- rate courses is itself a source of weakness from the standpoint of the student's needs. He needs not studies nor recitations in these artificial divisions of mathematics, but a single course in mathematics illuminated and made alive at every step by applica- tions in the solutions of actual problems. Algebra, coordinate geometry, and the cal- culus are not separate and unrelated studies, but merely parts of the one subject of mathematics. As a consequence of this method of teaching Professor Mann urges that the engi- neering courses, as taught in the preliminary years, do not form sound criteria for judg- ing as to the ability of the student to do successful engineering work, and that many students are sent away from the technical school without having had any fair test as to their capacity for engineering practice or study. In the third place he gives the results of certain objective tests designed to throw light upon the fitness of the applicant to undertake engineering studies and practice. It is quite clear that the trial of these tests made hitherto is not sufficient to demon- strate their trustworthiness, but the question raised is an exceedingly interesting one. There are few devices connected with teaching more unsatisfactory than our present day examinations, whether used as tests for admission or as criteria of performance on the part of the student. In general these suggestions of Professor Mann, if carried out, would affect present day teaching of engineering in much the same way that Langdell's case method revo- lutionized the teaching of law. Langdell built the teaching of law exclusively and directly upon the study of cases. His notion was that the principles upon which the law rests are few in number, and that these could be best apprehended and mastered by the student in the direct Digitized by Gopgle PREFACE vii examination of typical cases. The number of such cases necessary to illustrate these principles he held to be very small in comparison with the overwhelming mass of law reports to which the student had formerly been directed as the basis of the study of the law in conjunction with textbooks. Langdell's method involved the working out by the student of the principles of the law from actual cases tried and decided in the courts. Law he conceived of as an Applied Science. Langdell's method is not infrequently referred to as the laboratory method of teaching law, conveying the impression that the case method of teaching law con- 'sists in transferring to the teaching of law the methods employed in the teaching of applied science. This statement has been the cause of no little confusion. The teach- ing of law by the case method presents only a remote analogy with the methods hitherto employed in teaching applied science. Applied science is not taught ordi- narily in the engineering school by the case method. On the contrary, the methods actually employed in teaching the so-called laboratory subjects do not differ appre- ciably from the methods of teaching literature or Latin. At present the student un- dertakes to learn a vast body of theory under the name of physics, mechanics, or chem- istry, illustrated in some measure in the laboratory, and then seeks later to select from this mass of knowledge the principles to be applied, for example in electrical engineering. The case method would proceed in directly the opposite manner. Taking up, for example, the dynamo as a "case,"—that is, as an illustration of physical laws in their actual concrete working,—it would proceed to analyze the machine for the purpose of discovering the fundamental physical or mechanical principles involved in its operation. It would lead the student from practical applications by analysis to a comprehension of theory, instead of from theory to applications as under present methods of teaching.
Recommended publications
  • Advances in Engineering Education
    Advances in Engineering Education WINTER 2016 Guest Editorial: Entrepreneurship and Innovation in Engineering Education PHIL WEILERSTEIN VentureWell Hadley, MA AND TOM BYERS Stanford University Palo Alto, CA BACKGROUND AND CONTEXT This special issue of Advances in Engineering Education offers a selected group of papers that address key issues and questions in the development of Innovation and Entrepreneurship education for engineering students. The eight papers here present a useful and applied perspective on program construction, evaluation, impact and perspectives on how a focus on innovation and entrepreneurial learning can influence engagement and expand student participation. We solicited papers on the topic from the engineering education community and received 31 abstracts, 17 authors were invited to submit full papers for review ultimately yielding the eight papers selected for publication here. Advances in Engineering Education’s online format provides a rich forum for the documentation of effective examples of practice and research, supported by access to multimedia. We hope that this issue will prove useful to those already engaged in this field as well as those who are seeking effective models to develop and pursue. In this introductory essay we provide an overview of the growth of this dimension of engineering education, the development of the communities and organizations that have emerged to support it, and identify issues that the field faces as innovation and entrepreneurship become more ubiquitous in engineering education. THE INNOVATION AND ENTREPRENEURSHIP IMPERATIVE FOR ENGINEERING EDUCATION In recent decades focus has increased dramatically on technological innovation and entrepreneur- ship as fundamental drivers of American prosperity and global economic leadership.
    [Show full text]
  • Maximizing Manufacturing Margins with Value Engineering Balancing Cost Reduction, Process Improvement, and Product Value
    Maximizing Manufacturing Margins with Value Engineering Balancing Cost Reduction, Process Improvement, and Product Value Manufacturers large and small all hope to achieve the same thing: manufacture more products, with higher margins. Of course, in order to build a lasting business, you need to keep customers satisfied, meaning the quality of products must remain high when you make moves to reduce costs. The best way to reduce costs and improve processes without diminishing the quality of your product is through a process called Value Engineering. Value Engineering is a process used by companies across the globe to ensure product functionality is maximized while costs are minimized. By incorporating Value Engineering into your product development process, you’ll reduce costs, increase margins, and establish a smarter way to determine which new products justify the investment to bring them to market. FortéOne has been helping middle market companies conduct a value analysis and implement Value Engineering in their organizations for 20 years. By leveraging the experience of our people, who have installed Value Engineering in companies across many industries, we have developed a four-step process for incorporating Value Engineering into middle market organizations that avoids the most common challenges companies face during its implementation. Explained below are the lessons we have learned. What is Value Engineering? Value Engineering starts with product value. Product value is the ratio of product function to product cost (including the purchase of raw materials and packaging, logistics and shipping costs, overhead and manpower, and line efficiency). Product function is the work a product is designed to perform.
    [Show full text]
  • Klagenfurt School of Engineering Pedagogy by Adolf Melezinek As
    PAPER KLAGENFURT SCHOOL OF ENGINEERING PEDAGOGY BY ADOLF MELEZINEK AS THE BASIS OF TEACHING ENGINEERING Klagenfurt School of Engineering Pedagogy by Adolf Melezinek as the Basis of Teaching Engineering http://dx.doi.org/10.3991/ijep.v6i3.5949 Tiia Rüütmann, Hants Kipper Tallinn University of Technology, Tallinn, Estonia Abstract—Engineering Pedagogy is an interdisciplinary spiritual scientific beginning during which methods based scientific subject and an essential element of the system of upon phenomenological understanding were applied in engineering education. The article is dedicated to the work order to get insight into the components of the instruction of Adolf Melezinek, the founder of Engineering Pedagogy process. The other stream is represented by scientists who and the main principles of Kalgenfurt School of Engineer- basically created the cybernetic beginning during which ing Pedagogy. Curriculum design and technical teacher calculation methods dominated. Although both the education in Estonia is based on Melezinek’s work. A deci- streams comprise a wide range of schools, they share sion-making model by Urve Läänemets, closely connected to certain key ideas which, at the same time, distinguish Melezinek’s work and the Model of Flexible Technical them from each other [3]. Teacher Education and contemporary methodology are The traditional, classical pedagogy did not meet specif- introduced. ic needs when used for education of engineers striving for Index Terms—engineering pedagogy; technical teacher the teaching profession. This was proved by experiences education; model; curriculum; teaching engineering. of different countries. The discrepancy was solved by setting up of special engineering-pedagogical institutes at some technical universities. The term “Ingenieurpädagog- I.
    [Show full text]
  • Global State of the Art in Engineering Education
    The global state of the art in engineering education The global state of the art in engineering education MARCH 2018 DR RUTH GRAHAM z Executive summary i The global state of the art in engineering education Copyright © 2018 by Massachusetts Institute of Technology (MIT) All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher, addressed “Attention: Permissions Coordinator,” at the address below. Printed in the United States of America First Printing, 2018 ISBN 13: 9780692089200 New Engineering Education Transformation Massachusetts Institute of Technology 77 Massachusetts Avenue Room 1-229B Cambridge, MA 02139 USA neet.mit.edu i The global state of the art in engineering education Executive summary The study considers the global state of the art in engineering undergraduate education. It was undertaken to inform Massachusetts Institute of Technology’s (MIT) New Engineering Education Transformation (NEET), an initiative charged with developing and delivering a world-leading program of undergraduate engineering education at the university. The study was structured in two phases, both of which used one-to-one interviews as the primary evidence gathering tool: Phase 1 conducted between September and November 2016, Phase 1 provided a snapshot of the cutting edge of global engineering education and a horizon scan of how the state of the art is likely to develop in the future.
    [Show full text]
  • Mining Engineering 1
    Mining Engineering 1 Learn more about the bachelor’s degree in mining engineering (https:// MINING ENGINEERING uaf.edu/academics/programs/bachelors/mining-engineering.php), including an overview of the program, career opportunities and more. B.S. Degree College of Engineering and Mines As the nation’s northernmost accredited mining engineering program, Department of Mining and Geological Engineering (https://cem.uaf.edu/ our mission is to advance and disseminate knowledge for exploration, mingeo/) evaluation, development and efficient production of mineral and energy 907-474-7388 resources with assurance of the health and safety of persons involved and protection of the environment, through creative teaching, research Programs and public service with an emphasis on Alaska, the North and its diverse peoples. Degree • B.S., Mining Engineering (http://catalog.uaf.edu/bachelors/ The mining engineering program emphasizes engineering as it applies bachelors-degree-programs/mining-engineering/bs/) to the exploration and development of mineral resources and the economics of the business of mining. The program offers specializations in exploration, mining or mineral beneficiation. Minor • Minor, Mining Engineering (http://catalog.uaf.edu/bachelors/ Students are prepared for job opportunities with mining and construction bachelors-degree-programs/mining-engineering/minor/) companies, consulting and research firms, equipment manufacturers, investment and commodity firms in the private sector, as well as with state and federal agencies. The mining engineering program educational objectives are to graduate competent engineers who: • apply their engineering skills and knowledge with consideration to health, safety and the environment, • pursue careers in mineral-related industries, • are active among the local and professional mining communities, and • seek professional advancement of mining engineering technology and practices.
    [Show full text]
  • University of Alberta
    -------f.,SJ ------=-------department ) UNIVERSITY OF ALBERTA Tradition I I ! • • I I I I I I I I I I I I I I I I I I I I I i I I and I I I I I j I I j 1, I I I I I I I I j I I I I I I I I Innovation I I I I , t ' I '-~-· 'I Chemical & Materials Engineering Building J. FRASER FORBES, SIEGHARD E. WANKE University ofAlberta • Edmonton, Alberta, Canada T6G 2G6 hemical engineering has played a key role in the the 1940s and the beginning of large-scale commercial de­ development of Canada's oil and gas and associated velopment of the oil sands in the 1970s had major impacts C petrochemical industries, and chemical engineering on chemical engineering education in Alberta. The evolution at the University of Alberta (UofA) has been an integral part and current state of the chemical engineering program, with of the growth of the petrochemical industry in western some gazing into the future, make up the heart of this article. Canada. The UofA is located in Edmonton, capital city of the Province of Alberta. The western part of the province is HISTORY part of the majestic Canadian Rockies - The Continental The UofA opened for classes in 1908, about three years Divide makes up a significant part of the western border after the western part of the Northwest Territories of Canada between Alberta and British Columbia. The southeastern became the Province of Alberta. The UofA campus is lo­ part of the province is part of the Canadian Prairies, while cated on the south bank of the North Saskatchewan River, the north is part of Canada's extensive boreal forest.
    [Show full text]
  • Examining Student and Teacher Talk Within Engineering Design in Kindergarten
    European Journal of STEM Education, 2018, 3(3), 10 ISSN: 2468-4368 Examining Student and Teacher Talk Within Engineering Design in Kindergarten Kristina M. Tank 1*, Anastasia M. Rynearson 2, Tamara J. Moore 3 1 Iowa State University, 0624C Lagomarcino, 901 Stange Rd, 50011 Ames, USA 2 Campbell University, USA 3 Purdue University, USA *Corresponding Author: [email protected] Citation: Tank, K. M., Rynearson, A. M. and Moore, T. J. (2018). Examining Student and Teacher Talk Within Engineering Design in Kindergarten. European Journal of STEM Education, 3(3), 10. https://doi.org/10.20897/ejsteme/3870 Published: September 6, 2018 ABSTRACT Quality science, technology, engineering, and mathematics (STEM) experiences during the early years provide young learners with a critical foundation for future learning and development. Engineering design is a context that can be used to facilitate connections and learning across STEM, however there is limited research examining the use of engineering design-based STEM integration within the early childhood classroom. This study examines how an engineering design-based STEM integration unit was enacted across three kindergarten classrooms. Classroom observation and video data were collected and a coding scheme was used to document the ways that engineering and engineering design were enacted as well as the role of the teacher and students within the lessons. Results suggest that kindergarten students were able to meaningfully engage in and with multiple stages of an engineering design process while also building understanding of scientists and engineers related to teacher and student interactions, there were multiple instances of student-initiated talk, student to student response, the use of explicit engineering language and of students making connections to prior learning.
    [Show full text]
  • Engineering Merit Badge Workbook This Workbook Can Help You but You Still Need to Read the Merit Badge Pamphlet
    Engineering Merit Badge Workbook This workbook can help you but you still need to read the merit badge pamphlet. This Workbook can help you organize your thoughts as you prepare to meet with your merit badge counselor. You still must satisfy your counselor that you can demonstrate each skill and have learned the information. You should use the work space provided for each requirement to keep track of which requirements have been completed, and to make notes for discussing the item with your counselor, not for providing full and complete answers. If a requirement says that you must take an action using words such as "discuss", "show", "tell", "explain", "demonstrate", "identify", etc, that is what you must do. Merit Badge Counselors may not require the use of this or any similar workbooks. No one may add or subtract from the official requirements found in Scouts BSA Requirements (Pub. 33216 – SKU 653801). The requirements were last issued or revised in 2009 • This workbook was updated in June 2020. Scout’s Name: __________________________________________ Unit: __________________________________________ Counselor’s Name: ____________________ Phone No.: _______________________ Email: _________________________ http://www.USScouts.Org • http://www.MeritBadge.Org Please submit errors, omissions, comments or suggestions about this workbook to: [email protected] Comments or suggestions for changes to the requirements for the merit badge should be sent to: [email protected] ______________________________________________________________________________________________________________________________________________ 1. Select a manufactured item in your home (such as a toy or an appliance) and, under adult supervision and with the approval of your counselor, investigate how and why it works as it does.
    [Show full text]
  • Is EE Right for You?
    Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You? • “Toto, I have a feeling we’re not in Kansas anymore.” • Now that you are here, diii?id you make the right choice? • Electrical engineering is a challenging and satisfying profession. That does not mean it is easy. In fact, with the possible exceptions of medicine or law, it is the MOST difficult. • There are some things you need to consider if you really, really want to be an engineer. • We will consider a few today. EE 1202 Lecture #1 – Why Electrical Engineering? 1 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You (2)? • Why did you decide to be an electrical engineer? – Parents will pay for engineering education (it’s what they want). – You like math and science. – A relative is an engineer and you like him/her. – You want to challenge yourself, and engineering seems challenging. – You think you are creative and love technology. – You want to make a difference in society . EE 1202 Lecture #1 – Why Electrical Engineering? 2 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science The High School “Science Student” Problem • In high school, you were FAR above the average. – And you probably didn’t study too hard, right? • You liked science and math, and they weren’t terribly hard.
    [Show full text]
  • Robotics Engineer
    CONTENTS Robotics Engineer at a Glance 6 Introduction 7 Turning Science Fiction into Reality Chapter One 11 What Does a Robotics Engineer Do? Chapter Two 18 How Do You Become a Robotics Engineer? Chapter Three 26 What Skills and Personal Qualities Matter Most —and Why? Chapter Four 31 What Is It Like to Work as a Robotics Engineer? Chapter Five 37 Advancement and Other Job Opportunities Chapter Six 42 What Does the Future Hold for Robotics Engineers? Chapter Seven 49 Interview with a Robotics Engineer Source Notes 53 Find Out More 56 Index 59 Picture Credits 63 About the Author 64 5 ROBOTICS ENGINEER AT A GLANCE te’s Ba cia che so ee de lo As gr gr r’s de ee l D o r o o o t d c h n e t c o a le g s r r m a e a h v t o e l i e g i p u i q H d e Personal Minimum Educational Qualities Requirements Problem solving Creativity Working Conditions Attention to detail Indoors Strong science, math, and computer- programming skills Median Salary $81,591 Percent job increase by 278,000* 2024 Number of jobs *Numbers are for mechanical 5% engineers, a group that includes robotics engineers. Future Job Outlook Source: Bureau of Labor Statistics, Occupational Outlook Handbook. www.bls.gov. 6 CHAPTER 3 What Skills and Personal Qualities Matter Most—and Why? First and foremost, robotics engineers must be very good prob- lem solvers. They must have suffi cient technical skill to recognize and understand a problem and enough creativity to think up an original solution.
    [Show full text]
  • Photonic Design Engineer
    Photonic Design Engineer Are you looking for the ultimate startup challenge? Have you always wanted to transform innovative technology into real products? Are you ready to join OPTIUS among the first employees with all the advantages and opportunities? Optius is a new startup with the vision to transform the field of efficient AI computations by using optical computing. By joining OPTIUS, you are contributing to a growing team of motivated entrepreneurs and researchers passionate about bringing this vision into reality. The Photonic Design Engineer role will involve the design, optimization, and layout of photonic integrated circuits (PICs) and photonic devices. Your opportunity and benefits: • Solve problems by commercializing cutting edge technology – Major impact! • Mentorship, coaching and support – we are here for you! • Cool Startup environment – celebrations, endless lattes, healthy snacks What we offer: • Competitive compensation package • Opportunity for growth and personal development • Insurance benefits such as health, dental and vision • Cool Startup environment – celebrations, endless coffee, healthy snacks • Lunch and Learns What your day-today will look like: • Design and optimize photonic integrated circuits (PIC’s) • Layout photonic devices with common EDA • Conduct numerical electromagnetic simulation of photonic devices • Interacting with photonic foundries to understand design environment and rules • Designing optical bench experiments for device characterization • Collaborating with the team on research and development
    [Show full text]
  • Position Description
    position description Date: September 2017 Title: Engineer 1 Department: Biomedical Engineering School: Case School of Engineering Location: Bingham 308 Supervisor Name and Title: Ron Triolo, Professor POSITION OBJECTIVE Under general supervision, perform engineering objectives as a member of multidisciplinary research and development teams designing and investigating new medical devices and restorative technologies, and provide high level computing infrastructure support. Responsible for microprocessor, mobile device, or computer based software system design, testing and operation on specific research and development projects for new assistive technologies for individuals with neuro-musculo-skeletal disabilities, limb loss or cognitive dysfunction. The engineer will apply methods and techniques, adjust and correlate data, determine errors in results, and follow the operation through a series of related steps to completion. ESSENTIAL FUNCTIONS 1. Develop embedded control and operating systems for new and emerging assistive technologies and medical devices, and create both low and high level user and clinician interfaces. (20%) 2. Set system processing specifications, design and verify software operation of new computer- microprocessor- or mobile computing platform-based assistive technologies. (20%) 3. Construct embedded applications and integrate information from networks of distributed sensors in new medical devices. (20%) 4. Identify the work to be done to fulfill project requirements and objectives, plan and carry out the procedural and technical steps required, seek assistance as needed, independently coordinate work efforts with outside parties, and characteristically submit only completed work. (10%) 5. Design, maintain and interrogate databases for research-related operational information. (10%) 6. Fully document, test and validate design and system performance according to standard design controls and quality system practices, including incident reporting, error/bug tracking and repair, and version/release control.
    [Show full text]