Varicella-Zoster Virus ORF57, Unlike Its Pseudorabies Virus UL3.5 Homolog, Is Dispensable for Viral Replication in Cell Culture

Total Page:16

File Type:pdf, Size:1020Kb

Varicella-Zoster Virus ORF57, Unlike Its Pseudorabies Virus UL3.5 Homolog, Is Dispensable for Viral Replication in Cell Culture VIROLOGY 250, 205±209 (1998) ARTICLE NO. VY989349 Varicella-Zoster Virus ORF57, Unlike Its Pseudorabies Virus UL3.5 Homolog, Is Dispensable for Viral Replication in Cell Culture Edward Cox,1 Sanjay Reddy,1 Ilya Iofin, and Jeffrey I. Cohen2 Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892 Received May 27, 1998; returned to author for revision June 24, 1998; accepted July 23, 1998 Varicella zoster virus (VZV) encodes five genes that do not have homologs in herpes simplex virus. One of these genes, VZV ORF57, is predicted to encode a protein containing 71 amino acids. Antibody to ORF57 protein immunoprecipitated a 6-kDa protein in the cytosol of VZV-infected cells. Although the homolog of VZV ORF57 in pseudorabies virus, UL3.5, is critical for viral egress and growth in cell culture, VZV unable to express ORF57 replicated to titers similar to those seen with parental virus. Thus VZV ORF57 has a different role in viral replication than its pseudorabies virus homolog. INTRODUCTION itis virus UL3.5 to 220 amino acids for PRV UL3.5. These proteins have sequence homology in their first 50 amino Varicella-zoster virus (VZV) is a member of the alpha- acids (Khattar et al., 1995) and contain a large number of herpesvirus subfamily. This subfamily is further divided basic amino acids with isoelectric points ranging from 10 into the genus Simplexvirus, which includes herpes sim- to 13. BHV-1 UL3.5 is a virion protein associated with the plex virus (HSV) and herpesvirus simiae, and Varicello- tegument or envelope whose role in virus replication is virus, which includes VZV, equine herpesvirus type 1 unknown (Schikora et al., 1998). In contrast, PRV UL3.5 (EHV-1), EHV-4, bovine herpesvirus type 1 (BHV-1), and encodes a nonstructural protein that is critical for viral pseudorabies virus (PRV). egress (Fuchs et al., 1996). VZV encodes at least 69 unique genes, and all except Here we show that VZV ORF57 encodes a 6-kDa pro- five of these genes have homologs in HSV (Cohen and tein present in the cytosol of virus-infected cells. Unlike Straus, 1996). Three of the five genes, ORFs 1, 13, and 32, its PRV counterpart, deletion of VZV ORF57 does not have been shown to be dispensable for replication of impair growth of the virus in cell culture. VZV in vitro. ORF1 encodes a membrane protein (Cohen and Seidel, 1995), whereas ORF32 encodes a phospho- RESULTS AND DISCUSSION protein that is posttranslationally modified by the VZV ORF47 kinase (Reddy et al., 1998). ORF13 encodes the To verify that ORF57 is expressed in VZV-infected cells, viral thymidylate synthetase (Cohen and Seidel, 1993). rabbit antibodies were made to a fusion protein derived 35 The other two VZV proteins that do not have HSV ho- from VZV ORF57. Immunoprecipitation of [ S]methi- mologs have not been studied. onine-labeled cells showed a 6-kDa protein from VZV- VZV ORF57 is predicted to encode a 71-amino-acid infected cells using antisera to VZV ORF57 (Fig. 1A). A protein containing hydrophilic and basic residues (Davi- similar-sized protein was not present in uninfected cells. 32 son and Scott, 1986). Although VZV ORF57 does not have Immunoprecipitations of [ P]orthophosphoric acid-ra- a homolog with HSV, it does share positional and limited diolabeled VZV-infected cells were performed to deter- sequence homology with other Varicellovirus proteins. mine whether the ORF57 protein is phosphorylated. An- These include EHV-1 gene 59 (Telford et al., 1992), EHV-4 tibody to ORF57 protein did not immunoprecipitate a gene 59 (Telford et al., 1998), PRV UL3.5 (Dean et al., phosphoprotein from VZV-infected cells, whereas anti- 1993), BHV-1 UL3.5 (Khattar et al., 1995), and infectious body to gE detected the phosphorylated glycoprotein laryngotracheitis virus UL3.5 proteins (Fuchs and Met- (data not shown). tenleiter, 1996). Although VZV ORF57 protein is predicted Cytosolic and membrane fractions were prepared from to be 71 amino acids in length, the other proteins range radiolabeled VZV-infected cells to determine where in size from 72 amino acids for infectious laryngotrache- ORF57 protein is located in infected cells. Immunopre- cipitation with antibody to ORF57 protein showed that the protein was located in the cytosolic fraction of infected 1 These two authors have contributed equally to this work. cells but not in the membrane fraction (Fig. 2). As a 2 To whom reprint requests should be addressed at Building 10, control for separation of the cellular fractions, VZV gE Room 11N214. Fax: (301) 496-7383. localized to the membrane but not the cytosolic fraction. 0042-6822/98 205 206 COX ET AL. plaques (6 the standard deviation) produced by the ROka57DA (0.87 6 0.21 mm) was not statistically differ- ent from the size of plaques produced by ROka (0.80 6 0.16 mm) in melanoma cells (P 5 .21, Tukey's multiple comparison test). The size of plaques from the ORF57 mutant and ROka were similar in U2OS osteosarcoma cells (0.44 6 0.09 and 0.38 6 0.04 mm, respectively) and in schwannoma cells (0.60 6 0.07 and 0.72 6 0.08, respectively). To further verify that the ORF57 deletion mutants were not impaired for growth in vitro, melanoma cells were infected with the ORF57 mutants and the titer of virus was determined at different time points. VZV ROka57D grew to titers similar to those seen in cells infected with the parental (ROka) virus (Fig. 4). Although the VZV ORF57 mutant was not impaired for FIG. 1. Characterization of ORF57 protein from VZV-infected cells. (A) growth in cell culture, a PRV UL3.5 mutant that truncates Antibody to ORF57 protein immunoprecipitates a 6-kDa protein in VZV the protein after the first 10 amino acids was severely ROka-infected cells (arrow) but not in ROka57DA- or ROka57DB-in- impaired for growth in vitro (Fuchs et al., 1996). The PRV fected cells. (B) Cells infected with VZV ROka, ROka57DA, or ROka57DB UL3.5 deletion mutant was blocked for the development express proteins of 60±100 kDa that react with monoclonal antibody to VZV gE. Numbers refer to molecular weight of proteins in kilodaltons. and release of virions from infected cells and required a complementing cell line to produce plaques. Although BHV-1 UL3.5 and PRV UL3.5 proteins show Unlike VZV ORF57, PRV UL3.5 is located in the mem- limited sequence identity (26%) and difference in size, brane-plus-microsome fraction of virus-infected cells the BHV-1 protein can complement the PRV protein (Fuchs et al., 1996). (Fuchs et al., 1997). These findings, along with the To determine whether ORF57 is essential for growth of observation that other alphaherpesviruses have UL3.5 VZV in vitro, cells were transfected with cosmids NotIA, homologs led Fuchs et al. (1997) to postulate that MstII B, MstII A-57DA, or MstII A-57DB and plasmids ªmembers of this gene family might contribute to the pNotI B and pCMV62. Cytopathic effects, indistinguish- same general step of alphaherpesvirus maturation able from those seen with parental VZV, were present in and egress.º Our observation that VZV ORF57, the cells transfected with the ORF57 deletion mutant cos- homolog of PRV UL3.5, is fully dispensable for repli- mids. Virion DNA was prepared from cells infected with VZV ROka and ROka57D, and Southern blots were per- formed to verify that the genomes had the expected configurations. Digestion of DNA from VZV ROka57D with EcoRI showed restriction fragments that were iden- tical to those seen with the parental virus (Fig. 3A). Digestion of DNA from ROka with SphI showed a 1.8-kb band, whereas DNA from ROka57D had a 1.6-kb band due to the deletion in ORF57 (Fig. 3B). To verify that cells infected with ROka57D were unable to express ORF57 protein, infected cells were radiola- beled and lysates were immunoprecipitated with anti- body to the proteins. Although cells infected with ROka expressed a 6-kDa protein that reacted with antibody to ORF57 protein, ROka57DA- and ROka57DB-infected cells did not produce a similar-size protein (Fig. 1A). To ensure that the absence of expression of ORF57 protein was not due to the lack of VZV gene expression, immunoprecipi- tations were performed from cells infected with the FIG. 2. VZV ORF57 is a cytosolic protein. Cells infected with VZV ORF57 deletion mutants with antibody to gE. Cells in- ROka were radiolabeled with [35S]methionine, and membrane (A) and fected with the mutants expressed VZV gE (Fig. 1B). cytosolic (B) fractions were prepared. An aliquot of each fraction was Melanoma cells were infected with cells containing immunoprecipitated using antibody to ORF57 (lanes 1 and 2) or VZV gE (lanes 3 and 4) proteins. VZV ORF57 protein is detected only in the the ORF57 mutant virus, and the plaque sizes were cytosolic fraction of cells infected with VZV (arrow), whereas gE is measured to determine whether the absence of ORF57 present in the membrane fraction (arrow). Numbers refer to molecular affects the growth of VZV in vitro. The mean size of weight of proteins in kilodaltons. VZV ORF57 IS DISPENSABLE FOR VIRUS REPLICATION 207 nizes CACNNNGTG, the DraIII site of plasmid Litmus 38 was ablated, and two new DraIII sites, correspond- ing to the DraIII sites near ORF57 (VZV nucleotides 98,632 and 99,818) were inserted. Oligonucleotides CTAGTCCACGTTGTGGA and AGCTTCCACAACGTGGA were used to insert the first DraIII site at the SpeI and HindIII sites of the plasmid, and oligonucleotides GATC- CCCACGGGGTGCG and AATTCGCACCCCGTGGG were used to insert the second DraIII site at the BamHI and EcoRI sites of the plasmid.
Recommended publications
  • OMED 17 PHILADELPHIA, PENNSYLVANIA 29.5 Category 1-A CME Credits Anticipated
    ® OCTOBER 7 - 10 OMED 17 PHILADELPHIA, PENNSYLVANIA 29.5 Category 1-A CME credits anticipated ACOFP / AOA’s 122nd Annual Osteopathic Medical Conference & Exposition Joint Session with ACOFP and Cleveland Clinic: Managing Chronic Disease Herpes Zoster: Diagnosis, Treatment and Prevention Leonard Calabrese, DO The American College of Osteopathic Family Physicians is accredited by the American Osteopathic Association Council to sponsor continuing medical education for osteopathic physicians. The American College of Osteopathic Family Physicians designates the lectures and workshops for Category 1-A credits on an hour-for-hour basis, pending approval by the AOA CCME, ACOFP is not responsible for the content. 10/5/2017 Herpes Zoster: Diagnosis, Treatment and Prevention Leonard Calabrese Professor of Medicine Cleveland Clinic Lerner College of Medicine 1 10/5/2017 Herpes Zoster: Diagnosis, Treatment and Prevention • Biology & Epidemiology • Clinical Aspects • Treatment and prevention Varicella Zoster Virus • Family: herpesviridae • Subfamily: alpha herpesviridae • Ubiquitous • 99+% of adults have immunologic memory • Transmission: airborne; via fomites from skin lesions • 2 clinical forms: - Varicella (primary) - Herpes zoster (reactivation) 2 10/5/2017 History • Molecular link between VZV and HZ first demonstrated by Stephen Straus (NEJM 1984) • Latency in dorsal root ganglia molecularly demonstrated by Donald Gilden (NEJM 1990) Straus SE., et al. Endonuclease analysis of viral DNA from varicella and subsequent zoster infections in the same
    [Show full text]
  • April 30, 1991, NIH Record, Vol. XLIII, No. 9
    April 30, 1991 Vol. XLHI No. 9 "Still U.S. Deparcmenc of Health The Second and Human Set-vices Best Thing About Payday" Natiorud lnstirures of Heahh e Recori New Recommendations on Cholesterol and Children Released A ll healthy children above the age of 2 should eat in a heart-healthy way to lower blood cholesterol and help prevent coronary heart disease in adulthood, according to new recommendations released by che National Cholesterol Education Program, which is sponsored by the National Heare, Lung, and Blood Institute. The recommendations emphasize lowering the average blood cholesterol of all American children and adolescents through population­ wide changes in earing patterns. "Our review of the· scientific evidence has convinced us that atherosclerosis begins in childhood and that chis process is related to nutrition practices which affect blood cho­ lesterol levels both in children and in adu.lcs," said Dr. Claude Lenfanc, NHLBI direcror. "Coronary heart disease is the leading cause of death in che United Scates," he added. "If we could delay the onset of heart disease, we could extend che years of healchy life for many Americans." The new recommendations are contained in NHLBJ director Dt·. Cla11.de Lenfant Jpeak.J at the National Cholesterol Education Program prm conference a report written by a panel of experts con­ Apr. 8 at the Sheraton WaJhington Hotel. The program recommendJ fqwering the average blood choleJtet•ol vened by the instirute's National Cholesterol level of all Americ,m children ove,· age 2 . (See CHOL£ST£ROL, Page 4 ) Immunologist Max D. Cooper Gene Blocks Cancer Spread To Deliver 1991 Dyer Lecture In Mice, Say NCI Scientists By Elaine Blume l ncernacionally renowned immunologist Dr.
    [Show full text]
  • Dual Recognition of Herpes Simplex Viruses by TLR2 and TLR9 in Dendritic Cells
    Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells Ayuko Sato†, Melissa M. Linehan, and Akiko Iwasaki‡ Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Edited by Richard A. Flavell, Yale University School of Medicine, New Haven, CT, and approved September 27, 2006 (received for review June 18, 2006) Dendritic cells (DCs) express multiple Toll-like receptors (TLR) in and suppression of viral replication depended mostly on IRF7 and distinct cellular locations. Herpes simplex viruses (HSV) have been to a much lesser extent on MyD88 (6). reported to engage both the surface TLR2 and intracellular TLR9 in Although these three distinct pathways of herpesvirus recogni- conventional DCs. However, the contributions of these TLRs in tion are known to exist, the relative contributions of these pathways recognition of HSV and the induction of proinflammatory cyto- in viral recognition vs. viral pathogenesis are unclear. The ability of kines in DCs remain unclear. Here, we demonstrate that a rare HSV-1 to trigger TLR2 has been shown to be responsible for the population of HSV, both in laboratory strains and in primary clinical exacerbation of neonatal herpes encephalitis (13), because neonatal isolates from humans, has the capacity to activate TLR2. This virus mice deficient in TLR2 secreted less IL-6 and had a higher rate of population is recognized through both TLR2 and TLR9 for the survival compared with WT mice upon lethal HSV-1 challenge. induction of IL-6 and IL-12 secretion from bone marrow-derived Further, the ability of HSV-1 and HSV-2 to activate TLR2 has been DCs.
    [Show full text]
  • Hope Through Research
    Hope Through Research Shingles Prepared by: Office of Communications and Public Liaison National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, Maryland 20892-2540 National Institute of Neurological Disorders NIH Publication No. 11-307 and Stroke July 2011 National Institutes of Health Cover illustration: Cultured human skin cells infected with varicella zoster virus, stained with acridine orange and photographed under ultraviolet light. Courtesy of Dr. Randall Cohrs, University of Colorado Health Sciences Center. This pamphlet was written and published by the National Institute of Neurological Disorders and Stroke (NINDS), the United States’ leading sup- porter of research on disorders of the brain and nerves, including shingles. NINDS, one of the U.S. Government’s National Institutes of Health in Bethesda, Maryland, is part of the Public Health Service within the U.S. Department of Health and Human Services. Table of Contents Page Introduction ............................................. 1 What is Shingles? ....................................... 2 Who is at Risk for Shingles? .......................... 3 What are the Symptoms of Shingles? ............... 4 How Should Shingles Be Treated? .................. 6 Is Shingles Contagious? ............................... 7 Can Shingles Be Prevented? .......................... 7 Chickenpox vaccine ............................... 7 Shingles vaccine .................................... 8 What is Postherpetic Neuralgia? .................... 9 Postherpetic
    [Show full text]
  • Nectin-2-Mediated Entry of a Syncytial Strain of Herpes Simplex Virus Via
    Virology Journal BioMed Central Research Open Access Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells Mark G Delboy, Jennifer L Patterson, Aimee M Hollander and Anthony V Nicola* Address: Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia, 23298-0678, USA Email: Mark G Delboy - [email protected]; Jennifer L Patterson - [email protected]; Aimee M Hollander - [email protected]; Anthony V Nicola* - [email protected] * Corresponding author Published: 27 December 2006 Received: 16 October 2006 Accepted: 27 December 2006 Virology Journal 2006, 3:105 doi:10.1186/1743-422X-3-105 This article is available from: http://www.virologyj.com/content/3/1/105 © 2006 Delboy et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Herpes simplex virus (HSV) can utilize multiple pathways to enter host cells. The factors that determine which route is taken are not clear. Chinese hamster ovary (CHO) cells that express glycoprotein D (gD)-binding receptors are model cells that support a pH-dependent, endocytic entry pathway for all HSV strains tested to date. Fusion-from-without (FFWO) is the induction of target cell fusion by addition of intact virions to cell monolayers in the absence of viral protein expression. The receptor requirements for HSV-induced FFWO are not known.
    [Show full text]
  • Identification and Characterization of Low Ph-Triggered Conformational Changes in the Herpes Simplex Virus Glycoprotein B
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 Identification and characterization of low pH-triggered conformational changes in the herpes simplex virus glycoprotein B Stephen Dollery Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medicine and Health Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/176 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Identification and characterization of low pH-triggered conformational changes in the herpes simplex virus glycoprotein B A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. March 31st, 2011 By Stephen J. Dollery B.Sc., (Hons) Human Biosciences, Sheffield Hallam University, Sheffield, UK, 2003 Director: Anthony Nicola Ph.D. Associate Professor, Department of Microbiology and Immunology Acknowledgements: I am indebted to my mentor Anthony Nicola, who gave freedom, guidance and the opportunity to study in such an exceptional world-class lab. I am also sincerely grateful to Michael McVoy for his mentoring, encouragement and kindness. I would like to thank Mark Delboy, Abena Watson-Siriboe, Carlos Siekavizza-Robles, Kayla Pfab, Frances Saccoccio, Devin Roller and James Doyle for their help and advice in the lab. I would also like to thank Jianben Wang, Xiaohong Cui, Anne Sauer, Megan Crumpler, Alison Kuchta and Frances White for their help in training me.
    [Show full text]
  • Varicella-Zoster Virus ORF61 Deletion Mutants Replicate in Cell Culture, but a Mutant with Stop Codons in ORF61 Reverts to Wild-Type Virus
    VIROLOGY 246, 306±316 (1998) ARTICLE NO. VY989198 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Varicella-Zoster Virus ORF61 Deletion Mutants Replicate in Cell Culture, but a Mutant with Stop Codons in ORF61 Reverts to Wild-Type Virus Jeffrey I. Cohen1 and Hanh Nguyen Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892 Received January 26, 1998; returned to author for revision February 24, 1998; accepted April 16, 1998 Varicella-zoster virus (VZV) ORF61 encodes a phosphoprotein that transactivates VZV promoters. Transfection of cells with cosmid DNAs, including a cosmid with a large deletion in ORF61, resulted in a VZV ORF61 deletion mutant that was impaired for growth in vitro and could be partially complemented by growth in neuroblastoma or osteosarcoma cell lines. Cells infected with the VZV ORF61 deletion mutant expressed normal levels of an immediate-early VZV protein, but had reduced levels of a late protein and showed abnormal syncytia. Carboxy terminal truncation mutants of VZV ORF61 protein have a transrepressing phenotype and inhibit the infectivity of cotransfected wild-type viral DNA. Transfection of cells with cosmid DNAs, including a cosmid with stop codons that should result in an ORF61 truncation mutant expressing a transrepressing protein that retains the RING finger domain, resulted in a viral genome which reverted back to the wild-type sequence. BAL-31 exonuclease was used to produce deletions at the site of the stop codons in ORF61 of the cosmid, resulting in loss of the RING finger domain.
    [Show full text]
  • Recommendations for Prevention of and Therapy for Exposure to B Virus (Cercopithecine Herpesvirus 1)
    MAJOR ARTICLE Recommendations for Prevention of and Therapy for Exposure to B Virus (Cercopithecine Herpesvirus 1) Jeffrey I. Cohen,1 David S. Davenport,2 John A. Stewart,3 Scott Deitchman,3 Julia K. Hilliard,4 Louisa E. Chapman,3 and the B Virus Working Groupa 1Medical Virology Section, Laboratory of Clinical Investigation, National Institutes of Health, Bethesda, Maryland; 2Division of Infectious Diseases, Downloaded from Michigan State University Kalamazoo Center for Medical Studies, Kalamazoo; and 3Centers for Disease Control and Prevention and 4Viral Immunology Center, Georgia State University, Atlanta B virus (Cercopithecine herpesvirus 1) is a zoonotic agent that can cause fatal encephalomyelitis in humans. The virus naturally infects macaque monkeys, resulting in disease that is similar to herpes simplex virus infection http://cid.oxfordjournals.org/ in humans. Although B virus infection generally is asymptomatic or mild in macaques, it can be fatal in humans. Previously reported cases of B virus disease in humans usually have been attributed to animal bites, scratches, or percutaneous inoculation with infected materials; however, the first fatal case of B virus infection due to mucosal splash exposure was reported in 1998. This case prompted the Centers for Disease Control and Prevention (Atlanta, Georgia) to convene a working group in 1999 to reconsider the prior recommendations for prevention and treatment of B virus exposure. The present report updates previous recommendations for the prevention, evaluation, and treatment of B virus infection in humans and considers the role of newer antiviral agents in at Florida Dept of Health on August 7, 2012 postexposure prophylaxis. B virus (Cercopithecine herpesvirus 1) is a naturally oc- infectious virus from the oral, conjunctival, or genital curring infectious agent that is endemic among ma- mucosa of animals with or without visible lesions.
    [Show full text]
  • Robert Ellis Shope
    IN MEMORIAM Robert Ellis Shope his own laboratory productive—his national Virus Program in its laborato- research was funded continuously by ry in Belem, Brazil (now the Instituto the National Institutes of Health Evandro Chagas). There he remained (NIH) for 26 years. for 6 years, eventually serving as Arguably, Bob’s most important director of that institute. This was a contribution was his co-chairing, time of great excitement and discov- along with Joshua Lederberg and ery, as many new viruses were being Stanley Oaks, of the Institute of isolated and characterized. In 1965, Medicine Committee on Emerging Bob returned from Brazil to Yale, Microbial Threats to Health. The pro- where most of the senior staff of the ceedings of this committee led to the Rockefeller Foundation’s overseas publication in 1992 of Emerging virus program had relocated and were Infections: Microbial Threats to establishing the Yale Arbovirus Health in the United States (National Research Unit (YARU). Bob 1929–2004 Academy Press). This seminal publi- remained at Yale for 30 years, rising cation, which outlined factors impli- to the rank of professor and director of obert Ellis Shope, one of the cated in the emergence of infectious that research unit. Rworld’s most distinguished diseases and the programs and In 1995, Bob moved to the arbovirologists and a dear friend of resources needed to cope with them, University of Texas Medical Branch many colleagues around the world, initiated much of the current world- in Galveston, where he held several died of complications of idiopathic wide interest in infectious diseases. appointments: professor (Department pulmonary fibrosis in Galveston, He then spent endless days explaining of Pathology, Department of Texas, on January 19, 2004, at age 74.
    [Show full text]
  • Cercopithecine Herpesvirus 1)
    MAJOR ARTICLE Recommendations for Prevention of and Therapy for Exposure to B Virus (Cercopithecine Herpesvirus 1) Jeffrey I. Cohen,1 David S. Davenport,2 John A. Stewart,3 Scott Deitchman,3 Julia K. Hilliard,4 Louisa E. Chapman,3 and the B Virus Working Groupa 1Medical Virology Section, Laboratory of Clinical Investigation, National Institutes of Health, Bethesda, Maryland; 2Division of Infectious Diseases, Michigan State University Kalamazoo Center for Medical Studies, Kalamazoo; and 3Centers for Disease Control and Prevention and 4Viral Immunology Center, Georgia State University, Atlanta Downloaded from B virus (Cercopithecine herpesvirus 1) is a zoonotic agent that can cause fatal encephalomyelitis in humans. The virus naturally infects macaque monkeys, resulting in disease that is similar to herpes simplex virus infection in humans. Although B virus infection generally is asymptomatic or mild in macaques, it can be fatal in humans. Previously reported cases of B virus disease in humans usually have been attributed to animal bites, scratches, http://cid.oxfordjournals.org/ or percutaneous inoculation with infected materials; however, the first fatal case of B virus infection due to mucosal splash exposure was reported in 1998. This case prompted the Centers for Disease Control and Prevention (Atlanta, Georgia) to convene a working group in 1999 to reconsider the prior recommendations for prevention and treatment of B virus exposure. The present report updates previous recommendations for the prevention, evaluation, and treatment of B virus infection in humans and considers the role of newer antiviral agents in postexposure prophylaxis. by guest on December 20, 2012 B virus (Cercopithecine herpesvirus 1) is a naturally oc- infectious virus from the oral, conjunctival, or genital curring infectious agent that is endemic among ma- mucosa of animals with or without visible lesions.
    [Show full text]
  • A Region of Herpes Simplex Virus VP16 Can Substitute for a Transforming Domain of Epstein-Barr Virus Nuclear Protein 2 (Herpsvis/Trnrpton/Raacvaflon) JEFFREY I
    Proc. Nadl. Acad. Sci. USA Vol. 89, pp. 8030-8034, September 1992 Medical Sciences A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein-Barr virus nuclear protein 2 (herpsvis/trnrpton/raacvaflon) JEFFREY I. COHEN Laboratory of Clinical Investigation, National Institutes of Health, Bethesda, MD 20892 Communicated by Bernard Moss, May 20, 1992 ABSTRACT Epstein-Barr virus (EBV) nuclear protein 2 whether hydrophobic interactions, per se, are essential for (EBNA-2) is essential for EBV-duced B-cell transformationin the function of these other activators. vitro. EBNA-2 contains a 14-amino acid domain that directly To identify critical elements in the transcriptional activa- activates transcription and Is required for transformation. To tion domain of EBNA-2 and to explore their relationship to determine whether another transcriptional activator can sub- similar elements in other acidic activators, we analyzed the stitute for this function, a chimeric virus was constructed that ability of mutated domains to activate transcription and contained a portion of the transcriptional activation domain support B-cell transformation. In addition, we replaced the from the herpes simplex virus VP16 protein inserted in place of transcriptional activation domain of EBNA-2 with a portion the 14-amino acid domain ofEBNA-2. The chimeric virus was of the activation domain of VP16, with which it shares some able to transform B cells efficiently and transactivate expres- structural features, to generate a chimeric EBNA-2-VP16 sion of EBV and B-cell genes. Randomization of the 14-amino gene. The chimeric gene was inserted into the EBV genome, acid sequence in the domain markedly reduced its transcrip- and the recombinant virus was assayed for transforming tional activating activity and the transforming efficiency of the activity in primary B cells.
    [Show full text]
  • CURRICULUM VITAE David M. Margolis, M.D., F.A.C.P. Professor of Medicine, Microbiology & Immunology, Epidemiology University
    Margolis, David M. January 2011 CURRICULUM VITAE David M. Margolis, M.D., F.A.C.P. Professor of Medicine, Microbiology & Immunology, Epidemiology University of North Carolina at Chapel Hill; CB #7042 2060 Genetic Medicine Building Chapel Hill, NC 27599-7042 Office: (919) 966-6388 Lab: (919) 966-6389 Fax: (919) 843-9976 [email protected] Education and Training A.B.; Harvard College, Cambridge, MA 1977-81 M.D.; Tufts University School of Medicine, Boston, MA; 1981-85 Tufts-New England Medical Center, Boston, MA; Department of Medicine, Internship and residency in internal medicine, 1985-88 National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD; Infectious Diseases fellowship, 1988-91: 1988-89: Medical Staff Fellow, Laboratory of Clinical Investigation 1989-91: Clinical Associate, Medical Virology Section, laboratory of Stephen Straus Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, MA; Postdoctoral fellowship, laboratory of Dr. Michael R. Green, MD, PhD, 1991-1994 Board Certifications: Diplomate in Infectious Diseases, American Board of Internal Medicine, 1992, 2003 Diplomate in Internal Medicine, American Board of Internal Medicine, 1988 (permanent) Medical Licensure: North Carolina 2005-01254 (2005) Texas L2444 (2001, expired) Maryland D38637 (1990, expired) Virginia, 0101-042247 (1989, expired) Massachusetts, 56381 (1986, expired) Professional Experience The University of North Carolina at Chapel Hill; 2005-present Professor of Internal Medicine, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC Professor of Epidemiology, The University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC Professor of Microbiology and Immunology, The University of North Carolina at Chapel Hill Graduate School, Chapel Hill, NC 1 Margolis, David M.
    [Show full text]