Otosclerosis and Stapedectomy

Total Page:16

File Type:pdf, Size:1020Kb

Otosclerosis and Stapedectomy 160 Heritage Way – Kalispell MT 59901 406-752-8330 Otosclerosis and Stapedectomy Otosclerosis is a disease that causes progressive hearing loss and affects the bone of middle and inner ear. It is often surgically reversible. Otosclerosis causes abnormal bone to deposit around the stapes and sometimes cochlea. As this bony deposit accumulates, it restricts the normal movement of the third bone of hearing (the stapes "stay-peas"). This bony fixation impairs the normal conduction of sound energy to the inner ear to cause a hearing loss. This conductive hearing loss may be corrected with an operation (stapedectomy) to reverse the hearing loss. Excessive otosclerotic bone around the inner ear (cochlea) may also cause sensorineural (inner ear) hearing loss, which is not surgically reversible. To understand otosclerosis and stapes surgery, it is necessary to understand the structure and function of the ear. The Normal Ear and Hearing The ear consists of three parts: the external ear, the middle ear and the inner ear. Each part performs an important function and may be affected by different conditions. The external ear collects sound, the middle ear mechanism transforms the sound and the inner ear receives and transmits the sound to the brain. Sound travels across airwaves to the outer ear and then through the ear canal to the eardrum, which moves back and forth very rapidly. This vibration is then passed through the three hearing bones. The three bones (hammer or malleus, anvil or incus and stirrup or stapes) act as a transformer, changing air (sound) vibrations into inner ear fluid waves. This wave like movement of the inner ear fluids activates special hair cells and nerve endings to create electrical signals that go to the brain. The hearing centers in the brain then receive the electrical signal from the hearing nerve and we detect sound. The inner ear, hearing nerve, and brain code this sound energy allowing us to hear sounds and clearly understand speech. Otosclerosis disease process Otosclerosis is a disease of the middle and inner ear that causes hearing loss that worsens over time. Unlike hearing loss of the inner ear, hearing loss from otosclerosis in the middle ear is surgically reversible. The term "otosclerosis" comes from the Greek words for "ear" (oto) and "hard" (sclero). In otosclerosis, the stapes middle bone becomes fixed by abnormal bone preventing its normal movement. In the early stages of otosclerosis disease, bone around the stapes softens or breaks down by chemical enzymes. Later, these areas of bone destruction are replaced by new hard bone (otosclerosis). 160 Heritage Way – Kalispell MT 59901 406-752-8330 Continued otosclerotic disease of the inner ear can sometimes damage inner ear function which cannot be reversed. Rarely does otosclerosis cause complete hearing loss. Complete understanding of what causes otosclerosis is not known yet. There are some interesting observations about otosclerosis, which only affects humans. The bony capsule of the inner ear normally does not undergo the continuous breakdown and repair process seen in the other bones in the human body. This allows the normal bony capsule containing the inner ear to become the hardest bone in the human body. Otosclerosis can be caused by a genetic condition. TYPES OF HEARING LOSS The external ear and middle ear collect and conduct sound to the inner ear which transforms it to electrical signals and transmits it to the brain. Conductive hearing loss (CHL) results when there are problems of the external or middle ear that prevent sound wave transmission to the inner ear. Causes include blockage of the external ear canal by wax or growths, tympanic membrane perforations, middle ear fluid, damage to the hearing bones, growths in the ME, and infection. Sensorineural hearing loss (SNHL) results when there is a problem in the inner ear or auditory nerve. Common causes include aging, noise, inherited conditions, and toxins. When there is difficulty in both the middle and the inner ear a mixed or combined impairment exists. Mixed impairments are common in Otosclerosis. HEARING IMPAIRMENT FROM OTOSCLEROSIS Cochlear Otosclerosis When otosclerosis spreads to the inner ear a sensorineural hearing impairment may result due to interference with the nerve function. This nerve impairment is called cochlear otosclerosis and once it develops it is permanent. Stapedial Otosclerosis Usually otosclerosis spreads to the stapes or stirrup bone, the final link in the middle ear transformer chain. The stapes rests in a small depression in contact with the inner ear fluids. Anything that interferes with its motion results in a conductive hearing impairment. This type of impairment is called stapedial otosclerosis and is usually correctable by surgery. The amount of hearing loss due to involvement of the stapes varies with the amount of disease and is detected using hearing tests or audiograms. What are the symptoms of otosclerosis? The most common symptom is a slowly progressive hearing loss that presents from age 20 to 45 years. It can appear at a younger age, but this is uncommon. Otosclerosis can occur in both ears 80% of the time. The hearing loss may not be equal in each ear. The severity of the hearing loss is variable. Total deafness is rare with otosclerosis. Ringing in the ear or rushing ear noises, known as tinnitus, occurs in about 75% of patients with otosclerosis. Balance problems occasionally are present in patients with otosclerosis. 160 Heritage Way – Kalispell MT 59901 406-752-8330 How do I know if I have otosclerosis? The hearing test, exam and patient history usually indicate the cause of conductive hearing loss. Frequently, the audiogram has certain features typical for otosclerosis. A CT scan of the ear may demonstrate changes seen with otosclerosis. CT scans are not routinely ordered for the diagnosis of otosclerosis. If your history and examination indicate that there may be other causes of your conductive hearing loss, then a CT scan may be utilized. While the hearing tests are very helpful, otosclerosis is definitively diagnosed at the time of surgical examination of the middle ear. If otosclerosis is confirmed at this time, the surgeon will perform a stapes surgery to fix the hearing loss. If another cause of hearing loss is found an attempt at repair will usually be performed. How is otosclerosis treated? Conductive hearing loss is treated with surgery or amplification with a hearing aid. Amplification is very successful because the inner ear (nerve) function is usually normal. Sometimes the abnormal bone metabolism may also affect the sensorineural (nerve) function in the cochlear, which can reduce hearing. The stapes operation Stapes surgery is done through the ear canal under local or general anesthesia. At times an incision may be made behind the ear to remove a tissue graft or provide extra room to work. The procedure is called stapedectomy when part or all of the stapes is removed and stapedotomy when a small hole is placed into the stapes footplate. Using high power magnification incisions are made around the eardrum membrane which allows it to be opened and folded forward. This allows examination of the middle ear and confirmation of the cause of hearing loss. If the stapes is diseased it is partially or completely removed. The stapes may be removed with instruments, a drill, or a laser. A prosthesis (synthetic hearing bone) is inserted to replace it and then checked to ensure good mobility. The eardrum is then replaced in its normal position. The stapes prosthesis allows sound vibrations to bypass the diseased area and be delivered to the inner ear. The hearing improvement is usually permanent. In properly selected cases, the conductive hearing loss is significantly reduced or eliminated in vast majority of the operative cases. Rarely, surgery will result in no change and in about 1% cases may cause severe hearing loss, which would not be helped with a hearing aid. Dizziness may occur following stapedectomy but is usually mild and temporary. Tinnitus may be reduced or eliminated but results vary considerably. If there is a mixed hearing loss, that is a combined hearing loss from conductive (stapes fixation) and sensorineural (inner ear) deficit, successful surgery will resolve only the conductive component. A hearing aid still may be required for the sensorineural hearing loss if it is symptomatic. Recovery The surgery takes about 1-2 hours. After surgery you will recover in the hospital for a few hours then you will be released home. Antibiotics and pain medications for mild pain are prescribed. Patients are advised not to fly, scuba dive, weight lift, and do heavy exertion for 2 weeks after surgery. Most patients return to work in three or four days. 160 Heritage Way – Kalispell MT 59901 406-752-8330 The operated ear canal should be kept dry for 10 days following surgery. Packing is placed into the ear canal to hold the eardrum in position. Sometimes this packing dissolves and sometimes it needs to be removed. You should change the outer ear cotton as needed if there is drainage from the ear canal. This drainage usually stops in one or two days. During shower or bathing, a cotton plug with Vaseline may be placed in the outer part of the ear to protect it from water. You may wash your hair 48 hours after discharge or use dry shampoo earlier. Patients will be seen in the office one to two weeks after surgery for a wound check and packing removal. Some hearing improvement is usually experienced at this point, but it continues to improve with more healing. The hearing is tested with an audiogram six to eight weeks after surgery. It may continue to improve over another four to six months. If you have otosclerosis in both ears, the second ear can be operated on six to twelve months after operating on the first ear.
Recommended publications
  • CASE REPORT Resolution of Delayed Sudden Sensorineural Hearing Loss After Stapedectomy
    The Mediterranean Journal of Otology CASE REPORT Resolution of Delayed Sudden Sensorineural Hearing Loss After Stapedectomy: A Case Report and Review of the Literature Noam Yehudai, MD, Michal Luntz, MD From the Department of Significant sensorineural hearing loss may develop immediately after suc- Otolaryngology, Head and Neck cessful stapedectomy but sometimes occurs months or even years later. Surgery, Bnai-Zion Medical The rate of recovery from that disorder has not been determined. Several Center, Technion-Israel School of Technology, Haifa, Israel reports in the 1960s described patients with delayed sensorineural hear- ing loss, but that entity has not been mentioned in the English-language Correspondence literature for the last 30 years. We present a review of the literature on this Michal Luntz, MD postsurgical auditory complication and describe a patient with delayed Department of Otolaryngology, Head and Neck Surgery poststapedectomy sensorineural hearing loss that developed 15 months Bnai-Zion Medical Center, after surgery and resolved completely after treatment with an oral steroid. Technion-Israel School of Technology 47 Golomb St, PO Box 4940, Haifa 31048, Israel Phone: 972-4-8359544 Fax: 972-4-8361069 E-mail: [email protected] Submitted: 05 February, 2006 Revised: 07 May, 2006 Accepted: 09 May, 2006 Mediterr J Otol 2006; 3: 156-160 Copyright 2005 © The Mediterranean Society of Otology and Audiology 156 Resolution of Delayed Sudden Sensorineural Hearing Loss After Stapedectomy: A Case Report and Review of the Literature
    [Show full text]
  • Auditory Brainstem Response Latency in Noise As a Marker of Cochlear Synaptopathy
    The Journal of Neuroscience, March 30, 2016 • 36(13):3755–3764 • 3755 Systems/Circuits Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy X Golbarg Mehraei,1,2 XAnn E. Hickox,1,4 X Hari M. Bharadwaj,2,7 Hannah Goldberg,1 Sarah Verhulst,2,6 M. Charles Liberman,1,4,5 and XBarbara G. Shinn-Cunningham2,3 1Program in Speech and Hearing Bioscience and Technology, Harvard University/Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, 2Center for Computational Neuroscience and Neural Technology, Boston University, Boston, Massachusetts 02215, 3Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, 4Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, 5Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114, 6Cluster of Excellence Hearing4All and Medical Physics, Department of Medical Physics and Acoustics, Oldenburg University, 26129 Oldenburg, Germany, 7Martinos Center for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129 Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause “hidden hearing loss” that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude.
    [Show full text]
  • Perforated Eardrum
    Vinod K. Anand, MD, FACS Nose and Sinus Clinic Perforated Eardrum A perforated eardrum is a hole or rupture m the eardrum, a thin membrane which separated the ear canal and the middle ear. The medical term for eardrum is tympanic membrane. The middle ear is connected to the nose by the eustachian tube. A perforated eardrum is often accompanied by decreased hearing and occasional discharge. Paih is usually not persistent. Causes of Eardrum Perforation The causes of perforated eardrum are usually from trauma or infection. A perforated eardrum can occur: if the ear is struck squarely with an open hand with a skull fracture after a sudden explosion if an object (such as a bobby pin, Q-tip, or stick) is pushed too far into the ear canal. as a result of hot slag (from welding) or acid entering the ear canal Middle ear infections may cause pain, hearing loss and spontaneous rupture (tear) of the eardrum resulting in a perforation. In this circumstance, there may be infected or bloody drainage from the ear. In medical terms, this is called otitis media with perforation. On rare occasions a small hole may remain in the eardrum after a previously placed P.E. tube (pressure equalizing) either falls out or is removed by the physician. Most eardrum perforations heal spontaneously within weeks after rupture, although some may take up to several months. During the healing process the ear must be protected from water and trauma. Those eardrum perforations which do not heal on their own may require surgery. Effects on Hearing from Perforated Eardrum Usually, the larger the perforation, the greater the loss of hearing.
    [Show full text]
  • Hearing Loss Due to Myringotomy and Tube Placement and the Role of Preoperative Audiograms
    ORIGINAL ARTICLE Hearing Loss Due to Myringotomy and Tube Placement and the Role of Preoperative Audiograms Mark Emery, MD; Peter C. Weber, MD Background: Postoperative complications of myrin- erative and postoperative sensorineural and conductive gotomy and tube placement often include otorrhea, tym- hearing loss. panosclerosis, and tympanic membrane perforation. How- ever, the incidence of sensorineural or conductive hearing Results: No patient developed a postoperative sensori- loss has not been documented. Recent efforts to curb the neural or conductive hearing loss. All patients resolved use of preoperative audiometric testing requires docu- their conductive hearing loss after myringotomy and tube mentation of this incidence. placement. There was a 1.3% incidence of preexisting sen- sorineural hearing loss. Objective: To define the incidence of conductive and sensorineural hearing loss associated with myrin- Conclusions: The incidence of sensorineural or con- gotomy and tube placement. ductive hearing loss after myringotomy and tube place- ment is negligible and the use of preoperative audiomet- Materials and Methods: A retrospective chart re- ric evaluation may be unnecessary in selected patients, view of 550 patients undergoing myringotomy and tube but further studies need to be done to corroborate this placement was performed. A total of 520 patients under- small data set. going 602 procedures (1204 ears), including myrin- gotomy and tube placement, were assessed for preop- Arch Otolaryngol Head Neck Surg. 1998;124:421-424 TITIS MEDIA (OM) is one erative hearing status and whether it has of the most frequent dis- either improved or remained stable after eases of childhood, af- MTT. A recent report by Manning et al11 fecting at least 80% of demonstrated a 1% incidence of preop- children prior to school erative sensorineural hearing loss (SNHL) Oentry.1-4 Because of the high incidence of in children undergoing MTT.
    [Show full text]
  • Experimental Studies on the Function of the Stapedius Muscle Inman
    EXPERIMENTAL STUDIES ON THE FUNCTION OF THE STAPEDIUS MUSCLE INMAN AKADEMISK AVHANDLING som med vederbörligt tillstånd av Medicinska fakulteten vid Umeå Universitet för vinnande av medicine doktorsgrad offentligen försvaras i Samhällsvetarhuset, sal D, lördagen den 25 maj 1974 kl. 9.15 f.m. av JOHN-ERIK ZAKRISSON med.lic. UMEÅ 1974 UMEÀ UNIVERSITY MEDICAL DISSERTATIONS No. 18 1974 From the Department of Otorhinolaryngology, University of Umeå, Umeå, Sweden and the Division of Physiological Acoustics, Department of Physiology II, Karolinska Institutet, Stockholm, Sweden EXPERIMENTAL STUDIES ON THE FUNCTION OF THE STAPEDIUS MUSCLE IN MAN BY JOHN-ERIK ZAKRISSON UMEÂ 1974 To Karin Eva and Gunilla The present thesis is based on the following papers which will be referred to in the text by the Roman numerals: I. Zakrisson, J.-E., Borg, E. & Blom, S. The acoustic impedance change as a measure of stapedius muscle activity in man. A methodological study with electromyography. Acta Otolaryng, preprint. II. Borg, E. & Zakrisson, J.-E. Stapedius reflex and monaural masking. Acta Otolaryng, preprint. III. Zakrisson, J.-E. The role of the stapedius reflex in poststimulatory audi ­ tory fatigue. Acta Otolaryng, preprint. IV. Borg, E. & Zakrisson, J.-E. The activity of the stapedius muscle in man during vocalization. Acta Otolaryng, accepted for publication. CONTENTS ABBREVIATIONS .......................................... 8 INTRODUCTION.............................................................................................. 9 MATERIAL.....................................................................................................
    [Show full text]
  • A Molecular and Genetic Analysis of Otosclerosis
    A molecular and genetic analysis of otosclerosis Joanna Lauren Ziff Submitted for the degree of PhD University College London January 2014 1 Declaration I, Joanna Ziff, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Where work has been conducted by other members of our laboratory, this has been indicated by an appropriate reference. 2 Abstract Otosclerosis is a common form of conductive hearing loss. It is characterised by abnormal bone remodelling within the otic capsule, leading to formation of sclerotic lesions of the temporal bone. Encroachment of these lesions on to the footplate of the stapes in the middle ear leads to stapes fixation and subsequent conductive hearing loss. The hereditary nature of otosclerosis has long been recognised due to its recurrence within families, but its genetic aetiology is yet to be characterised. Although many familial linkage studies and candidate gene association studies to investigate the genetic nature of otosclerosis have been performed in recent years, progress in identifying disease causing genes has been slow. This is largely due to the highly heterogeneous nature of this condition. The research presented in this thesis examines the molecular and genetic basis of otosclerosis using two next generation sequencing technologies; RNA-sequencing and Whole Exome Sequencing. RNA–sequencing has provided human stapes transcriptomes for healthy and diseased stapes, and in combination with pathway analysis has helped identify genes and molecular processes dysregulated in otosclerotic tissue. Whole Exome Sequencing has been employed to investigate rare variants that segregate with otosclerosis in affected families, and has been followed by a variant filtering strategy, which has prioritised genes found to be dysregulated during RNA-sequencing.
    [Show full text]
  • Hearing Screening Training Manual REVISED 12/2018
    Hearing Screening Training Manual REVISED 12/2018 Minnesota Department of Health (MDH) Community and Family Health Division Maternal and Child Health Section 1 2 For more information, contact Minnesota Department of Health Maternal Child Health Section 85 E 7th Place St. Paul, MN 55164-0882 651-201-3760 [email protected] www.health.state.mn.us Upon request, this material will be made available in an alternative format such as large print, Braille or audio recording. 3 Revisions made to this manual are based on: Guidelines for Hearing Screening After the Newborn Period to Kindergarten Age http://www.improveehdi.org/mn/library/files/afternewbornperiodguidelines.pdf American Academy of Audiology, Childhood Screening Guidelines http://www.cdc.gov/ncbddd/hearingloss/documents/AAA_Childhood%20Hearing%2 0Guidelines_2011.pdf American Academy of Pediatrics (AAP), Hearing Assessment in Children: Recommendations Beyond Neonatal Screening http://pediatrics.aappublications.org/content/124/4/1252 4 Contents Introduction .................................................................................................................... 7 Audience ..................................................................................................................... 7 Purpose ....................................................................................................................... 7 Overview of hearing and hearing loss ............................................................................ 9 Sound, hearing, and hearing
    [Show full text]
  • SENSORY MOTOR COORDINATION in ROBONAUT Richard Alan Peters
    SENSORY MOTOR COORDINATION IN ROBONAUT 5 Richard Alan Peters 11 Vanderbilt University School of Engineering JSC Mail Code: ER4 30 October 2000 Robert 0. Ambrose Robotic Systems Technology Branch Automation, Robotics, & Simulation Division Engineering Directorate Richard Alan Peters II Robert 0. Ambrose SENSORY MOTOR COORDINATION IN ROBONAUT Final Report NASNASEE Summer Faculty Fellowship Program - 2000 Johnson Space Center Prepared By: Richard Alan Peters II, Ph.D. Academic Rank: Associate Professor University and Department: Vanderbilt University Department of Electrical Engineering and Computer Science Nashville, TN 37235 NASNJSC Directorate: Engineering Division: Automation, Robotics, & Simulation Branch: Robotic Systems Technology JSC Colleague: Robert 0. Ambrose Date Submitted: 30 October 2000 Contract Number: NAG 9-867 13-1 ABSTRACT As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now dnven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, in- teract with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to as- tronauts. Our underlying hypothesis is that a robot can deveZop intelligence if it learns a set of basic behaviors ([.e., reflexes - actions tightly coupled to sensing) and through experi- ence learns how to sequence these to solve problems or to accomplish higher-level tasks.
    [Show full text]
  • Instruction Sheet: Otitis Externa
    University of North Carolina Wilmington Abrons Student Health Center INSTRUCTION SHEET: OTITIS EXTERNA The Student Health Provider has diagnosed otitis externa, also known as external ear infection, or swimmer's ear. Otitis externa is a bacterial/fungal infection in the ear canal (the ear canal goes from the outside opening of the ear to the eardrum). Water in the ear, from swimming or bathing, makes the ear canal prone to infection. Hot and humid weather also predisposes to infection. Symptoms of otitis externa include: ear pain, fullness or itching in the ear, ear drainage, and temporary loss of hearing. These symptoms are similar to those caused by otitis media (middle ear infection). To differentiate between external ear infection and middle ear infection, the provider looks in the ear with an instrument called an otoscope. It is important to distinguish between the two infections, as they are treated differently: External otitis is treated with drops in the ear canal, while middle ear infection is sometimes treated with an antibiotic by mouth. MEASURES YOU SHOULD TAKE TO HELP TREAT EXTERNAL EAR INFECTION: 1. Use the ear drops regularly, as directed on the prescription. 2. The key to treatment is getting the drops down into the canal and keeping the medicine there. To accomplish this: Lie on your side, with the unaffected ear down. Put three to four drops in the infected ear canal, then gently pull the outer ear back and forth several times, working the medicine deeper into the ear canal. Remain still, good-ear-side-down for about 15 minutes.
    [Show full text]
  • Consultation Diagnoses and Procedures Billed Among Recent Graduates Practicing General Otolaryngology – Head & Neck Surger
    Eskander et al. Journal of Otolaryngology - Head and Neck Surgery (2018) 47:47 https://doi.org/10.1186/s40463-018-0293-8 ORIGINALRESEARCHARTICLE Open Access Consultation diagnoses and procedures billed among recent graduates practicing general otolaryngology – head & neck surgery in Ontario, Canada Antoine Eskander1,2,3* , Paolo Campisi4, Ian J. Witterick5 and David D. Pothier6 Abstract Background: An analysis of the scope of practice of recent Otolaryngology – Head and Neck Surgery (OHNS) graduates working as general otolaryngologists has not been previously performed. As Canadian OHNS residency programs implement competency-based training strategies, this data may be used to align residency curricula with the clinical and surgical practice of recent graduates. Methods: Ontario billing data were used to identify the most common diagnostic and procedure codes used by general otolaryngologists issued a billing number between 2006 and 2012. The codes were categorized by OHNS subspecialty. Practitioners with a narrow range of procedure codes or a high rate of complex procedure codes, were deemed subspecialists and therefore excluded. Results: There were 108 recent graduates in a general practice identified. The most common diagnostic codes assigned to consultation billings were categorized as ‘otology’ (42%), ‘general otolaryngology’ (35%), ‘rhinology’ (17%) and ‘head and neck’ (4%). The most common procedure codes were categorized as ‘general otolaryngology’ (45%), ‘otology’ (23%), ‘head and neck’ (13%) and ‘rhinology’ (9%). The top 5 procedures were nasolaryngoscopy, ear microdebridement, myringotomy with insertion of ventilation tube, tonsillectomy, and turbinate reduction. Although otology encompassed a large proportion of procedures billed, tympanoplasty and mastoidectomy were surprisingly uncommon. Conclusion: This is the first study to analyze the nature of the clinical and surgical cases managed by recent OHNS graduates.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Vestibular Neuritis and Labyrinthitis
    Vestibular Neuritis and DISORDERS Labyrinthitis: Infections of the Inner Ear By Charlotte L. Shupert, PhD with contributions from Bridget Kulick, PT and the Vestibular Disorders Association INFECTIONS Result in damage to inner ear and/or nerve. ARTICLE 079 DID THIS ARTICLE HELP YOU? SUPPORT VEDA @ VESTIBULAR.ORG Vestibular neuritis and labyrinthitis are disorders resulting from an 5018 NE 15th Ave. infection that inflames the inner ear or the nerves connecting the inner Portland, OR 97211 ear to the brain. This inflammation disrupts the transmission of sensory 1-800-837-8428 information from the ear to the brain. Vertigo, dizziness, and difficulties [email protected] with balance, vision, or hearing may result. vestibular.org Infections of the inner ear are usually viral; less commonly, the cause is bacterial. Such inner ear infections are not the same as middle ear infections, which are the type of bacterial infections common in childhood affecting the area around the eardrum. VESTIBULAR.ORG :: 079 / DISORDERS 1 INNER EAR STRUCTURE AND FUNCTION The inner ear consists of a system of fluid-filled DEFINITIONS tubes and sacs called the labyrinth. The labyrinth serves two functions: hearing and balance. Neuritis Inflamation of the nerve. The hearing function involves the cochlea, a snail- shaped tube filled with fluid and sensitive nerve Labyrinthitis Inflamation of the labyrinth. endings that transmit sound signals to the brain. Bacterial infection where The balance function involves the vestibular bacteria infect the middle organs. Fluid and hair cells in the three loop-shaped ear or the bone surrounding semicircular canals and the sac-shaped utricle and Serous the inner ear produce toxins saccule provide the brain with information about Labyrinthitis that invade the inner ear via head movement.
    [Show full text]