Archimedes of Syracuse - Life and Inventions

Total Page:16

File Type:pdf, Size:1020Kb

Archimedes of Syracuse - Life and Inventions Archimedes of Syracuse - life and inventions Archimedes of Syracuse (287 BC - 212 BC) was an ancient Greek mathematician, physicist and engineer. Although little is known about his life, he is regarded as one of the most important scientists in classical antiquity. In addition to making important discoveries in the field of mathematics and geometry, he is credited with producing machines that were well ahead of their time. The Ancient Roman historians showed a strong interest in Archimedes and wrote several biographies relating to his life and works, while the few copies of his treatises that survived through the Middle Ages were a major influence on scientists during the Renaissance. Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. Archimedes was a famous mathematician whose theorems and philosophies became world known. He gained a reputation in his own time which few other mathematicians of this period achieved. He is considered by most historians of mathematics as one of the greatest mathematicians of all time. Biography Archimedes was born c. 287 BC in the seaport city of Syracuse, Sicily, which was then a colony of Magna Graecia. The date of his birth is based on an assertion by the Byzantine Greek historian John Tzetzes that he lived for seventy-five years. In The Sand Reckoner Archimedes gives his father's name as Phidias, an astronomer about whom nothing is known. Plutarch wrote that Archimedes was related to King Hieron II, the ruler of Syracuse. A biography of Archimedes was written by his friend Heracleides but this work has been lost, leaving the details of his life obscure. It is unknown, for instance, whether he ever married or had children. Archimedes is believed to have spent part of his youth being educated in Alexandria, Egypt where he was a contemporary of Conon of Samos and Eratosthenes. Some of Archimedes' mathematical works were written in the form of letters to Eratosthenes, who was the chief librarian in Alexandria. Archimedes died c. 212 BC during the Second Punic War, when Roman forces under General Marcus Claudius Marcellus captured the city of Syracuse after a two year long siege. According to the popular account given by Plutarch in his Parallel Lives , Archimedes was contemplating a mathematical diagram when the city was captured. A Roman soldier commanded him to come and meet General Marcellus but he declined, saying that he had to finish working on the problem. The soldier was enraged by this, and killed Archimedes with his sword. Plutarch also gives a lesser-known account of the death of Archimedes which suggests that he may have been killed while attempting to surrender to a Roman soldier. According to this story, Archimedes was carrying mathematical instruments, and was killed because the soldier thought that they were valuable items. General Marcellus was reportedly angered by the death of Archimedes, as he had ordered him not to be harmed. The last words attributed to Archimedes are "Do not disturb my circles". This quote is often given in Latin as "Noli turbare circulos meos", but there is no reliable evidence that Archimedes uttered these words, and they do not appear in the account given by Plutarch. Archimedes' tomb had a carving of his favorite mathematical diagram, which was a sphere inside a cylinder of the same height and diameter. Archimedes had proved that the volume and surface area of the sphere would be two thirds that of the cylinder. In 75 BC, 137 years after his death, the Roman orator Cicero visited the tomb in Syracuse which had become overgrown with scrub. Cicero had the tomb cleaned up, and was able to see the carving and read some of the verses that had been added as an inscription. The account of the siege of Syracuse given by Polybius in his Universal History was written some seventy years after the death of Archimedes, and was used as a source by Plutarch and Livy. It sheds little light on Archimedes as a person, and focuses on the war machines that he is said to have built in order to defend the city. Discoveries and Inventions Most of the facts about his life come from a biography about the Roman soldier Marcellus written by the Roman biographer Plutarch. According to Plutarch, Archimedes had so low an opinion of the kind of practical invention at which he excelled and to which he owed his contemporary fame that he left no written work on such subjects. While it is true that--apart from a dubious reference to a treatise, On Sphere-Making - all of his known works were of a theoretical character, nevertheless his interest in mechanics deeply influenced his mathematical thinking. Not only did he write works on theoretical mechanics and hydrostatics, but his treatise Method Concerning Mechanical Theorems shows that he used mechanical reasoning as a heuristic device for the discovery of new mathematical theorems. He was best known for his discovery of the relation between the surface and volume of a sphere and its circumscribing cylinder, for hisformulation of a hydrostatic principle Archimedes' principle and for inventing the Archimedes screw (a device for raising water). Archimedes Principal states: an object immersed in a fluid experiences a buoyant force that is equal in magnitude to the force of gravity on the displaced fluid. He also invented things such as the hydraulic screw - for raising water from a lower to a higher level, catapult, the lever, the compound pulley and the burning mirror. In mechanics Archimedes discovered fundamental theorems concerning the center of gravity of plane figures and solids. Archimedes probably spent some time in Egypt early in his career, but he resided for most of his life in Syracuse, the principal city-state in Sicily, where he was on intimate terms with its king, Hieron II. Archimedes published his works in the form of correspondence with the principal mathematicians of his time, including the Alexandrian scholars Conon of Samos and Eratosthenes of Cyrene. He played an important role in the defense of Syracuse against the siege laid by the Romans in 213 BC by constructing war machines so effective that they long delayed the capture of the city. But Syracuse was eventually captured by the Roman general Marcus Claudius Marcellus in the autumn of 212 or spring of 211 BC, and Archimedes was killed in the sack of the city. Archimedes Screw Archimedes Screw, or Archimedean screw, or screwpump, is a machine historically used for transferring water from a low-lying body of water into irrigation ditches. It is one of several inventions and discoveries reputed to have been made by Archimedes, but as some researchers suggest, some form of this mechanism may have been used earlier by Sennacherib, King of Assyria, in the 7th century BC. Modern screw pumps, consisting of helices rotating in open inclined troughs, are effective for pumping sewage in wastewater treatment plants. The open troughs and the design of the screws permit the passage of debris without clogging. The Burning Mirror (Glass) Archimedes invented many machines which were used as engines of war. These were particularly effective in the defense of Syracuse when it was attacked by the Romans under the command of Marcellus. During the Roman siege of Syracuse, he is said to have single-handedly defended the city by constructing lenses to focus the Sun's light on Roman ships and huge cranes to turn them upside down. When the Romans finally broke the siege, Archimedes was killed by a Roman soldier after snapping at him, "Don't disturb my circles,'' a reference to a geometric figure he had outlined on the sand. While Archimedes did not invent the lever, he gave the first rigorous explanation of the principles involved, which are the transmission of force through a fulcrum and moving the effort applied through a greater distance than the object to be moved. His Law of the Lever states: Magnitudes are in equilibrium at distances reciprocally proportional to their weights. According to Pappus of Alexandria, his work on levers caused him to remark, "Give me a place to stand on, and I will move the Earth." Plutarch describes how Archimedes designed block and tackle pulley systems, allowing sailors to use the principle of leverage to lift objects that would otherwise have been too heavy to move. A large part of Archimedes' work in engineering arose from fulfilling the needs of his home city of Syracuse. The Greek writer Athenaeus of Naucratis describes how King Hieron II commissioned Archimedes to design a huge ship, the Syracusia, which could be used for luxury travel, carrying supplies, and as a naval warship. The Syracusia is said to have been the largest ship built in classical antiquity. According to Athenaeus, it was capable of carrying 600 people and contained garden decorations, a gymnasium and a temple dedicated to the goddess Aphrodite. Since a ship of this size would leak a considerable amount of water through the hull, the Archimedes' Screw was said to have been developed in order to remove the bilge water. Archimedes had stated in a letter to King Hieron that given the force, any given weight might be moved, and even boasted, we are told, relying on the strength of demonstration, that if there were another earth, by going into it he could remove this. Hiero being struck with amazement at this, and entreating him to make good this problem by actual experiment, and show some great weight moved by a small engine, he fixed accordingly upon a ship of burden out of the king's arsenal, which could not be drawn out of the dock without great labor and many men; and, loading her with many passengers and a full freight, sitting himself the while far off, with no great endeavor, but only holding the head of the pulley in his hand and drawing the cords by degrees, he drew the ship in a straight line, as smoothly and evenly as if she had been in the sea.
Recommended publications
  • Mathematicians
    MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus
    [Show full text]
  • Archimedes of Syracuse
    5 MARCH 2020 Engineering: Archimedes of Syracuse Professor Edith Hall Archimedes and Hiero II’s Syracuse Archimedes was and remains the most famous person from Syracuse, Sicily, in history. He belonged to the prosperous and sophisticated culture which the dominantly Greek population had built in the east of the island. The civilisation of the whole of ancient Sicily and South Italy was called by the Romans ‘Magna Graecia’ or ‘Great Greece’. The citis of Magna Graecia began to be annexed by the Roman Republic from 327 BCE, and most of Sicily was conquered by 272. But Syracuse, a large and magnificent kingdom, the size of Athens and a major player in the politics of the Mediterranean world throughout antiquity, succeeded in staying independent until 212. This was because its kings were allies of Rome in the face of the constant threat from Carthage. Archimedes was born into this free and vibrant port city in about 287 BCE, and as far as we know lived there all his life. When he was about twelve, the formidable Hiero II came to the throne, and there followed more than half a century of peace in the city, despite momentous power struggles going on as the Romans clashed with the Carthaginians and Greeks beyond Syracuse’s borders. Hiero encouraged arts and sciences, massively expanding the famous theatre. Archimedes’ background enabled him to fulfil his huge inborn intellectual talents to the full. His father was an astronomer named Pheidias. He was probably sent to study as a young man to Alexandria, home of the famous library, where he seems to have became close friend and correspondent of the great geographer and astonomer Eratosthenes, later to become Chief Librarian.
    [Show full text]
  • Long Waves on the Seven Seas
    4 Waves on Waves – Long Waves on the Seven Seas Anttiheikki Helenius Abstract Kondratieff waves are an interesting subject of study and describe present global economic developments. The Global Financial Crisis of 2009 and the present economic situation have parallels with the Great Depression of the 1930s. Twice-in-a-century events are occurring again. On the other hand, many important innovations have been introduced during the last decades. These innovations have changed people's lives in a revolution- ary manner and have contributed very positively to the global development. Study of the development of seafaring supports the claim of the existence of Kondratieff waves. Important innovations and milestones of development of seafaring coincided with the upswing phases of these waves. Moods of different eras manifest also in composition of shipping fleets and flotillas. One needs new creative approaches to solve global challenges. The study of long waves allows compelling insights and provides timeless wisdom for the study of economics. Keywords: Kondratieff waves, long waves, global financial crisis, maritime economics, economic forecasting, philosophy of science and economics, Schum- peterian economics, time preference of consumption, Hayekian economics, cruise industry. General Introduction to the Long Waves and to the Subject of This Article For my Doctoral thesis in Economics I studied the theory of Kondratieff waves. I used that theory in the practical context when analyzing the air transportation (Helenius 2003). A special vindication could be established for using a long waves approach for analyzing air transportation. Also I have used the long waves approach in recent conference papers (Idem 2009, 2010).
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    https://ntrs.nasa.gov/search.jsp?R=19710025504 2020-03-11T22:36:49+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 6 X t B ICC"m date: July 16, 1971 955 L'Enfant Plaza North, S. W Washington, D. C. 20024 to Distribution B71 07023 from. J. W. Head suhiecf Derivation of Topographic Feature Names in the Apollo 15 Landing Region - Case 340 ABSTRACT The topographic features in the region of the Apollo 15 landing site (Figure 1) are named for a number of philosophers, explorers and scientists (astronomers in particular) representing periods throughout recorded history. It is of particular interest that several of the individuals were responsible for specific discoveries, observations, or inventions which considerably advanced the study and under- standing of the moon (for instance, Hadley designed the first large reflecting telescope; Beer published classic maps and explanations of the moon's surface).
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Meet the Philosophers of Ancient Greece
    Meet the Philosophers of Ancient Greece Everything You Always Wanted to Know About Ancient Greek Philosophy but didn’t Know Who to Ask Edited by Patricia F. O’Grady MEET THE PHILOSOPHERS OF ANCIENT GREECE Dedicated to the memory of Panagiotis, a humble man, who found pleasure when reading about the philosophers of Ancient Greece Meet the Philosophers of Ancient Greece Everything you always wanted to know about Ancient Greek philosophy but didn’t know who to ask Edited by PATRICIA F. O’GRADY Flinders University of South Australia © Patricia F. O’Grady 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Patricia F. O’Grady has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identi.ed as the editor of this work. Published by Ashgate Publishing Limited Ashgate Publishing Company Wey Court East Suite 420 Union Road 101 Cherry Street Farnham Burlington Surrey, GU9 7PT VT 05401-4405 England USA Ashgate website: http://www.ashgate.com British Library Cataloguing in Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask 1. Philosophy, Ancient 2. Philosophers – Greece 3. Greece – Intellectual life – To 146 B.C. I. O’Grady, Patricia F. 180 Library of Congress Cataloging-in-Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask / Patricia F.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Ships in the Eastern Mediterranean During the Hellenistic Period N ANTET EDITED by EMMANUEL NANTET with a PREFACE by ALAIN BRESSON (
    E Sailing from Polis to Empire MMANUEL Ships in the Eastern Mediterranean during the Hellenistic Period N ANTET EDITED BY EMMANUEL NANTET WITH A PREFACE BY ALAIN BRESSON ( ED Sailing from Polis to Empire What can the architecture of ancient ships tell us about their capacity to carry cargo or to .) navigate certain trade routes? How do such insights inform our knowledge of the ancient S economies that depended on mari� me trade across the Mediterranean? These and similar ques� ons lie behind Sailing from Polis to Empire, a fascina� ng insight into the prac� cali� es of trading by boat in the ancient world. Allying modern scien� fi c knowledge with Hellenis� c sources, this interdisciplinary collec� on brings together experts in various fi elds of ship archaeology to shed new light on the role played by ships and AILING sailing in the exchange networks of the Mediterranean. Covering all parts of the Eastern Mediterranean, these outstanding contribu� ons delve into a broad array of data – literary, epigraphical, papyrological, iconographic and archaeological – to understand the trade FROM routes that connected the economies of individual ci� es and kingdoms. Unique in its interdisciplinary approach and focus on the Hellenis� c period, this collec� on P digs into the ques� ons that others don’t think to ask, and comes up with (some� mes OLIS surprising) answers. It will be of value to researchers in the fi elds of naval architecture, Classical and Hellenis� c history, social history and ancient geography, and to all those with TO an interest in the ancient world or the seafaring life.
    [Show full text]
  • 9 · the Growth of an Empirical Cartography in Hellenistic Greece
    9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po­ cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know­ achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li­ various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter­ spheres, together with maps of the inhabited world that ranean world.
    [Show full text]
  • Archimedes' Cattle Problem
    Occam's Razor Volume 4 (2014) Article 4 2014 Archimedes' Cattle rP oblem Austin Hill Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/orwwu Part of the Physical Sciences and Mathematics Commons Recommended Citation Hill, Austin (2014) "Archimedes' Cattle rP oblem," Occam's Razor: Vol. 4 , Article 4. Available at: https://cedar.wwu.edu/orwwu/vol4/iss1/4 This Research Paper is brought to you for free and open access by the Western Student Publications at Western CEDAR. It has been accepted for inclusion in Occam's Razor by an authorized editor of Western CEDAR. For more information, please contact [email protected]. Hill: Archimedes' Cattle Problem ARCHIMEDES’ CATTLE PROBLEM by Austin Hill If thou art able, O stranger, to find out all these things and gather them together in your mind, giving all the relations, thou shalt depart crowned with glory and knowing that thou hast been adjudged perfect in this species of wisdom. - Archimedes 22 Published by Western CEDAR, 2017 1 Occam's Razor, Vol. 4 [2017], Art. 4 Archimedes, born nearly 2,300 years ago, is a man of legacy The problem was presented to Eratosthenes in the form of within the mathematical and scientific world. Known for a poetic letter and is broken up into two smaller problems. his work in the field of hydrostatics, mathematical calculus, For the first problem, Archimedes provides a system of and geometry, Archimedes’ mathematical advancements seven linear equations, each of which relates the number went unrivaled for 2,000 years until the time of Isaac of a certain color and gender of cattle to another two.
    [Show full text]
  • Bibliography
    Bibliography Afshar, Iraj: Bibliographie des Catalogues des Manuscrits Persans. Tehran: 1958. Almagest: see Ptolemy. Apollonius: Apollonii Pergaei quae Graece exstant cum commentariis Eutocii (ed. J. L. Heiberg), 2 vols. Leipzig: 1891, 1893. Arberry, A. J. : The Chester Beatty Library, A Handlist of the Arabic Manuscripts, Vol. VII. Dublin: 1964. Archimedes: Archimedis Opera Omnia cum commentariis Eutocii, (iterum ed. J. L. Heiberg), 3 vols. Leipzig: 1910-1915. Archimedes: see also Heath. Aristarchus of Samos: On the Sizes and Distances of the Sun and Moon (ed. T. Heath). Oxford: 1913. Aristotle, Nicomachean Ethics: Aristotelis Ethica Nicomachea (ed. I. Bywater). Oxford: 1894. Aristotle, Prior Analytics: Aristotelis Analytica Priora et Posteriora (ed. W. D. Ross and L. Minio-Paluello). Oxford: 1964. Autolycus: J. Mogenet, Autolycus de Pitane. Louvain, 1950 (Universite de Louvain, Recueil de Travaux d'Histoire et de Philologie, 3e. Serie Fasc. 37). Awad, Gurgis: "Arabic Manuscripts in American Libraries". Sumer 1, 237-277 (1951). (Arabic). Bachmann, Peter: Galens Abhandlung dariiber, dal3 der vorziigliche Arzt Philosoph sein mul3. Gottingen: 1965 (Ak. Wiss. Gottingen, Nachrichten Phil. -hist. Kl. 1965.1). Belger, C.: "Ein neues Fragmentum Mathematicum Bobiense". Hermes 16, 261-84 (1881). Boilot, D. J.: "L'oeuvre d'al-Beruni, essai bibliographique". Melanges de l'Institut Dominicain d'Etudes Orientales du Caire ~, 161-256 (1955). Bretschneider, C. A.: Die Geometrie und die Geometer vor Eukleides. Leipzig: 1870. 217 Bib Ziography Brockelmann, Carl: Geschichte der Arabischen Litteratur, zweite den Supplementbanden angepasste Aunage, 2 vols. Leiden: 1943, 1949 [GAL] [and] Supplementbande I-III. Leiden: 1937, 1938, 1942 [S]. Bulmer-Thomas, I.: "Conon of Samos". Dictionary of Scientific Biography III, (New York), 391 (1971).
    [Show full text]
  • 4. Naves Pingere: ‘Painting Ships’ in the Hellenistic Period
    E Sailing from Polis to Empire MMANUEL Ships in the Eastern Mediterranean during the Hellenistic Period N ANTET EDITED BY EMMANUEL NANTET WITH A PREFACE BY ALAIN BRESSON ( ED Sailing from Polis to Empire What can the architecture of ancient ships tell us about their capacity to carry cargo or to .) navigate certain trade routes? How do such insights inform our knowledge of the ancient S economies that depended on mari� me trade across the Mediterranean? These and similar ques� ons lie behind Sailing from Polis to Empire, a fascina� ng insight into the prac� cali� es of trading by boat in the ancient world. Allying modern scien� fi c knowledge with Hellenis� c sources, this interdisciplinary collec� on brings together experts in various fi elds of ship archaeology to shed new light on the role played by ships and AILING sailing in the exchange networks of the Mediterranean. Covering all parts of the Eastern Mediterranean, these outstanding contribu� ons delve into a broad array of data – literary, epigraphical, papyrological, iconographic and archaeological – to understand the trade FROM routes that connected the economies of individual ci� es and kingdoms. Unique in its interdisciplinary approach and focus on the Hellenis� c period, this collec� on P digs into the ques� ons that others don’t think to ask, and comes up with (some� mes OLIS surprising) answers. It will be of value to researchers in the fi elds of naval architecture, Classical and Hellenis� c history, social history and ancient geography, and to all those with TO an interest in the ancient world or the seafaring life.
    [Show full text]