A New Set of Spectroscopic Metallicity Calibrations for RR Lyrae Variable Stars

Total Page:16

File Type:pdf, Size:1020Kb

A New Set of Spectroscopic Metallicity Calibrations for RR Lyrae Variable Stars University of Kentucky UKnowledge Theses and Dissertations--Physics and Astronomy Physics and Astronomy 2014 A New Set of Spectroscopic Metallicity Calibrations for RR Lyrae Variable Stars Eckhart Spalding University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Spalding, Eckhart, "A New Set of Spectroscopic Metallicity Calibrations for RR Lyrae Variable Stars" (2014). Theses and Dissertations--Physics and Astronomy. 22. https://uknowledge.uky.edu/physastron_etds/22 This Master's Thesis is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physics and Astronomy by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Eckhart Spalding, Student Dr. Ron Wilhelm, Major Professor Dr. Tim Gorringe, Director of Graduate Studies A NEW SET OF SPECTROSCOPIC METALLICITY CALIBRATIONS FOR RR LYRAE VARIABLE STARS THESIS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the College of Arts and Sciences at the University of Kentucky By Eckhart Spalding Lexington, Kentucky Director: Dr. Ron Wilhelm, Professor of Physics Lexington, Kentucky 2014 c Copyright Eckhart Spalding 2014 ABSTRACT OF THESIS A NEW SET OF SPECTROSCOPIC METALLICITY CALIBRATIONS FOR RR LYRAE VARIABLE STARS RR Lyrae stars are old, iron-poor, Helium-burning variable stars. RR Lyraes are extremely useful for tracing phase-space structures and metallicities within the galaxy because they are easy to identify, have consistent luminosities, and are found in large numbers in the galactic disk, bulge, and halo. Here we present a new set of spectroscopic metallicity calibrations that use the equivalent widths of the Ca II K, Hγ,andHδ lines to calculate metallicity values. Applied to spectroscopic survey data, these calibrations will help shed light on the evolution of the Milky Way and other galaxies. KEYWORDS: RR Lyraes, metallicity calibration, spectroscopy, galactic halo, Sloan Digital Sky Survey Author’s signature: Eckhart Spalding Date: June 21, 2014 A NEW SET OF SPECTROSCOPIC METALLICITY CALIBRATIONS FOR RR LYRAE VARIABLE STARS By Eckhart Spalding Director of Thesis: Ron Wilhelm Director of Graduate Studies: Dr. Tim Gorringe Date: June 21, 2014 To the villagers of Olkiramatian, who are wealthy in beautiful night skies, in which the developed world is increasingly impoverished ACKNOWLEDGMENTS I owe a great deal of thanks to a number of key individuals for making this work possible. Those directly associated with the University of Kentucky include Robert Milton Huffaker (UK, ’57), who generously funded much of the travel costs through Huffaker Travel Scholarships; Dr. Keith MacAdam, who provided the MacAdam Student Observatory to the UK Physics and Astronomy Department; Tim Knauer and Kyle McCarthy, who provided assistance at the MSO; and department Chair Dr. Sumit Das, who released funds to enable me to present results at the 223rd AAS meeting. I am also grateful to Dr. John Kielkopf, for taking some of the photometry at the University of Louisville’s Moore Observatory (and for prodding his colleague Dr. Rhodes Hart to nab a star from Australia, making this project an international col- laboration); David Doss, the eminence grise of McDonald Observatory’s Mt. Locke, for his technical help (and his concern the morning after I hit my head on the spectro- graph); and, of course, the cherubic Dr. Nathan De Lee and my advisor, the pensively barbate Dr. Ron Wilhelm, for all their variegated forms of guidance. A special thanks goes to the viola virtuoso Dr. John Kuehne, the colorful and wild-haired resident elf of the 82-inch dome at McDonald Observatory, for his tireless technical assistance; his eclectic conversations; and for performing all the live music that went into this research. This work made use of the Expeditions and Discoveries: Sponsored Exploration and Scientific Discovery in the Modern Age collection of the Harvard University Library Open Collections Program, and the GCVS database of the Sternberg As- tronomical Institute of the Lomonosov Moscow State University. Here are further iii official acknowledgements: We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. This research has made use of the SIMBAD database, operated at CDS, Stras- bourg, France. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Coun- cil for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Par- ticipating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel Uni- versity, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max- Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pitts- burgh, University of Portsmouth, Princeton University, the United States Naval Ob- servatory, and the University of Washington. iv TABLE OF CONTENTS Acknowledgments.................................. iii TableofContents.................................. v List of Tables . vii ListofFigures ................................... viii Chapter1 :Introduction............................. 1 Chapter2 : ABriefHistoryofRRLyraeResearch. 2 Chapter 3 : The Pulsation Mechanism . 8 Chapter 4 : The Light Curve Shape . 11 Chapter5 : TheImportanceofMetallicityTracing . 14 Chapter6 : ABriefHistoryoftheCalibration . 17 Chapter 7 : The Saha and Boltzmann Equations and Line Formation . 22 Chapter8 :DataAquisition ........................... 25 8.1 Photometry . 25 8.2 Period Data . 27 8.3 Spectroscopy . 28 Chapter 9 : Data Reduction . 31 9.1 Photometry . 31 9.2 Metallicity Values . 31 9.3 Spectroscopy . 32 9.4 FunctionFitting.............................. 34 Chapter 10 : Results . 36 Chapter 11 : Conclusions . 42 Appendices ..................................... 43 Appendix A: Boyden Station During Revolution in Peru .......... 44 Appendix B: Heuristic Species Population Estimates ............ 46 Appendix C: Light Curves and Polynomial Overlays ............. 48 Appendix D: Author Metallicity Comparisons ................ 58 Appendix E: Stripe 82 [Fe/H] Error Calculation ............... 62 v Appendix F: H-K Plots Showing Phase .................... 63 Appendix G: Python Code for Synthetic Data Generation .......... 73 Appendix H: C++ Code for Function Fitting ................. 75 Bibliography . 79 Vita......................................... 89 vi LIST OF TABLES 7.1 Estimates of Species Proportions in an RR Lyrae Photosphere . 23 8.1 Epochs-of-Maximum . 27 8.2 Star Periods . 29 8.3 Metallicities from the Literature . 30 10.1 Calibration Coefficients and Standard Deviations . 36 vii LIST OF FIGURES 2.1 Mt.Harvard,nearChosica,Peru . 6 2.2 BoydenStation,outsidethetownofArequipa . 6 2.3 One of Shapley’s depictions of the distances to globular clusters . 7 2.4 Illustrative simulations of Type I Cepheid and RR Lyrae densities in the galaxy . 7 3.1 AnHRdiagramshowingthelocationsofvariablestars . 10 4.1 AnRRablightcurvetemplate. 12 4.2 AnRRabempiricallightcurve . 12 4.3 AnRRclightcurvetemplate
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • On the Metallicity of Open Clusters II. Spectroscopy
    Astronomy & Astrophysics manuscript no. OCMetPaper2 c ESO 2013 November 12, 2013 On the metallicity of open clusters II. Spectroscopy U. Heiter1, C. Soubiran2, M. Netopil3, and E. Paunzen4 1 Institutionen för fysik och astronomi, Uppsala universitet, Box 516, 751 20 Uppsala, Sweden e-mail: [email protected] 2 Université Bordeaux 1, CNRS, Laboratoire d’Astrophysique de Bordeaux UMR 5804, BP 89, 33270 Floirac, France 3 Institut für Astrophysik der Universität Wien, Türkenschanzstrasse 17, 1180 Wien, Austria 4 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ267/2, 611 37 Brno, Czech Republic Received 29 August 2013 / Accepted 20 October 2013 ABSTRACT Context. Open clusters are an important tool for studying the chemical evolution of the Galactic disk. Metallicity estimates are available for about ten percent of the currently known open clusters. These metallicities are based on widely differing methods, however, which introduces unknown systematic effects. Aims. In a series of three papers, we investigate the current status of published metallicities for open clusters that were derived from a variety of photometric and spectroscopic methods. The current article focuses on spectroscopic methods. The aim is to compile a comprehensive set of clusters with the most reliable metallicities from high-resolution spectroscopic studies. This set of metallicities will be the basis for a calibration of metallicities from different methods. Methods. The literature was searched for [Fe/H] estimates of individual member stars of open clusters based on the analysis of high-resolution spectra. For comparison, we also compiled [Fe/H] estimates based on spectra with low and intermediate resolution.
    [Show full text]
  • Plotting Variable Stars on the H-R Diagram Activity
    Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra.
    [Show full text]
  • Ix Ophiuchi: a High-Velocity Star Near a Molecular Cloud G
    The Astronomical Journal, 130:815–824, 2005 August # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. IX OPHIUCHI: A HIGH-VELOCITY STAR NEAR A MOLECULAR CLOUD G. H. Herbig Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 Received 2005 March 24; accepted 2005 April 26 ABSTRACT The molecular cloud Barnard 59 is probably an outlier of the Upper Sco/ Oph complex. B59 contains several T Tauri stars (TTSs), but outside its northwestern edge are three other H -emission objects whose nature has been unclear: IX, KK, and V359 Oph. This paper is a discussion of all three and of a nearby Be star (HD 154851), based largely on Keck HIRES spectrograms obtained in 2004. KK Oph is a close (1B6) double. The brighter component is an HAeBe star, and the fainter is a K-type TTS. The complex BVR variations of the unresolved pair require both components to be variable. V359 Oph is a conventional TTS. Thus, these pre-main-sequence stars continue to be recognizable as such well outside the boundary of their parent cloud. IX Oph is quite different. Its absorption spec- trum is about type G, with many peculiarities: all lines are narrow but abnormally weak, with structures that depend on ion and excitation level and that vary in detail from month to month. It could be a spectroscopic binary of small amplitude. H and H are the only prominent emission lines. They are broad, with variable central reversals. How- ever, the most unusual characteristic of IX Oph is the very high (heliocentric) radial velocity: about À310 km sÀ1, common to all spectrograms, and very different from the radial velocity of B59, about À7kmsÀ1.
    [Show full text]
  • August 13 2016 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, August 13th 2016 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Public Star Party Follows at the Colleagues, Centennial Observatory Club Officers It's that time of year: The City of Rocks Star Party. Set for Friday, Aug. 5th, and Saturday, Aug. 6th, the event is the gem of the MVAS year. As we've done every Robert Mayer, President year, we will hold solar viewing at the Smoky Mountain Campground, followed by a [email protected] potluck there at the campground. Again, MVAS will provide the main course and 208-312-1203 beverages. Paul McClain, Vice President After the potluck, the party moves over to the corral by the bunkhouse over at [email protected] Castle Rocks, with deep sky viewing beginning sometime after 9 p.m. This is a chance to dig into some of the darkest skies in the west. Gary Leavitt, Secretary [email protected] Some members have already reserved campsites, but for those who are thinking of 208-731-7476 dropping by at the last minute, we have room for you at the bunkhouse, and would love to have to come by. Jim Tubbs, Treasurer / ALCOR [email protected] The following Saturday will be the regular MVAS meeting. Please check E-mail or 208-404-2999 Facebook for updates on our guest speaker that day. David Olsen, Newsletter Editor Until then, clear views, [email protected] Robert Mayer Rick Widmer, Webmaster [email protected] Magic Valley Astronomical Society is a member of the Astronomical League M-51 imaged by Rick Widmer & Ken Thomason Herrett Telescope Shotwell Camera https://herrett.csi.edu/astronomy/observatory/City_of_Rocks_Star_Party_2016.asp Calendars for August Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 New Moon City Rocks City Rocks Lunation 1158 Castle Rocks Castle Rocks Star Party Star Party Almo, ID Almo, ID 7 8 9 10 11 12 13 MVAS General Mtg.
    [Show full text]
  • Determining Pulsation Period for an RR Lyrae Star
    Leah Fabrizio Dr. Mitchell 06/10/2010 Determining Pulsation Period for an RR Lyrae Star As children we used to sing in wonderment of the twinkling stars above and many of us asked, “Why do stars twinkle?” All stars twinkle because their emitted light travels through the Earth’s atmosphere of turbulent gas and clouds that move and shift causing the traversing light to fluctuate. This means that the actual light output of the star is not changing. However there are a number of stars called Variable Stars that actually produce light of varying brightness before it hits the Earth’s atmosphere. There are two categories of variable stars: the intrinsic, where light fluctuation is due from the star physically changing and producing different luminosities, and extrinsic, where the amount of starlight varies due to another star eclipsing or blocking the star’s light from reaching earth (AAVSO 2010). Within the category of intrinsic variable stars are the pulsating variables that have a periodic change in brightness due to the actual size and light production of the star changing; within this group are the RR Lyrae stars (“variable star” 2010). For my research project, I will observe an RR Lyrae and find the period of its luminosity pulsation. The first RR Lyrae star was named after its namesake star (Strobel 2004). It was first found while astronomers were studying the longer period variable stars Cepheids and stood out because of its short period. In comparison to Cepheids, RR Lyraes are smaller and therefore fainter with a shorter period as well as being much older.
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Searching for RR Lyrae Stars in M15
    Searching for RR Lyrae Stars in M15 ARCC Scholar thesis in partial fulfillment of the requirements of the ARCC Scholar program Khalid Kayal February 1, 2013 Abstract The expansion and contraction of an RR Lyrae star provides a high level of interest to research in astronomy because of the several intrinsic properties that can be studied. We did a systematic search for RR Lyrae stars in the globular cluster M15 using the Catalina Real-time Transient Survey (CRTS). The CRTS searches for rapidly moving Near Earth Objects and stationary optical transients. We created an algorithm to create a hexagonal tiling grid to search the area around a given sky coordinate. We recover light curve plots that are produced by the CRTS and, using the Lafler-Kinman search algorithm, we determine the period, which allows us to identify RR Lyrae stars. We report the results of this search. i Glossary of Abbreviations and Symbols CRTS Catalina Real-time Transient Survey RR A type of variable star M15 Messier 15 RA Right Ascension DEC Declination RF Radio frequency GC Globular cluster H-R Hertzsprung-Russell SDSS Sloan Digital Sky Survey CCD Couple-Charged Device Photcat DB Photometry Catalog Database FAP False Alarm Probability ii Contents 1 Introduction 1 2 Background on RR Lyrae Stars 5 2.1 What are RR Lyraes? . 5 2.2 Types of RR Lyrae Stars . 6 2.3 Stellar Evolution . 8 2.4 Pulsating Mechanism . 9 3 Useful Tools and Surveys 10 3.1 Choosing M15 . 10 3.2 Catalina Real-time Transient Survey . 11 3.3 The Sloan Digital Sky Survey .
    [Show full text]
  • TITLE:Orbital Parameters Estimation for Compact Binary Stars
    1 AUTHOR: Penélope Alejandra Longa-Peña, MSc DEGREE: Doctor of Philosophy TITLE: Orbital Parameters Estimation for Compact Binary Stars DATE OF DEPOSIT: . I agree that this thesis shall be available in accordance with the regulations governing the University of Warwick theses. I agree that the summary of this thesis may be submitted for publication. I agree that the thesis may be photocopied (single copies for study purposes only). Theses with no restriction on photocopying will also be made available to the British Library for microfilming. The British Library may supply copies to individuals or libraries. subject to a statement from them that the copy is supplied for non-publishing purposes. All copies supplied by the British Li- brary will carry the following statement: “Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is un- derstood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s written consent.” AUTHOR’S SIGNATURE: . USER’S DECLARATION 1. I undertake not to quote or make use of any information from this thesis without making acknowledgement to the author. 2. I further undertake to allow no-one else to use this thesis while it is in my care. DATE SIGNATURE ADDRESS ............................................................................................. ............................................................................................
    [Show full text]
  • On the Habitability of Our Universe
    Chapter for the book Consolidation of Fine Tuning On the Habitability of Our Universe Abraham Loeb Astronomy department, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA E-mail: [email protected] Abstract. Is life most likely to emerge at the present cosmic time near a star like the Sun? We consider the habitability of the Universe throughout cosmic history, and conservatively restrict our attention to the context of “life as we know it” and the standard cosmological model, ΛCDM. The habitable cosmic epoch started shortly after the first stars formed, about 30 Myr after the Big Bang, and will end about 10 Tyr from now, when all stars will die. We review the formation history of habitable planets and find that unless habitability around low mass stars is suppressed, life is most likely to exist near ∼ 0.1M stars ten trillion years from now. Spectroscopic searches for biosignatures in the atmospheres of transiting Earth-mass planets around low mass stars will determine whether present-day life is indeed premature or typical from a cosmic perspective. arXiv:1606.08926v2 [astro-ph.CO] 24 Nov 2016 Contents 1 Introduction2 2 The Habitable Epoch of the Early Universe4 2.1 Section Background4 2.2 First Planets4 2.3 Section Summary and Implications5 3 CEMP Stars: Possible Hosts to Carbon Planets in the Early Universe6 3.1 Section Background6 3.2 Star-forming environment of CEMP stars7 3.3 Orbital Radii of Potential Carbon Planets9 3.4 Mass-Radius Relationship for Carbon Planets 13 3.5 Section Summary and Implications 15 4 Water
    [Show full text]