Chapter 7.2-7.3 Triangle Centers and Regular Polygon Properties

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7.2-7.3 Triangle Centers and Regular Polygon Properties Chapter 7.2-7.3 Triangle Centers and Regular Polygon Properties Some triangle centers – http://www.mathopenref.com/trianglecenters.html (for a funny song, click on http://www.youtube.com/watch?v=Uzx8wI07M4E) There are many types of triangle centers. Below are four common ones. There is a page for each one. Click on the link to probe deeper. These centers are POINTS OF CONCURRENCY of some “Special Lines” in the triangle. Incenter Located at intersection of the angle bisectors. Properties: The incenter is the center of the triangle's incircle, the largest circle that will fit inside the triangle and touch all three sides. See Incircle of a Triangle. Always inside the triangle The incenter is equidistant to the sides of the triangle See Triangle incenter definition and How to Construct the Incenter of a Triangle Circumcenter Located at intersection of the perpendicular bisectors of the sides . Properties: The circumcenter is the center of a circle circumscribed around the vertices of the triangle. The circumcenter is equidistant to the vertices of the triangle See Triangle circumcenter definition and How to Construct the Circumcenter of a Triangle Centroid Located at intersection of the medians Properties: 2b c 2a * The centroid is always inside the triangle. The centroid of a triangle is a the point through which all the mass of a triangular plate seems to act. b Also known as its 'center of gravity' , 'center of mass' , or barycenter. * Each median divides the triangle into two smaller triangles of equal 2c area. *The centroid is exactly two-thirds the way along each median. Put another way, the centroid divides each median into two segments whose lengths are in the ratio 2:1, with the longest one nearest the vertex. See Triangle centroid definition and Constructing the Centroid of a Triangle. Orthocenter Located at intersection of the altitudes See Triangle orthocenter definition and Constructing the Orthocenter of a Triangle. Chapter 7.2-7.3 Triangle Centers and Regular Polygon Properties Incenter of a regular polygon The point where the interior angle bisectors intersect. If you bisect the interior angles of a regular polygon, the bisectors will always converge at the same point - called the incenter of the polygon. The incenter is also the center of: 1. The incircle - the largest circle that will fit inside the polygon 2. The circumcircle - the circle that passes through every vertex. Radius of a regular polygon (also Circumradius) Definition: The distance from the center of a regular polygon to any vertex . The radius of a regular polygon is the distance from the center to any vertex. It will be the same for any vertex. The radius is also the radius of the polygon's circumcircle, which is the circle that passes through every vertex. In this role, it is sometimes called the circumradius. Irregular polygons are not usually thought of as having a center or radius. Chapter 7.2-7.3 Triangle Centers and Regular Polygon Properties Apothem of a Regular Polygon Definition: A line segment from the center of a regular polygon to the midpoint of a side. The apothem is also the radius of the incircle of the polygon. For a polygon of n sides, there are n possible apothems, all the same length of course. The word apothem can refer to the line itself, or the length of that line. So you can correctly say 'draw the apothem' and 'the apothem is 4cm'. For a regular hexagon, the apothem can be found given the length of a side because the central angle formed by the vertices of a hexagon is 60°. Because each angle is the same. the triangles formed are equalilateral triangles. Because the apothem is the perpendicular bisector of an equilateral triangle it forms 2 30-60-90 triangles. ½ s s ½ s s s 3 x 2 Chapter 7.2-7.3 Triangle Centers and Regular Polygon Properties Incircle of a Polygon Definition: The largest circle the will fit inside a polygon that touches every side The incircle of a regular polygon is the largest circle that will fit inside the polygon and touch each side in just one place (see figure above) and so each of the sides is a tangent to the incircle. If the number of sides is 3, this is an equilateral triangle and its incircle is exactly the same as the one described in Incircle of a Triangle. The inradius of a regular polygon is exactly the same as its apothem. The formulas below are the same as for the apothem. Circumcircle of a Polygon Definition: The circle that passes through each vertex of the regular polygon. Also - circumscribed circle. For Regular Polygons The circumcircle of a regular polygon is the circle that passes through every vertex of the polygon. If the number of sides is 3, then the result is an equilateral triangle and its circumcircle is exactly the same as the one described in Circumcircle of a Triangle. Chapter 7.2-7.3 Triangle Centers and Regular Polygon Properties Finding the radius The radius of a regular polygon is the distance from the center to any vertex. It will be the same for any vertex. The radius is also the radius of the polygon's circumcircle, which is the circle that passes through every vertex. In this role, it is sometimes called the circumradius. Irregular polygons are not usually thought of as having a center or radius. Irregular Polygons Irregular polygons are not usually considered as having a circumcircle. If you draw a polygon at random, it is unlikely there will be a circle that passes through every vertex. Irregular quadrilaterals that have a circumcircle are called cyclic quadrilaterals. A convex quadrilateral is cyclic if and only if the four perpendicular bisectors to the sides are concurrent. This common point is the circumcenter, A convex quadrilateral ABCD is cyclic if and only if its opposite angles are supplementary .
Recommended publications
  • Relationships Between Six Excircles
    Sangaku Journal of Mathematics (SJM) c SJM ISSN 2534-9562 Volume 3 (2019), pp.73-90 Received 20 August 2019. Published on-line 30 September 2019 web: http://www.sangaku-journal.eu/ c The Author(s) This article is published with open access1. Relationships Between Six Excircles Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. If P is a point inside 4ABC, then the cevians through P divide 4ABC into smaller triangles of various sizes. We give theorems about the rela- tionship between the radii of certain excircles of some of these triangles. Keywords. Euclidean geometry, triangle geometry, excircles, exradii, cevians. Mathematics Subject Classification (2010). 51M04. 1. Introduction Let P be any point inside a triangle ABC. The cevians through P divide 4ABC into six smaller triangles. In a previous paper [5], we found relationships between the radii of the circles inscribed in these triangles. For example, if P is at the orthocenter H, as shown in Figure 1, then we found that r1r3r5 = r2r4r6, where the ri are radii of the incircles as shown in the figure. arXiv:1910.00418v1 [math.HO] 28 Sep 2019 Figure 1. r1r3r5 = r2r4r6 In this paper, we will find similar results using excircles instead of incircles. When the cevians through a point P interior to a triangle ABC are drawn, many smaller 1This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
    [Show full text]
  • Point of Concurrency the Three Perpendicular Bisectors of a Triangle Intersect at a Single Point
    3.1 Special Segments and Centers of Classifications of Triangles: Triangles By Side: 1. Equilateral: A triangle with three I CAN... congruent sides. Define and recognize perpendicular bisectors, angle bisectors, medians, 2. Isosceles: A triangle with at least and altitudes. two congruent sides. 3. Scalene: A triangle with three sides Define and recognize points of having different lengths. (no sides are concurrency. congruent) Jul 24­9:36 AM Jul 24­9:36 AM Classifications of Triangles: Special Segments and Centers in Triangles By angle A Perpendicular Bisector is a segment or line 1. Acute: A triangle with three acute that passes through the midpoint of a side and angles. is perpendicular to that side. 2. Obtuse: A triangle with one obtuse angle. 3. Right: A triangle with one right angle 4. Equiangular: A triangle with three congruent angles Jul 24­9:36 AM Jul 24­9:36 AM Point of Concurrency The three perpendicular bisectors of a triangle intersect at a single point. Two lines intersect at a point. The point of When three or more lines intersect at the concurrency of the same point, it is called a "Point of perpendicular Concurrency." bisectors is called the circumcenter. Jul 24­9:36 AM Jul 24­9:36 AM 1 Circumcenter Properties An angle bisector is a segment that divides 1. The circumcenter is an angle into two congruent angles. the center of the circumscribed circle. BD is an angle bisector. 2. The circumcenter is equidistant to each of the triangles vertices. m∠ABD= m∠DBC Jul 24­9:36 AM Jul 24­9:36 AM The three angle bisectors of a triangle Incenter properties intersect at a single point.
    [Show full text]
  • Figures Circumscribing Circles Tom M
    Figures Circumscribing Circles Tom M. Apostol and Mamikon A. Mnatsakanian 1. INTRODUCTION. The centroid of the boundary of an arbitrarytriangle need not be at the same point as the centroid of its interior. But we have discovered that the two centroids are always collinear with the center of the inscribed circle, at distances in the ratio 3 : 2 from the center. We thought this charming fact must surely be known, but could find no mention of it in the literature. This paper generalizes this elegant and surprising result to any polygon that circumscribes a circle (Theorem 6). A key ingredient of the proof is a link to Archimedes' striking discovery concerning the area of a circular disk [4, p. 91], which for our purposes we prefer to state as follows: Theorem 1 (Archimedes). The area of a circular disk is equal to the product of its semiperimeter and its radius. Expressed as a formula, this becomes A = Pr, (1) where A is the area, P is the perimeter, and r is the radius of the disk. First we extend (1) to a large class of plane figures circumscribing a circle that we call circumgons, defined in section 2. They include arbitrarytriangles, all regular polygons, some irregularpolygons, and other figures composed of line segments and circular arcs. Examples are shown in Figures 1 through 4. Section 3 treats circum- gonal rings, plane regions lying between two similar circumgons. These rings have a constant width that replaces the radius in the corresponding extension of (1). We also show that all rings of constant width are necessarily circumgonal rings.
    [Show full text]
  • Pentagonal Pyramid
    Chapter 9 Surfaces and Solids Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and 9.2 Volume Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and Volume The solids (space figures) shown in Figure 9.14 below are pyramids. In Figure 9.14(a), point A is noncoplanar with square base BCDE. In Figure 9.14(b), F is noncoplanar with its base, GHJ. (a) (b) Figure 9.14 3 Pyramids, Area, and Volume In each space pyramid, the noncoplanar point is joined to each vertex as well as each point of the base. A solid pyramid results when the noncoplanar point is joined both to points on the polygon as well as to points in its interior. Point A is known as the vertex or apex of the square pyramid; likewise, point F is the vertex or apex of the triangular pyramid. The pyramid of Figure 9.14(b) has four triangular faces; for this reason, it is called a tetrahedron. 4 Pyramids, Area, and Volume The pyramid in Figure 9.15 is a pentagonal pyramid. It has vertex K, pentagon LMNPQ for its base, and lateral edges and Although K is called the vertex of the pyramid, there are actually six vertices: K, L, M, N, P, and Q. Figure 9.15 The sides of the base and are base edges. 5 Pyramids, Area, and Volume All lateral faces of a pyramid are triangles; KLM is one of the five lateral faces of the pentagonal pyramid. Including base LMNPQ, this pyramid has a total of six faces. The altitude of the pyramid, of length h, is the line segment from the vertex K perpendicular to the plane of the base.
    [Show full text]
  • Searching for the Center
    Searching For The Center Brief Overview: This is a three-lesson unit that discovers and applies points of concurrency of a triangle. The lessons are labs used to introduce the topics of incenter, circumcenter, centroid, circumscribed circles, and inscribed circles. The lesson is intended to provide practice and verification that the incenter must be constructed in order to find a point equidistant from the sides of any triangle, a circumcenter must be constructed in order to find a point equidistant from the vertices of a triangle, and a centroid must be constructed in order to distribute mass evenly. The labs provide a way to link this knowledge so that the students will be able to recall this information a month from now, 3 months from now, and so on. An application is included in each of the three labs in order to demonstrate why, in a real life situation, a person would want to create an incenter, a circumcenter and a centroid. NCTM Content Standard/National Science Education Standard: • Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships. • Use visualization, spatial reasoning, and geometric modeling to solve problems. Grade/Level: These lessons were created as a linking/remembering device, especially for a co-taught classroom, but can be adapted or used for a regular ed, or even honors level in 9th through 12th Grade. With more modification, these lessons might be appropriate for middle school use as well. Duration/Length: Lesson #1 45 minutes Lesson #2 30 minutes Lesson #3 30 minutes Student Outcomes: Students will: • Define and differentiate between perpendicular bisector, angle bisector, segment, triangle, circle, radius, point, inscribed circle, circumscribed circle, incenter, circumcenter, and centroid.
    [Show full text]
  • G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter
    Regents Exam Questions Name: ________________________ G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter 1 Which geometric principle is used in the 3 In the diagram below, point B is the incenter of construction shown below? FEC, and EBR, CBD, and FB are drawn. If m∠FEC = 84 and m∠ECF = 28, determine and state m∠BRC . 1) The intersection of the angle bisectors of a 4 In the diagram below of isosceles triangle ABC, triangle is the center of the inscribed circle. AB ≅ CB and angle bisectors AD, BF, and CE are 2) The intersection of the angle bisectors of a drawn and intersect at X. triangle is the center of the circumscribed circle. 3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle. 4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle. 2 In the diagram below of ABC, CD is the bisector of ∠BCA, AE is the bisector of ∠CAB, and BG is drawn. If m∠BAC = 50°, find m∠AXC . Which statement must be true? 1) DG = EG 2) AG = BG 3) ∠AEB ≅ ∠AEC 4) ∠DBG ≅ ∠EBG 1 Regents Exam Questions Name: ________________________ G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org 5 The diagram below shows the construction of the 9 Triangle ABC is graphed on the set of axes below. center of the circle circumscribed about ABC. What are the coordinates of the point of intersection of the medians of ABC? 1) (−1,2) 2) (−3,2) 3) (0,2) This construction represents how to find the intersection of 4) (1,2) 1) the angle bisectors of ABC 10 The vertices of the triangle in the diagram below 2) the medians to the sides of ABC are A(7,9), B(3,3), and C(11,3).
    [Show full text]
  • If Two Polygons Are Similar, Then Their Areas Are Proportional to the Square of the Scale Factor SOLUTION: Between Them
    Chapter 10 Study Guide and Review State whether each sentence is true or false. If 6. The measure of each radial angle of a regular n-gon false, replace the underlined term to make a is . true sentence. 1. The center of a trapezoid is the perpendicular SOLUTION: distance between the bases. false; central SOLUTION: ANSWER: false; height false; central ANSWER: 7. The apothem of a polygon is the perpendicular false; height distance between any two parallel bases. 2. A slice of pizza is a sector of a circle. SOLUTION: false; height of a parallelogram SOLUTION: true ANSWER: false; height of a parallelogram ANSWER: true 8. The height of a triangle is the length of an altitude drawn to a given base. 3. The center of a regular polygon is the distance from the middle to the circle circumscribed around the SOLUTION: polygon. true SOLUTION: ANSWER: false; radius true ANSWER: 9. Explain how the areas of two similar polygons are false; radius related. 4. The segment from the center of a square to the SOLUTION: corner can be called the radius of the square. If two polygons are similar, then their areas are proportional to the square of the scale factor SOLUTION: between them. true ANSWER: ANSWER: If two polygons are similar, then their areas are true proportional to the square of the scale factor 5. A segment drawn perpendicular to a side of a regular between them. polygon is called an apothem of the polygon. SOLUTION: true ANSWER: true eSolutions Manual - Powered by Cognero Page 1 Chapter 10 Study Guide and Review 10.
    [Show full text]
  • Half-Anticevian Triangle of the Incenter
    International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 c IJCDM Volume 2, 2017, pp.55-71. Received 20 February 2017. Published on-line 28 February 2017 web: http://www.journal-1.eu/ c The Author(s) This article is published with open access1. Computer Discovered Mathematics: Half-Anticevian Triangle of the Incenter Sava Grozdeva, Hiroshi Okumurab and Deko Dekovc 2 a VUZF University of Finance, Business and Entrepreneurship, Gusla Street 1, 1618 Sofia, Bulgaria e-mail: [email protected] b Department of Mathematics, Yamato University, Osaka, Japan e-mail: [email protected] cZahari Knjazheski 81, 6000 Stara Zagora, Bulgaria e-mail: [email protected] web: http://www.ddekov.eu/ Abstract. By using the computer program ”Discoverer” we study the Half- Anticevian triangle of the Incenter. Keywords. Half-Anticevian triangle, triangle geometry, notable point, computer discovered mathematics, Euclidean geometry, “Discoverer”. Mathematics Subject Classification (2010). 51-04, 68T01, 68T99. 1. Introduction Let P be an arbitrary point in the plane of triangle ABC. Denote by P aP bP c the Anticevian triangle of point P . Let Ma be the midpoint of segment AP a and define Mb and Mc similarly. We call triangle MaMbMc the Half-Anticevian Triangle of Point P . Figure 1 illustrates the definition. In figure 1, P is an arbitrary point, P aP bP c is the Anticevian triangle, and MaMbMc is the Half-Anticevian Triangle of P . Note that the Half-Anticevian Triangle of the Centroid is the Medial Triangle. We encourage the students, teachers and researchers to investigate the Half- Anticevian triangles of other notable points, e.g.
    [Show full text]
  • Barycentric Coordinates in Olympiad Geometry
    Barycentric Coordinates in Olympiad Geometry Max Schindler∗ Evan Cheny July 13, 2012 I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail. Abstract In this paper we present a powerful computational approach to large class of olympiad geometry problems{ barycentric coordinates. We then extend this method using some of the techniques from vector computations to greatly extend the scope of this technique. Special thanks to Amir Hossein and the other olympiad moderators for helping to get this article featured: I certainly did not have such ambitious goals in mind when I first wrote this! ∗Mewto55555, Missouri. I can be contacted at igoroogenfl[email protected]. yv Enhance, SFBA. I can be reached at [email protected]. 1 Contents Title Page 1 1 Preliminaries 4 1.1 Advantages of barycentric coordinates . .4 1.2 Notations and Conventions . .5 1.3 How to Use this Article . .5 2 The Basics 6 2.1 The Coordinates . .6 2.2 Lines . .6 2.2.1 The Equation of a Line . .6 2.2.2 Ceva and Menelaus . .7 2.3 Special points in barycentric coordinates . .7 3 Standard Strategies 9 3.1 EFFT: Perpendicular Lines . .9 3.2 Distance Formula . 11 3.3 Circles . 11 3.3.1 Equation of the Circle . 11 4 Trickier Tactics 12 4.1 Areas and Lines . 12 4.2 Non-normalized Coordinates . 13 4.3 O, H, and Strong EFFT . 13 4.4 Conway's Formula . 14 4.5 A Few Final Lemmas . 15 5 Example Problems 16 5.1 USAMO 2001/2 .
    [Show full text]
  • Conic Construction of a Triangle from Its Incenter, Nine-Point Center, and a Vertex
    Conic Construction of a Triangle From Its Incenter, Nine-point Center, and a Vertex Paul Yiu Abstract. We construct a triangle given its incenter, nine-point center and a vertex by locating the circumcenter as an intersection of two rectangular hyper- bolas. Some special configurations leading to solutions constructible with ruler and compass are studied. The related problem of construction of a triangle given its circumcenter, incenter, and one vertex is revisited, and it is established that such a triangle exists if and only if the incenter lies inside the cardioid relative to the circumcircle. 1. Introduction In this note we solve the construction problem of a triangle ABC given its in- center I, its nine-point center N, and one vertex A. This is Problem 35 in Harold Connelly’s list of construction problems [1]. We shall show that the triangle is in general not constructible with ruler and compass, but can be easily obtained by in- tersecting conics. Some special configurations of I, N, A from which the triangle can be constructible with ruler and compass are studied in details in 2, 6 – 8. §§ 2. The case of collinear I, N, A In this case, the triangle ABC is isosceles, with AB = AC. The incircle and the nine-point circle are tangent to each other internally at the midpoint of the base BC. We set up a rectangular coordinate system with N at the origin, I at ( d, 0), and A at (a, 0) for a > 0, and seek the inradius r. The circumradius is − A r R = 2(d + r).
    [Show full text]
  • Lemmas in Euclidean Geometry1 Yufei Zhao [email protected]
    IMO Training 2007 Lemmas in Euclidean Geometry Yufei Zhao Lemmas in Euclidean Geometry1 Yufei Zhao [email protected] 1. Construction of the symmedian. Let ABC be a triangle and Γ its circumcircle. Let the tangent to Γ at B and C meet at D. Then AD coincides with a symmedian of △ABC. (The symmedian is the reflection of the median across the angle bisector, all through the same vertex.) A A A O B C M B B F C E M' C P D D Q D We give three proofs. The first proof is a straightforward computation using Sine Law. The second proof uses similar triangles. The third proof uses projective geometry. First proof. Let the reflection of AD across the angle bisector of ∠BAC meet BC at M ′. Then ′ ′ sin ∠BAM ′ ′ BM AM sin ∠ABC sin ∠BAM sin ∠ABD sin ∠CAD sin ∠ABD CD AD ′ = ′ sin ∠CAM ′ = ∠ ∠ ′ = ∠ ∠ = = 1 M C AM sin ∠ACB sin ACD sin CAM sin ACD sin BAD AD BD Therefore, AM ′ is the median, and thus AD is the symmedian. Second proof. Let O be the circumcenter of ABC and let ω be the circle centered at D with radius DB. Let lines AB and AC meet ω at P and Q, respectively. Since ∠PBQ = ∠BQC + ∠BAC = 1 ∠ ∠ ◦ 2 ( BDC + DOC) = 90 , we see that PQ is a diameter of ω and hence passes through D. Since ∠ABC = ∠AQP and ∠ACB = ∠AP Q, we see that triangles ABC and AQP are similar. If M is the midpoint of BC, noting that D is the midpoint of QP , the similarity implies that ∠BAM = ∠QAD, from which the result follows.
    [Show full text]
  • Areas of Regular Polygons Finding the Area of an Equilateral Triangle
    Areas of Regular Polygons Finding the area of an equilateral triangle The area of any triangle with base length b and height h is given by A = ½bh The following formula for equilateral triangles; however, uses ONLY the side length. Area of an equilateral triangle • The area of an equilateral triangle is one fourth the square of the length of the side times 3 s s A = ¼ s2 s A = ¼ s2 Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. 2 A = ¼ s Area3 of an equilateral Triangle A = ¼ 82 Substitute values. A = ¼ • 64 Simplify. A = • 16 Multiply ¼ times 64. A = 16 Simplify. Using a calculator, the area is about 27.7 square inches. • The apothem is the F height of a triangle A between the center and two consecutive vertices H of the polygon. a E G B • As in the activity, you can find the area o any regular n-gon by dividing D C the polygon into congruent triangles. Hexagon ABCDEF with center G, radius GA, and apothem GH A = Area of 1 triangle • # of triangles F A = ( ½ • apothem • side length s) • # H of sides a G B = ½ • apothem • # of sides • side length s E = ½ • apothem • perimeter of a D C polygon Hexagon ABCDEF with center G, This approach can be used to find radius GA, and the area of any regular polygon. apothem GH Theorem: Area of a Regular Polygon • The area of a regular n-gon with side lengths (s) is half the product of the apothem (a) and the perimeter (P), so The number of congruent triangles formed will be A = ½ aP, or A = ½ a • ns.
    [Show full text]