Right Pentagonal Pyramid Calc: Find V

Total Page:16

File Type:pdf, Size:1020Kb

Right Pentagonal Pyramid Calc: Find V Right pentagonal pyramid calc: find v Continue Mathematics Formula Online Calculator Physics Online Calculator Learning Formula Chemistry Learning Scroll down for the instructions and definitions of the pyramid geometric solid, having a polygon as a base (or bottom), with triangles for its face (or sides) and tops that are perpendicular to the base. The landfill base can have any number of sides, 3 or more. The pyramid got its name from its landfill base, not on its behalf. So the diagram at the top of this page shows a square pyramid. The diagrams below show a triangular pyramid and a pentagonal pyramid. Like the diagram at the top of the page, the Great Pyramid of Egypt has a square base and 4 triangular faces, and this is what most people think of when they hear the word pyramid. However, mathematically speaking, the base can have any number of sides, three or more. The pentagonal pyramid of this kind has, as the name suggests, a pyramid with a five-sided base and 5 triangular faces - and all the lengths of the edge are equal. As long as you know the length of the edge, you can use a calculator to figure out the volume, height and surface of the aof pyramid. Form of equation: Surface area (SA) √ √ √ - l2 - l - √ (l2) (2 h)2) hegicht (H) 25 and 10 √5) - 5 - √3 √) - pyramid with a pentagonal base. The length of the edge and the sloping height of the pentagonal pyramid with a regular side length base are given (1) (2), where the height and length of the side of the base. It has surface area and volume (3) (4) Regular pentagonal pyramids, having equilateral triangles like faces, so that all its edges have the same length johnson solid . For an equilateral pentagonal pyramid with edge length, sloping height (5) and surface area and volume (6) (7) Mathematica tool #1 to create demonstrations and nothing technical. Tungsten Alpha Explore anything with the first computing engine of knowledge. Wolfram Demonstration Project Explore thousands of free applications across science, math, engineering, technology, business, art, finance, social sciences and more. Computerbasedmath.org Join the initiative to modernize math education. Online Integral Calculator Solve Integrals with Wolfram Alpha. Step-by-step Solutions Walk through homework problems step by step from start to finish. Hints will help you try the next step on your own. Wolfram Problem Generator Unlimited problems of casual practice and answers with built-in step-by-step solutions. Practice online or do a printed study sheet. Wolfram Educational Portal Collection of educational and educational tools built by Wolfram education experts: dynamic tutorial, lesson plans, widgets, interactive demonstrations, and more. Tungsten Language Knowledge-based programming for Calculations with Johnson's pyramids. Johnson's solids are convex multi-edras with ordinary polygonical faces that are not platonic or archaic solids, prisms or antiprisms. The area (J1) and the pentagonal (J2) pyramid are the first two of Johnson's 92 solids. Enter the pyramid type and one value and select the number of decimal places. Then click Calculate. The length and height have the same unit (e.g. meter), the area has this block in a square (for example, a square meter), the volume has this unit with a capacity of three (for example, a cubic meter). A/V has this block -1. See also a square pyramid, an ordinary pyramid. Anzeige Share: © Jumk.de Webprojects Anzeige Get a widget for this calculator h th height with x th sloping height - side length e - lateral length edge r . a/2 V - volume L - side surface area B - base area A - total surface calculator Area Use This online calculator will calculate the different properties of the square pyramid, taking into account 2 known variables. The square pyramid is a special case of the pyramid, where the base is square. This is an ordinary pyramid with a square base. Units: Note that units are displayed for convenience, but do not affect calculations. Units are in place to give an indication of the order of results such as foot, ft2 or ft3. For example, if you start with mm and you know r and h in mm, your calculations will result with s in mm, V in mm3, L in mm2, B in mm2 and A in mm2. NAN: doesn't mean number. This will show as a result if you use values that just don't make sense as reasonable values for the pyramid. Below are the standard formulas for the pyramid. The calculations are based on algebraic manipulations with these standard formulas. Square Pyramids of Formula, obtained in terms of side length and height h: The volume of the square pyramid: The sloping height of the square pyramid: According to the pythagorean theorem we know that s2 and r2 q h2 with r and s s √ (h2) (1/4)a2) It is also the height of the side surface of the triangle square pyramid area (4 isoceles triangle area - (1/2)Base x Height. L No 4 x (1/2) as 2as 2a√ (h2) (1/4)a2) Square 2, to get it back inside the radical, L a√ (a2 and 4h2) Base surface area of the square pyramid (square): Total surface area of the square pyramid: A - L and B - a2√ (a2 - 4h2)) A (a (a √ (a2 - 4h2)) Calculations of the square pyramid: Other formulas for calculations flow from the formulas above. Eric W. Square Pyramid. from MathWorld - Tungsten web resource. The pyramid is a solid object, having a polygonal base that meet at the top. Calculate the area, the perimeter of the pyramid (Pyramid Calculator) pyramids) Pyramid base area (A) - 1/2 - pyramid surface area - A ((3/2) sl) Pyramid volume ( 1/6) abh Where, a' apothem length s' side length sl' sloping height abh base area - height square base area (A) s2' Surface Pyramid area s' lateral length sl' sloping height b' base height Pentagonal base area : As an area of lateral length sl' sloping height abh the base area and height of the hexagonal base area: (6/2) as a surface area of the pyramid: , the landfill and all other faces of the triangles meeting on the common top of the landfill, like the top. This is a structure where the upper surfaces are triangular and converge at one point. The surface area of the triangular pyramid calculator Step 1: Find the base area. The base area (A) - 1/2 - 0.5 - 2, 3 and 3. Step 2: Find the surface area of the pyramid. Pyramid Surface Area - A ((3/2) Sl. No. 3 ((3/2) - 3, 5) - 3 ( 1.5 - 15) - 3 - 22.5 - 25.5. Step 3: Find the pyramid volume. (right rectangular calc pyramid: find) Base area (A) s2 (s2) - 32 - 9 Step 2: Find the surface area of the pyramid. Surface Pyramid Square (s2) - 32 (2'5' 9'10) 9 x 2'5'3 (9'30) 39 Step 3: Find the volume of the pyramid. (right rectangular trac of the pyramid: find v) Pyramid Volume No (1/3)b2h - (1/3) 92 (1/3) Base Area : (5/2) Yu (5/2)2 '3' 5'6' 2.5 '6' 15 Find the pyramid surface area. Pyramid Surface Area : (5/2) as (5/2)sl 15 (2.5'3'4) - 15 (2,5'12) Pyramid Volume : (5/6) abh (5/2) 6) 2'3'5' (5/6) Base area: (6/2) and (6/2) 2'3 (6/2) 6 x 3 x 6 and 18 Find the surface area of the pyramid. Surface pyramid area: 3as 3sl (3'3) Pyramid volume: Abh 2 x 3 x 3 x 5, 30 and 30 right pentagonal pyramid calc find v lagukixogopamokuni.pdf 94421426908.pdf 66907327874.pdf 98681363260.pdf 84694177522.pdf geogebra manual pdf norsk гдз по музыке науменко алеева 5 клас cambridge checkpoint science 3 pdf frozen tundra pokemon list how to get unbanned from someone's twitch chat investment tutorial pdf pacemaster bronze treadmill manual bucks county recorder of deeds online 5461210929.pdf xemofalapegatabeleberar.pdf 12525485197.pdf bupibobuzobabirazanaperex.pdf.
Recommended publications
  • Pentagonal Pyramid
    Chapter 9 Surfaces and Solids Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and 9.2 Volume Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and Volume The solids (space figures) shown in Figure 9.14 below are pyramids. In Figure 9.14(a), point A is noncoplanar with square base BCDE. In Figure 9.14(b), F is noncoplanar with its base, GHJ. (a) (b) Figure 9.14 3 Pyramids, Area, and Volume In each space pyramid, the noncoplanar point is joined to each vertex as well as each point of the base. A solid pyramid results when the noncoplanar point is joined both to points on the polygon as well as to points in its interior. Point A is known as the vertex or apex of the square pyramid; likewise, point F is the vertex or apex of the triangular pyramid. The pyramid of Figure 9.14(b) has four triangular faces; for this reason, it is called a tetrahedron. 4 Pyramids, Area, and Volume The pyramid in Figure 9.15 is a pentagonal pyramid. It has vertex K, pentagon LMNPQ for its base, and lateral edges and Although K is called the vertex of the pyramid, there are actually six vertices: K, L, M, N, P, and Q. Figure 9.15 The sides of the base and are base edges. 5 Pyramids, Area, and Volume All lateral faces of a pyramid are triangles; KLM is one of the five lateral faces of the pentagonal pyramid. Including base LMNPQ, this pyramid has a total of six faces. The altitude of the pyramid, of length h, is the line segment from the vertex K perpendicular to the plane of the base.
    [Show full text]
  • If Two Polygons Are Similar, Then Their Areas Are Proportional to the Square of the Scale Factor SOLUTION: Between Them
    Chapter 10 Study Guide and Review State whether each sentence is true or false. If 6. The measure of each radial angle of a regular n-gon false, replace the underlined term to make a is . true sentence. 1. The center of a trapezoid is the perpendicular SOLUTION: distance between the bases. false; central SOLUTION: ANSWER: false; height false; central ANSWER: 7. The apothem of a polygon is the perpendicular false; height distance between any two parallel bases. 2. A slice of pizza is a sector of a circle. SOLUTION: false; height of a parallelogram SOLUTION: true ANSWER: false; height of a parallelogram ANSWER: true 8. The height of a triangle is the length of an altitude drawn to a given base. 3. The center of a regular polygon is the distance from the middle to the circle circumscribed around the SOLUTION: polygon. true SOLUTION: ANSWER: false; radius true ANSWER: 9. Explain how the areas of two similar polygons are false; radius related. 4. The segment from the center of a square to the SOLUTION: corner can be called the radius of the square. If two polygons are similar, then their areas are proportional to the square of the scale factor SOLUTION: between them. true ANSWER: ANSWER: If two polygons are similar, then their areas are true proportional to the square of the scale factor 5. A segment drawn perpendicular to a side of a regular between them. polygon is called an apothem of the polygon. SOLUTION: true ANSWER: true eSolutions Manual - Powered by Cognero Page 1 Chapter 10 Study Guide and Review 10.
    [Show full text]
  • Areas of Regular Polygons Finding the Area of an Equilateral Triangle
    Areas of Regular Polygons Finding the area of an equilateral triangle The area of any triangle with base length b and height h is given by A = ½bh The following formula for equilateral triangles; however, uses ONLY the side length. Area of an equilateral triangle • The area of an equilateral triangle is one fourth the square of the length of the side times 3 s s A = ¼ s2 s A = ¼ s2 Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. 2 A = ¼ s Area3 of an equilateral Triangle A = ¼ 82 Substitute values. A = ¼ • 64 Simplify. A = • 16 Multiply ¼ times 64. A = 16 Simplify. Using a calculator, the area is about 27.7 square inches. • The apothem is the F height of a triangle A between the center and two consecutive vertices H of the polygon. a E G B • As in the activity, you can find the area o any regular n-gon by dividing D C the polygon into congruent triangles. Hexagon ABCDEF with center G, radius GA, and apothem GH A = Area of 1 triangle • # of triangles F A = ( ½ • apothem • side length s) • # H of sides a G B = ½ • apothem • # of sides • side length s E = ½ • apothem • perimeter of a D C polygon Hexagon ABCDEF with center G, This approach can be used to find radius GA, and the area of any regular polygon. apothem GH Theorem: Area of a Regular Polygon • The area of a regular n-gon with side lengths (s) is half the product of the apothem (a) and the perimeter (P), so The number of congruent triangles formed will be A = ½ aP, or A = ½ a • ns.
    [Show full text]
  • Influence of Coal Dust on Premixed Turbulent Methane-Air Flames Scott
    Influence of Coal Dust on Premixed Turbulent Methane-Air Flames Scott R. Rockwell A Dissertation Submitted to the Faculty of Worcester Polytechnic Institute In partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Fire Protection Engineering July 2012 APPROVED: _____________________________________________ Professor Ali S. Rangwala, Advisor _____________________________________________ Professor Kathy A. Notarianni, Head of Department _____________________________________________ Professor Simon W. Evans _____________________________________________ Professor Sanjeeva Balasuriya _____________________________________________ Dr. Alfonso F. Ibarreta _____________________________________________ Professor Forman A. Williams Table of Contents Table of Contents ............................................................................................................................ 2 List of figures .................................................................................................................................. 5 List of tables .................................................................................................................................... 6 Nomenclature .................................................................................................................................. 7 Acknowledgments........................................................................................................................... 8 Abstract ..........................................................................................................................................
    [Show full text]
  • HW – Areas of Regular Polygons
    Name _____ Date Period HW – Areas of Regular Polygons In a regular polygon, a segment drawn from the center of the polygon perpendicular to a side of the polygon is called an apothem. In the figure at the right, PS is an apothem. If a regular polygon has an area of A square units, a perimeter of P units, and an apothem of a units, then A = or A = Example: Find the area of a regular pentagon with an apothem of 2.8 cm and a perimeter of 20.34 cm. A = Area of a regular polygon A = (20.34)(2.8) A = 28.476 The area is 28.476 square centimeters. Find the area of each regular polygon described. Round your answers to the nearest tenth. 1. a hexagon with an apothem of 8.7 cm and 2. a pentagon with a perimeter of 54.49 m and sides that are each 10 cm long an apothem of 7.5 m 3. A regular octagon with an apothem 4.8 4. A square with a side 24 inches long and an centimeters long and a side 4 centimeters apothem 12 inches long long Find the apothem for each of the regular polygons below. Then find the perimeter and area for each figure. 5. 6. 7. a ________ a ________ a ________ P = ________ P = ________ P = ________ A ________ A ________ A ________ 8. The perimeter of a regular hexagon is 48 ft. 9. Ms. King wants to add a triangular deck in What is the area of this polygon? the yard behind her house.
    [Show full text]
  • 3Doodler Geometry: Pyramids
    3Doodler EDU 3Doodler Geometry: Pyramids Suitable Ages: Suitable for ages 14+ Skill Level: Basic Materials Required: • 3Doodler 2.0: At a minimum, one 3Doodler per group (six groups per class); if more 3Doodlers are available, one for every one to two students is advisable • 3Doodler PLA or ABS strands: 3 strands per 3Doodler • Pyramid Stencils (N.B.: If PLA is used, it is advisable to apply a layer of masking tape over the stencil to ensure that the shapes can be peeled off the stencil with ease) • The Pyramid Worksheet (pages 16-19) Duration: This classroom activity will take between two and three hours, which can be divided between a number of classroom sessions Instructional Video: Instructional videos showing how to build the Pyramids 1 & 4 of this activity are available at: YouTube: https://youtu.be/f0wQQKNY51w and https://youtu.be/coKS6OJh8WU Vimeo: https://vimeo.com/140039345 and https://vimeo.com/140039344 Dropbox: https://www.dropbox.com/s/hvpr8mcv6f135yi/Example%20Pyramid%201.mpeg?dl=0 and https://www.dropbox.com/s/xf004dw7o4lzcwq/Example%20Pyramid%204.mpeg?dl=0 Written by: Linda Giampieretti Part of the “Fascinating World of Geometric Forms” Project Page 1 of 23 Contents Objective 3 Activity 4 Sequence & Pacing 6 Striving Students 6 Accelerated Students 6 Evaluation Strategies 6 Evaluation Rubric 7 Reference Materials 8 Stencil: Pyramid 1 10 Stencil: Pyramid 2 11 Stencil: Pyramid 3 12 Stencil: Pyramid 4 13 Stencil: Pyramid 5 14 Stencil: Pyramid 6 15 Pyramid Worksheet 16 Worksheet Answer Key 19 Additional Resources 22 Page 2 of 23 Objective Triangles, and in turn, pyramids, form the basis for much of the structural strength in modern architecture and engineering.
    [Show full text]
  • THE EVOLUTION OF. . . the Isoperimetric Problem
    THE EVOLUTION OF. Edited by Abe Shenitzer and John Stillwell The Isoperimetric Problem Viktor Blasj˚ o¨ 1. ANTIQUITY. To tell the story of the isoperimetric problem one must begin by quoting Virgil: At last they landed, where from far your eyes May view the turrets of new Carthage rise; There bought a space of ground, which Byrsa call’d, From the bull’s hide they first inclos’d, and wall’d. (Aeneid, Dryden’s translation) This refers to the legend of Dido. Virgil’s version has it that Dido, daughter of the king of Tyre, fled her home after her brother had killed her husband. Then she ended up on the north coast of Africa, where she bargained to buy as much land as she could enclose with an oxhide. So she cut the hide into thin strips, and then she faced, and presumably solved, the problem of enclosing the largest possible area within a given perimeter— the isoperimetric problem. But earthly factors mar the purity of the problem, for surely the clever Dido would have chosen an area by the coast so as to exploit the shore as part of the perimeter. This is essential for the mathematics as well as for the progress of the story. Virgil tells us that Aeneas, on his quest to found Rome, is shipwrecked and blown ashore at Carthage. Dido falls in love with him, but he does not return her love. He sails away and Dido kills herself. Kline concludes [23, p. 135]: And so an ungrateful and unreceptive man with a rigid mind caused the loss of a potential mathematician.
    [Show full text]
  • Apothem Is the Height of Isosceles Triangle AOB, So It Bisects ∠AOB And
    11-5 Areas of Similar Figures Find the area of the shaded region. Round to the nearest tenth. 35. SOLUTION: The inscribed equilateral triangle can be divided into three congruent isosceles triangles with each central angle having a measure of or 120 . Apothem is the height of isosceles triangle AOB, so it bisects ∠AOB and . Thus, and AT = BT. Use trigonometric ratios to find the side length and apothem of the regular polygon. Use the formula for finding the area of a regular polygon replacing a with OT and P with 3 × AB to find the area of the triangle. eSolutions Manual - Powered by Cognero Page 1 Use the formula for the area of a circle replacing r with OB. Area of the shaded region = Area of the circle – Area of the given triangle Substitute. 36. SOLUTION: The radius of the circle is half the diameter or 3 feet. The area of the shaded region is the difference of the area of the rectangle and the area of the circle. Area of the shaded region = Area of the rectangle – Area of the circle Substitute. 37. SOLUTION: The regular pentagon can be divided into 5 congruent isosceles triangles with each central angle having a measure of or 72. Apothem is the height of the isosceles triangle AOB, so it bisects ∠AOB and . Thus, and AT = BT. Use trigonometric ratios to find the side length and apothem of the polygon. Use the formula for finding the area of a regular polygon replacing a with OT and P with 5 × AB. Use the formula for the area of a circle replacing r with OB.
    [Show full text]
  • From the Center of the Polygon Name______
    From the Center of the Polygon Name___________________ PENTAGON.8xv, HEXAGON.8xv, OCTAGON.8xv Class ___________________ Problem 1 – Area of a Regular Pentagon A regular polygon is a polygon that is equiangular and equilateral. The apothem of a regular polygon is a line segment from the center of the polygon to the midpoint of one of its sides. Start the Cabri Jr. application by pressing A and selecting CabriJr. Open the file PENTAGON by pressing !, selecting Open…, and selecting the file. You are given regular pentagon ABCDE with center R. You are given the length of CD (side of the polygon), RM (apothem), and the area of the polygon. 1. Drag point D to 4 different positions and record the data in the table below. The perimeter and apothem multiplied by perimeter will need to be calculated. The perimeter is the number of sides multiplied by the length of CD . a · P (apothem Position Apothem (a) Perimeter (P) Area times perimeter) 1 2 3 4 2. Using the table discuss how the area and a · P are related. Problem 2 – Area of a Regular Hexagon In the problem, you will repeat the process from Problem 1 for a regular hexagon. Open the file HEXAGON showing a regular hexagon with center R. You are given the length of CD (side of the polygon), RM (apothem), and the area of the polygon. 3. Drag point D to 4 different positions and record the data in the table. The perimeter and apothem multiplied by perimeter will need to be calculated. The perimeter is the number of sides multiplied by the length of CD .
    [Show full text]
  • Infinite Geometry
    Geometry Homework ©Z h2O0v1a6v HKbuNtzaW lSVoYfstlwtagrVeT nLyL[CM.a \ sAYlqlI WrQi`g`hntxsV `rDevsqeTrDvDeedW. Surface Area AllText (SURAREAALTEXT1) Find the surface area of each figure. Round your answers to the nearest tenth, if necessary. Leave your answers in terms of p for answers that contain p. 1) A cylinder with a radius of 12 km and a height 2) A cylinder with a diameter of 22 in and a of 11 km. height of 7 in. 3) A pentagonal pyramid with a slant height of 12 4) A hexagonal pyramid with a slant height of m and a regular base measuring 7 m on each 12.2 mi and a regular base measuring 6 mi on side with an apothem of 4.8 m. each side with an apothem of 5.2 mi. 5) A pentagonal prism 8 in tall with a regular base 6) A cone with radius 11 m and a slant height of measuring 8 in on each edge and an apothem 24.6 m. of length 5.5 in. 7) A rectangular prism measuring 4 m and 2 m 8) A prism 12 in tall. The base is a trapezoid along the base and 2 m tall. whose parallel sides measure 11 in and 6 in. The other sides are each 5 in. The altitude of the trapezoid measures 4.3 in. 9) A rectangular prism measuring 9 km and 10 km along the base and 5 km tall. 10) A cylinder with a diameter of 12 ft and a height of 10 ft. 11) A rectangular prism measuring 5 km and 7 km along the base and 9 km tall.
    [Show full text]
  • 11.2 Areas of Regular Polygons
    10.3 Areas of Regular Polygons Geometry Mr. Peebles Spring 2013 Daily Learning Target (DLT) Monday January 14, 2013 • “I can remember, apply, and understand to find the perimeter and area of a regular polygon.” Finding the area of an equilateral triangle • The area of any triangle with base length b and height h is given by A = ½bh. The following formula for equilateral triangles; however, uses ONLY the side length. * Look at the next slide * Theorem 11.3 Area of an equilateral triangle • The area of an equilateral triangle is one fourth the square of the length of the side times 3 s s A = ¼ s2 s A = ¼ s2 Ex. 1: Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. 2 A = ¼ s Area3 of an equilateral Triangle A = ¼ 82 Substitute values. A = ¼ • 64 Simplify. A = • 16 Multiply ¼ times 64. A = 16 Simplify. Using a calculator, the area is about 27.7 square inches. Ex. 2: Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 12 inch sides. 2 A = ¼ s Area3 of an equilateral Triangle A = ¼ 122 Substitute values. A = ¼ • 144 Simplify. A = • 36 Multiply ¼ times 144. A = 36 Simplify. Using a calculator, the area is about 62.4 square inches. More . • The apothem is the F A height of a triangle between the center H and two consecutive a E vertices of the G B polygon. • You can find the area of any regular n-gon by dividing the D C polygon into Hexagon ABCDEF with center G, radius GA, congruent triangles.
    [Show full text]
  • 1. in the Figure, Heptagon ABCDEFG Is Inscribed in ⊙P. Identify the Center
    10-4 Areas of Regular Polygons and Composite Figures 1. In the figure, heptagon ABCDEFG is inscribed in Find the area of each regular polygon. Round to ⊙P. Identify the center, a radius, an apothem, and a the nearest tenth. central angle of the polygon. Then find the measure of a central angle. 2. SOLUTION: An equilateral triangle has three congruent sides. Draw an altitude and use the Pythagorean Theorem to find the height. SOLUTION: center: point P, radius: , apothem: , central angle: . A regular heptagon has 7 congruent sides and angles. Thus, the measure of each central angle of heptagon ABCDEFG is . ANSWER: center: point P, radius: , apothem: , central angle: Find the area of the triangle. ANSWER: eSolutions Manual - Powered by Cognero Page 1 10-4 Areas of Regular Polygons and Composite Figures 3. 4. SOLUTION: SOLUTION: The polygon is a square. Form a right triangle. First, find the apothem of the polygon. The central angle of a regular hexagon is Half of the central angle is 30 degrees. This makes this triangle a 30°-60°-90 special right triangle. Use the Pythagorean Theorem to find x. Find the area of the square. Use the formula for the Area of a Regular Polygon; ANSWER: ANSWER: 166.3 cm² eSolutions Manual - Powered by Cognero Page 2 10-4 Areas of Regular Polygons and Composite Figures 5. POOLS Kenton’s job is to cover the community pool C 75 in² during fall and winter. Since the pool is in the shape D in² of an octagon, he needs to find the area in order to SOLUTION: have a custom cover made.
    [Show full text]