WSSV - White Spot Syndrome Virus
Total Page:16
File Type:pdf, Size:1020Kb
WSSV - White spot syndrome virus RCN Marine Disease Modeling and Transmission Workshop – May 2015 Digestive tract Decapod anatomy Ventral Nerve chord Circulatory system Respiratory system Hematopoietic tissue Lymphoid organ Female reproductive tract Male reproductive tract RCN Marine Disease Modeling and Transmission Workshop – May 2015 WSSV Envelope proteins Envelope Tegument Nucleocapsid Genome 210-380nm • dsDNA - ~300kbp • 185 ORFs Envelope extension • Baculovirales • Nimaviridae • Whispovirus RCN Marine Disease Modeling and Transmission Workshop – May 2015 70-167nm “Baculovirales” WSSV Nimaviruses GpSGHV Hystrosaviruses MdGHV CcBV TnZBV Bracoviruses CiBV HzNV-1 PmNV Nudiviruses GbNV OrNV CunNPV NeleNPV Baculoviruses AcMNPV CpGV Wang Y, Jehle JA 2009. JIP 101: 187-193; Wang Y et al 2011. Vir Gen 42:444 – 456; Thézé J et al. 2011. PNAS ;108:15931-35 RCN Marine Disease Modeling and Transmission Workshop – May 2015 World's Production of Penaeid Shrimp 15 Total ) Capture 9 10 Aquaculture 75% Pounds (x 10 5 25% 0 1950 1970 1990 2010 Source: FAO RCN Marine Disease Modeling and Transmission Workshop – May 2015 Shrimp commodity production RCN Marine Disease Modeling and Transmission Workshop – May 2015 Shrimp Aquaculture Species Litopenaeus vannamei Penaeus monodon Fenneropenaeus chinensis Marsupenaeus japonicus RCN Marine Disease Modeling and Transmission Workshop – May 2015 Production of Farmed Shrimp - China 500 450 400 350 300 250 200 150 Millions of Pounds of Millions 100 50 0 1980 1985 1990 1995 Year RCN Marine Disease Modeling and Transmission Workshop – May 2015 Spread of WSSV 2002 1993 1995 1997 2002 1994 1992 1999 1994 1998 1999 1999 2005 1999 1996 RCN Marine Disease Modeling and Transmission Workshop – May 2015 Emergence of White spot syndrome virus 1 km RCN Marine Disease Modeling and Transmission Workshop – May 2015 Emergence of White spot syndrome virus 1. Environment changes bringing new contacts More shrimp Ponds built in new areas – where shrimp never were or in low numbers More contact between other (terrestrial) arthropods and shrimp 2. Change in pathogen virulence 3. Introduced from elsewhere RCN Marine Disease Modeling and Transmission Workshop – May 2015 World's Production of Penaeid Shrimp 15 Total Capture ) ) 9 9 10 Aquaculture 75% Pounds (x10 (x10 Pounds Pounds 5 25% 0 1950 1970 1990 2010 Source: FAO RCN Marine Disease Modeling and Transmission Workshop – May 2015 More shrimp – more places Greater opportunity for contact between shrimp and other arthropods RCN Marine Disease Modeling and Transmission Workshop – May 2015 Hosts of WSSV • Shrimp – Penaeus – Exopalaemon – Armasus cinereum • monodon • orientalis – Scylla serrata • semisulcatus – Macrobrachium spp. – Sesarma spp. – Farfantepenaeus – Palaemon styliferuus – Sommanniathelpusa sp. • aztecus – Palaemonetes pugio – Thalamita sp. • duorarum • Crab – Uca spp. – Fenneropenaeus – Calappa lophos – Menippe adina • chinensis – Charybdis • Lobster • indicus • feriata – Panuluris • merguensis • natotor • longipes • penicillatus – Helice sp. • ornatus – Marsupenaeus – Portunus • argus • japonicus • pelagicus • Crayfish – Litopenaeus • Sanguineolentus – Procambarus clarkii • vannamei – Callinectes sapidus – Cherax quadricarinatus • stylirostris • setiferus – Metapenaeus ensis RCN Marine Disease Modeling and Transmission Workshop – May 2015 WSSV Litopenaeus vannamei 1000 900 800 Weight 3 g 3 700 Density 550/m Dose 0.03 bw 600 final survival 0.00, 0.03 500 max daily mortality 1.0 ,0.6 400 Number of of shrimp Number 300 200 100 0 0 3 6 9 12 15 18 21 Day RCN Marine Disease Modeling and Transmission Workshop – May 2015 Uca panacea Local decapods exposed to WSSV (China) 1.0 Armasus cinereum 0.9 0.8 0.7 Uca speciosa 0.6 0.5 Survival 0.4 Litopenaeus setiferus 0.3 0.2 0.1 Callinectes sapidus 0.0 0 5 10 15 20 25 30 Day RCN Marine Disease Modeling and Transmission Workshop – May 2015 Salt marshes RCN Marine Disease Modeling and Transmission Workshop – May 2015 Mississippi sound Biloxi Wolf Jourdan Pearl Lake Pontchartrain RCN Marine Disease Modeling and Transmission Workshop – May 2015 Prevalence of WSSV in decapods of Ms Sound Blue crab (Callinectes sapidus) (8.3%, n=12) Purple marsh crab (Sesarma reticulatum) (10.0%, n=20) Gulf mud fiddler crab (Uca longisignalis) (50.0%, n=72) Panacea sand fiddler crab (U. panacea) (10.8%, n=1404) Mudflat fiddler crab (U. rapax) (23.0%, n=88) Spined fiddler crab (U. spinicarpa) (35.7%, n=98) Red-jointed fiddler crab (U. minax) (22.7%, n=22) Squareback marsh crab (Armasus cinereum) (26.7%, n=30) Daggerblade grass shrimp (Palaemonetes pugio) (9.4%, n=1244) White shrimp (Litopenaeus setiferus) (20.0%, n=40) RCN Marine Disease Modeling and Transmission Workshop – May 2015 Modeling WSSV in communities of decapods RCN Marine Disease Modeling and Transmission Workshop – May 2015 WSSV life cycle diagram χ β λ αµ, Susceptible Infected Dead µ δ, η Host recruitment = − ⋅−−βIDtt − χ +− λµ St+1 SS tt(11( ) ( 1 ) ) β TransmissionLive λ IDtt TransmissionDead =+⋅−−β − χ −−− αµ ⋅− ⋅ It+1 IS tt(11( ) ( 1) ) ( 11( ) ( 1 )) It α MortalityWSSV χ MortalityNatural DDtt+1 = +−−(11( αµ) ⋅−( 1)) ⋅−−−It( 11( ηδ) ⋅−( 1 )) ⋅Dt δ DecayCarcass μ ConsumptionCarcass RCN Marine Disease Modeling and Transmission Workshop – May 2015 η Transmission terms - Force of infection, λ, probability of infection after contact Ross S= SS- ⋅⋅β I Kermack-McKendrick tt+1 tt( ) I Reed-Frost S= SS- ⋅−(1t ) t+1 tt (1−β ) Black-Singer RCN Marine Disease Modeling and Transmission Workshop – May 2015 Force of Infection Probability of infection after contact with all infecteds Ross λβ=( ⋅ I ) I Reed-Frost λβ=−−11( ) RCN Marine Disease Modeling and Transmission Workshop – May 2015 Ross S= S- β ⋅⋅ SI Kermack-McKendrick tt+1 ( tt) If β is probability of transmission after one S contacts one I Then S·I is number of contacts between every S and every I May have more infects than susceptibles Some transmissions are to the same susceptible SSSSSSS 1234567 I1 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 I SI SI SI SI SI SI SI 2 21 22 23 24 25 26 27 I SI SI SI SI SI SI SI 3 31 32 33 34 35 36 37 RCN Marine Disease Modeling and Transmission Workshop – May 2015 I Reed-Frost S= SS- ⋅−(1t ) t+1 tt (1−β ) Black-Singer β 1− β * *β 1− β 3 Ways to become infected 1 & not 2 β∗(1−β) or Only 1 way to remain uninfected not 1 & 2 (1−β)∗β 1 & 2 (1- β)∗(1−β) or 1 & 2 β∗β − β 2 β∗(1−β) + (1−β)∗β + β∗β (1 ) 1−− (1β ) 2 RCN Marine Disease Modeling and Transmission Workshop – May 2015 Epidemic models – parameter estimates = − ⋅−−βχIDtt − St+1 SS tt(11( ) ( 1 ) ) = + ⋅−−βIDtt − χα −⋅ It+1 IS tt(11( ) ( 1 ) ) It DDtt+1 = +⋅−−−α I t(11( ηδ) ⋅−( 1 )) ⋅Dt RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates – transmission (β, χ) It St+1 = SS tt − ⋅−−(1 (1β ) ) 1 S t ln1 S0 Solve for β β (1)= 1 − exp I 0 If t = 1 and I0 = 1: s β =1 − 1 s0 Theβ proportion infected after exposure to one infected shrimp RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates – transmission (β, χ) RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates – transmission (β, χ) RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates – transmission (β, χ) RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates – transmission (β, χ) and virulence (α) • 1-L jars • 1 shrimp per jar • 5d incubation • Collect mortalities (α) • Collect survivors RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates – virulence (α) It+1 =−⋅ II ttα 40 30 20 Survival 10 0 0 4 8 12 16 Time (h) RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates – decay of transmission (δ) 1.0 decomposition transmission decreases by 48% per day χ 0.8 0.6 0.4 Transmission Transmission 0.2 0.0 0 4 8 12 Days after death y-intercept = 0.499 RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates : consumption of shrimp decrease per hr (day) decrease per hr (day) η 17% (99) 1 shrimp 6% (79) 30% (100) 6 shrimp 11% (94) 34% (100) 12 shrimp 11% (94) 33% (100) 24 shrimp 12% (96) 1.0 1.0 Fasted Fed 0.8 0.8 0.6 0.6 0.4 0.4 Proportion Biomass Proportion Proportion Biomass Proportion 0.2 0.2 0.0 0.0 0 10 20 30 0 10 20 30 Time (hr) Time (hr) RCN Marine Disease Modeling and Transmission Workshop – May 2015 Parameter estimates : consumption (η) & decomposition (δ) combined 0.48 + 1.00 - 1.0* 0.48= 1.00 0.48 + .79 - .79*.48= 0.89 An infected dead shrimp retains about 0 – 10% of its infectivity per day RCN Marine Disease Modeling and Transmission Workshop – May 2015 Life table of infection State Duration Transmission Product 1 β Live Infected β α α Dead 1 χ χ Infected 11−−( δη)( 1 −) 11−−( δη)( 1 −) βχ R = + 0 α δ+−⋅ η δη 0.1 0.6 R =+=0.9 0 0.4 0.5+−⋅ 0.9 0.5 0.9 RCN Marine Disease Modeling and Transmission Workshop – May 2015 WSSV life cycle diagram 3-host community χ1,1 β3,1 χ3,1 β1,1 λ1 α1, µ1 Susceptible Infected Dead δ1, η1 µ1 χ1,2 β1,2 β2,1 χ2,1 β2,2 α µ 2, 2 λ2 Dead Infected Susceptible δ2, η2 µ2 χ2,2 χ3,2 β3,2 β2,3 χ2,3 α µ λ3 3, 3 Susceptible Infected Dead β3,3 δ3, η3 µ3 χ3,3 β1,3 χ1,3 RCN Marine Disease Modeling and Transmission Workshop – May 2015 WSSV 3-host community matrix model 3 IDii ∏(11−βχ1,ii) ⋅−( 1, ) 0 0 0 0 0 0 0 0 i=1 3 IDii 11−∏( −βχ1,ii) ⋅−( 11, ) 1 − α1 0 0 0 0 0 0 0 = i 1 S1 0 α11−−( δη) ⋅−( 1 ) 0 0 0 0 0 0 1 I1 3 ID ii D1 0 0 0∏( 11−βχ2,ii) ⋅−( 2, ) 0 0 0 0 0 i=1 S2 3 IDii ⋅ I 2 0 0 0 11−∏( −βχ2,ii) ⋅−( 12, ) 1 − α2 0 0 0 0 i=1 D2 0 0 0 0 α11−− δη ⋅− 1 0 0 0 S 2 ( ) ( ) 3 3 IDii I3 0 00 0 00∏( 1− β3,ii) ⋅−(1χ3, ) 00 i=1 D3 3 IDii 0 0 0 0 0 0 11−∏( −βχ3,ii) ⋅−( 13, ) 1 − α3 0 i=1 0 0 0 0 0 0 0 α3 11−−( δη) ⋅−( 1 ) RCN Marine Disease Modeling and Transmission Workshop – May 2015.