1. in the Figure, Heptagon ABCDEFG Is Inscribed in ⊙P. Identify the Center

Total Page:16

File Type:pdf, Size:1020Kb

1. in the Figure, Heptagon ABCDEFG Is Inscribed in ⊙P. Identify the Center 10-4 Areas of Regular Polygons and Composite Figures 1. In the figure, heptagon ABCDEFG is inscribed in Find the area of each regular polygon. Round to ⊙P. Identify the center, a radius, an apothem, and a the nearest tenth. central angle of the polygon. Then find the measure of a central angle. 2. SOLUTION: An equilateral triangle has three congruent sides. Draw an altitude and use the Pythagorean Theorem to find the height. SOLUTION: center: point P, radius: , apothem: , central angle: . A regular heptagon has 7 congruent sides and angles. Thus, the measure of each central angle of heptagon ABCDEFG is . ANSWER: center: point P, radius: , apothem: , central angle: Find the area of the triangle. ANSWER: eSolutions Manual - Powered by Cognero Page 1 10-4 Areas of Regular Polygons and Composite Figures 3. 4. SOLUTION: SOLUTION: The polygon is a square. Form a right triangle. First, find the apothem of the polygon. The central angle of a regular hexagon is Half of the central angle is 30 degrees. This makes this triangle a 30°-60°-90 special right triangle. Use the Pythagorean Theorem to find x. Find the area of the square. Use the formula for the Area of a Regular Polygon; ANSWER: ANSWER: 166.3 cm² eSolutions Manual - Powered by Cognero Page 2 10-4 Areas of Regular Polygons and Composite Figures 5. POOLS Kenton’s job is to cover the community pool C 75 in² during fall and winter. Since the pool is in the shape D in² of an octagon, he needs to find the area in order to SOLUTION: have a custom cover made. If the pool has the To determine the area of the composite shape made dimensions shown at the right, what is the area of the up of 6 equilateral triangles and one regular hexagon, pool? start by finding the area of the individual shapes. The area of one equilateral triangle with a side length of 5 in. can be found by using 30°-60°-90° special right triangle knowledge: SOLUTION: Since the polygon has 8 sides, the polygon can be Similarly, since the hexagon is composed on 6 divided into 8 congruent isosceles triangles, each with equilateral triangles, the apothem of the regular a base of 5 ft and a height of 6 ft. hexagon is the same as the height of the equilateral Find the area of one triangle. triangle: Since there are 8 triangles, the area of the pool is 15 · 8 or 120 square feet. Now, combine the different shapes to get the entire ANSWER: area: The correct choice is D. 6. MULTIPLE CHOICE The figure shown is composed of a regular hexagon and equilateral ANSWER: triangles. Which of the following best represents the D area? 7. BASKETBALL The basketball court in Jeff’s school is painted as shown. A 37.5 in² Note: Art not drawn to scale. B in² a. What area of the court is blue? Round to the eSolutions Manual - Powered by Cognero Page 3 10-4 Areas of Regular Polygons and Composite Figures nearest square foot. SENSE-MAKING In each figure, a regular b. What area of the court is red? Round to the polygon is inscribed in a circle. Identify the nearest square foot. center, a radius, an apothem, and a central angle SOLUTION: of each polygon. Then find the measure of a central angle. a. The small blue circle in the middle of the floor has a diameter of 6 feet so its radius is 3 feet. The blue sections on each end are the area of a rectangle minus the area of half the red circle. The rectangle has dimensions of 12 ft by 19 ft. The diameter of the red circle is 12 feet so its radius is 6 feet. 8. Area of blue sections = Area of small blue circle + 2 SOLUTION: [Area of rectangle – Area of red circle ÷ 2] Center: point X, radius: , apothem: , central angle: , A square is a regular polygon with 4 sides. Thus, the measure of each central angle of square RSTVW is or 72. ANSWER: center: point X, radius: , apothem: , central 2 So, the area of the court that is blue is about 371 ft . angle: VXT, 72° b. The two red circles on either end of the court each have a diameter of 12 feet or a radius of 6 feet. The large circle at the center of the court has a diameter of 12 feet so it has a radius of 6 feet. The inner blue circle has a diameter of 6 feet so it has a radius of 3 feet. 9. SOLUTION: Area of red sections = 2 [Area of end red circles] – Center: point R, radius: , apothem: , central [Area of large center circle – Area of blue center angle: . The measure of each central angle of circle] JKLMNOPQ is or 45°. ANSWER: center: point R, radius: , apothem: , central angle: KRL, 60° So, the area of the court that is red is about 311 ft2. ANSWER: a. b. eSolutions Manual - Powered by Cognero Page 4 10-4 Areas of Regular Polygons and Composite Figures Find the area of each regular polygon. Round to SOLUTION: the nearest tenth. The formula for the area of a regular polygon is , so we need to determine the perimeter and the length of the apothem of the figure. A regular pentagon has 5 congruent central angles, so the measure of central angle is or 72. 10. SOLUTION: An equilateral triangle has three congruent sides. Draw an altitude and use the Pythagorean Theorem to find the height. Apothem is the height of the isosceles triangle ABC. Triangles ACD and BCD are congruent, with ∠ACD = ∠BCD = 36. Use the Trigonometric ratios to find the side length and apothem of the polygon. Find the area of the triangle. ANSWER: Use the formula for the area of a regular polygon. ANSWER: 11. eSolutions Manual - Powered by Cognero Page 5 10-4 Areas of Regular Polygons and Composite Figures 12. 13. SOLUTION: SOLUTION: A regular hexagon has 6 congruent central angles A regular octagon has 8 congruent central angles, that are a part of 6 congruent triangles, so the from 8 congruent triangles, so the measure of central angle is 360 ÷ 8 = 45. measure of the central angle is = 60. Apothem is the height of the isosceles triangle Apothem is the height of equilateral triangle ABC and it splits the triangle into two congruent ABC and it splits the triangle into two 30-60-90 triangles. triangles. Use the Trigonometric ratio to find the side length of Use the trigonometric ratio to find the apothem of the the polygon. polygon. AB = 2(AD), so AB = 8 tan 30. ANSWER: ANSWER: 14. CARPETING Ignacio's family is getting new carpet in their family room, and they want to determine how much the project will cost. a. Use the floor plan shown to find the area to be carpeted. eSolutions Manual - Powered by Cognero Page 6 10-4 Areas of Regular Polygons and Composite Figures b. If the carpet costs $4.86 per square yard, how SENSE-MAKING Find the area of each figure. much will the project cost? Round to the nearest tenth if necessary. 15. SOLUTION: SOLUTION: a. The longer dotted red line divides the floor into two quadrilaterals. The quadrilateral formed on top will have four right angles, so it is a rectangle with a base of 24 feet. The height of the rectangle is 17 – 6 = 11 feet.The longer dotted red side and the bottom side (9 ft side) are both perpendicular to the shorter dotted red side (6 ft side) so they are parallel to each other. Since the quadrilateral on the bottom has two parallel sides, it is a trapezoid with a height of 6 feet and bases of length 9 feet and 24 feet (opposite sides of a rectangle are congruent). The area of the room will be the sum of the area of the rectangle and the area ANSWER: of the trapezoid. So, the area of the floor to be carpeted is 363 ft2. b. At $4.86 per yard, the project will cost: ANSWER: a. b. $196.02 eSolutions Manual - Powered by Cognero Page 7 10-4 Areas of Regular Polygons and Composite Figures 18. SOLUTION: 16. SOLUTION: ANSWER: 19. CRAFTS Latoya’s greeting card company is making envelopes for a card from the pattern shown. a. Find the perimeter and area of the pattern? Round to the nearest tenth. b. If Latoya orders sheets of paper that are 2 feet by 4 feet, how many envelopes can she make per sheet? ANSWER: 17. SOLUTION: SOLUTION: a. To find the perimeter of the envelope, first use the Pythagorean theorem to find the missing sides of the isosceles triangle on the left. ANSWER: The base of the isosceles triangle is 5.5 inches, so the height will bisect the base into two segments that eSolutions Manual - Powered by Cognero Page 8 10-4 Areas of Regular Polygons and Composite Figures each have a length of 2.75 inches. a width of 2 feet or 24 inches. 24 ÷ 5.75 ≈ 4.17 so 4 patterns can be placed widthwise on the paper. The maximum length of the pattern is inches. The sheet of paper has a length of 4 feet or 48 inches. so 4 patterns can be placed lengthwise on the paper. So, each side of the isosceles triangle is about 3.83 inches long. Four patterns across by four patterns high will make a total of 4 × 4 or 16. Find the sum of the lengths of all the sides of the So, Latoya can make 16 cards per sheet.
Recommended publications
  • Section 5.5 Right Triangle Trigonometry 385
    Section 5.5 Right Triangle Trigonometry 385 Section 5.5 Right Triangle Trigonometry In section 5.3 we were introduced to the sine and cosine function as ratios of the sides of a triangle drawn inside a circle, and spent the rest of that section discussing the role of those functions in finding points on the circle. In this section, we return to the triangle, and explore the applications of the trigonometric functions to right triangles where circles may not be involved. Recall that we defined sine and cosine as (x, y) y sin( θ ) = r r y x cos( θ ) = θ r x Separating the triangle from the circle, we can make equivalent but more general definitions of the sine, cosine, and tangent on a right triangle. On the right triangle, we will label the hypotenuse as well as the side opposite the angle and the side adjacent (next to) the angle. Right Triangle Relationships Given a right triangle with an angle of θ opposite sin( θ) = hypotenuse hypotenuse opposite adjacent cos( θ) = hypotenuse θ opposite adjacent tan( θ) = adjacent A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.” 386 Chapter 5 Example 1 Given the triangle shown, find the value for cos( α) . The side adjacent to the angle is 15, and the 17 hypotenuse of the triangle is 17, so 8 adjacent 15 cos( α) = = α hypotenuse 17 15 When working with general right triangles, the same rules apply regardless of the orientation of the triangle.
    [Show full text]
  • And Twelve-Pointed Star Polygon Design of the Tashkent Scrolls
    Bridges 2011: Mathematics, Music, Art, Architecture, Culture A Nine- and Twelve-Pointed Star Polygon Design of the Tashkent Scrolls B. Lynn Bodner Mathematics Department Cedar Avenue Monmouth University West Long Branch, New Jersey, 07764, USA E-mail: [email protected] Abstract In this paper we will explore one of the Tashkent Scrolls’ repeat units, that, when replicated using symmetry operations, creates an overall pattern consisting of “nearly regular” nine-pointed, regular twelve-pointed and irregularly-shaped pentagonal star polygons. We seek to determine how the original designer of this pattern may have determined, without mensuration, the proportion and placement of the star polygons comprising the design. We will do this by proposing a plausible Euclidean “point-joining” compass-and-straightedge reconstruction. Introduction The Tashkent Scrolls (so named because they are housed in Tashkent at the Institute of Oriental Studies at the Academy of Sciences) consist of fragments of architectural sketches attributed to an Uzbek master builder or a guild of architects practicing in 16 th century Bukhara [1, p. 7]. The sketch from the Tashkent Scrolls that we will explore shows only a small portion, or the repeat unit , of a nine- and twelve-pointed star polygon design. It is contained within a rectangle and must be reflected across the boundaries of this rectangle to achieve the entire pattern. This drawing, which for the remainder of this paper we will refer to as “T9N12,” is similar to many of the 114 Islamic architectural and ornamental design sketches found in the much larger, older and better preserved Topkapı Scroll, a 96-foot-long architectural scroll housed at the Topkapı Palace Museum Library in Istanbul.
    [Show full text]
  • Islamic Geometric Ornaments in Istanbul
    ►SKETCH 2 CONSTRUCTIONS OF REGULAR POLYGONS Regular polygons are the base elements for constructing the majority of Islamic geometric ornaments. Of course, in Islamic art there are geometric ornaments that may have different genesis, but those that can be created from regular polygons are the most frequently seen in Istanbul. We can also notice that many of the Islamic geometric ornaments can be recreated using rectangular grids like the ornament in our first example. Sometimes methods using rectangular grids are much simpler than those based or regular polygons. Therefore, we should not omit these methods. However, because methods for constructing geometric ornaments based on regular polygons are the most popular, we will spend relatively more time explor- ing them. Before, we start developing some concrete constructions it would be worthwhile to look into a few issues of a general nature. As we have no- ticed while developing construction of the ornament from the floor in the Sultan Ahmed Mosque, these constructions are not always simple, and in order to create them we need some knowledge of elementary geometry. On the other hand, computer programs for geometry or for computer graphics can give us a number of simpler ways to develop geometric fig- ures. Some of them may not require any knowledge of geometry. For ex- ample, we can create a regular polygon with any number of sides by rotat- ing a point around another point by using rotations 360/n degrees. This is a very simple task if we use a computer program and the only knowledge of geometry we need here is that the full angle is 360 degrees.
    [Show full text]
  • Square Rectangle Triangle Diamond (Rhombus) Oval Cylinder Octagon Pentagon Cone Cube Hexagon Pyramid Sphere Star Circle
    SQUARE RECTANGLE TRIANGLE DIAMOND (RHOMBUS) OVAL CYLINDER OCTAGON PENTAGON CONE CUBE HEXAGON PYRAMID SPHERE STAR CIRCLE Powered by: www.mymathtables.com Page 1 what is Rectangle? • A rectangle is a four-sided flat shape where every angle is a right angle (90°). means "right angle" and show equal sides. what is Triangle? • A triangle is a polygon with three edges and three vertices. what is Octagon? • An octagon (eight angles) is an eight-sided polygon or eight-gon. what is Hexagon? • a hexagon is a six-sided polygon or six-gon. The total of the internal angles of any hexagon is 720°. what is Pentagon? • a plane figure with five straight sides and five angles. what is Square? • a plane figure with four equal straight sides and four right angles. • every angle is a right angle (90°) means "right ang le" show equal sides. what is Rhombus? • is a flat shape with four equal straight sides. A rhombus looks like a diamond. All sides have equal length. Opposite sides are parallel, and opposite angles are equal what is Oval? • Many distinct curves are commonly called ovals or are said to have an "oval shape". • Generally, to be called an oval, a plane curve should resemble the outline of an egg or an ellipse. Powered by: www.mymathtables.com Page 2 What is Cube? • Six equal square faces.tweleve edges and eight vertices • the angle between two adjacent faces is ninety. what is Sphere? • no faces,sides,vertices • All points are located at the same distance from the center. what is Cylinder? • two circular faces that are congruent and parallel • faces connected by a curved surface.
    [Show full text]
  • Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1
    Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1. Acute angle: Angle whose measure is greater than 0° and less than 90°. 2. Adjacent angles: Two angles that have a common side and a common vertex. 3. Alternate interior angles: A pair of angles in the interior of a figure formed by two lines and a transversal, lying on alternate sides of the transversal and having different vertices. 4. Altitude: Perpendicular segment from a vertex of a triangle to the opposite side or the line containing the opposite side. 5. Angle: A figure formed by two rays with a common endpoint. 6. Angle bisector: Ray that divides an angle into two congruent angles and bisects the angle. 7. Base Angles: Two angles not included in the legs of an isosceles triangle. 8. Bisect: To divide a segment or an angle into two congruent parts. 9. Coincide: To lie on top of the other. A line can coincide another line. 10. Collinear: Lying on the same line. 11. Complimentary: Two angle’s whose sum is 90°. 12. Concave Polygon: Polygon in which at least one interior angle measures more than 180° (at least one segment connecting two vertices is outside the polygon). 13. Conclusion: A result of summary of all the work that has been completed. The part of a conditional statement that occurs after the word “then”. 14. Congruent parts: Two or more parts that only have the same measure. In CPCTC, the parts of the congruent triangles are congruent. 15. Congruent triangles: Two triangles are congruent if and only if all of their corresponding parts are congruent.
    [Show full text]
  • Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
    Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension.
    [Show full text]
  • Applying the Polygon Angle
    POLYGONS 8.1.1 – 8.1.5 After studying triangles and quadrilaterals, students now extend their study to all polygons. A polygon is a closed, two-dimensional figure made of three or more non- intersecting straight line segments connected end-to-end. Using the fact that the sum of the measures of the angles in a triangle is 180°, students learn a method to determine the sum of the measures of the interior angles of any polygon. Next they explore the sum of the measures of the exterior angles of a polygon. Finally they use the information about the angles of polygons along with their Triangle Toolkits to find the areas of regular polygons. See the Math Notes boxes in Lessons 8.1.1, 8.1.5, and 8.3.1. Example 1 4x + 7 3x + 1 x + 1 The figure at right is a hexagon. What is the sum of the measures of the interior angles of a hexagon? Explain how you know. Then write an equation and solve for x. 2x 3x – 5 5x – 4 One way to find the sum of the interior angles of the 9 hexagon is to divide the figure into triangles. There are 11 several different ways to do this, but keep in mind that we 8 are trying to add the interior angles at the vertices. One 6 12 way to divide the hexagon into triangles is to draw in all of 10 the diagonals from a single vertex, as shown at right. 7 Doing this forms four triangles, each with angle measures 5 4 3 1 summing to 180°.
    [Show full text]
  • Polygon Review and Puzzlers in the Above, Those Are Names to the Polygons: Fill in the Blank Parts. Names: Number of Sides
    Polygon review and puzzlers ÆReview to the classification of polygons: Is it a Polygon? Polygons are 2-dimensional shapes. They are made of straight lines, and the shape is "closed" (all the lines connect up). Polygon Not a Polygon Not a Polygon (straight sides) (has a curve) (open, not closed) Regular polygons have equal length sides and equal interior angles. Polygons are named according to their number of sides. Name of Degree of Degree of triangle total angles regular angles Triangle 180 60 In the above, those are names to the polygons: Quadrilateral 360 90 fill in the blank parts. Pentagon Hexagon Heptagon 900 129 Names: number of sides: Octagon Nonagon hendecagon, 11 dodecagon, _____________ Decagon 1440 144 tetradecagon, 13 hexadecagon, 15 Do you see a pattern in the calculation of the heptadecagon, _____________ total degree of angles of the polygon? octadecagon, _____________ --- (n -2) x 180° enneadecagon, _____________ icosagon 20 pentadecagon, _____________ These summation of angles rules, also apply to the irregular polygons, try it out yourself !!! A point where two or more straight lines meet. Corner. Example: a corner of a polygon (2D) or of a polyhedron (3D) as shown. The plural of vertex is "vertices” Test them out yourself, by drawing diagonals on the polygons. Here are some fun polygon riddles; could you come up with the answer? Geometry polygon riddles I: My first is in shape and also in space; My second is in line and also in place; My third is in point and also in line; My fourth in operation but not in sign; My fifth is in angle but not in degree; My sixth is in glide but not symmetry; Geometry polygon riddles II: I am a polygon all my angles have the same measure all my five sides have the same measure, what general shape am I? Geometry polygon riddles III: I am a polygon.
    [Show full text]
  • Squaring the Circle a Case Study in the History of Mathematics the Problem
    Squaring the Circle A Case Study in the History of Mathematics The Problem Using only a compass and straightedge, construct for any given circle, a square with the same area as the circle. The general problem of constructing a square with the same area as a given figure is known as the Quadrature of that figure. So, we seek a quadrature of the circle. The Answer It has been known since 1822 that the quadrature of a circle with straightedge and compass is impossible. Notes: First of all we are not saying that a square of equal area does not exist. If the circle has area A, then a square with side √A clearly has the same area. Secondly, we are not saying that a quadrature of a circle is impossible, since it is possible, but not under the restriction of using only a straightedge and compass. Precursors It has been written, in many places, that the quadrature problem appears in one of the earliest extant mathematical sources, the Rhind Papyrus (~ 1650 B.C.). This is not really an accurate statement. If one means by the “quadrature of the circle” simply a quadrature by any means, then one is just asking for the determination of the area of a circle. This problem does appear in the Rhind Papyrus, but I consider it as just a precursor to the construction problem we are examining. The Rhind Papyrus The papyrus was found in Thebes (Luxor) in the ruins of a small building near the Ramesseum.1 It was purchased in 1858 in Egypt by the Scottish Egyptologist A.
    [Show full text]
  • Interior and Exterior Angles of Polygons 2A
    Regents Exam Questions Name: ________________________ G.CO.C.11: Interior and Exterior Angles of Polygons 2a www.jmap.org G.CO.C.11: Interior and Exterior Angles of Polygons 2a 1 Which type of figure is shown in the accompanying 5 In the diagram below of regular pentagon ABCDE, diagram? EB is drawn. 1) hexagon 2) octagon 3) pentagon 4) quadrilateral What is the measure of ∠AEB? 2 What is the measure of each interior angle of a 1) 36º regular hexagon? 2) 54º 1) 60° 3) 72º 2) 120° 4) 108º 3) 135° 4) 270° 6 What is the measure, in degrees, of each exterior angle of a regular hexagon? 3 Determine, in degrees, the measure of each interior 1) 45 angle of a regular octagon. 2) 60 3) 120 4) 135 4 Determine and state the measure, in degrees, of an interior angle of a regular decagon. 7 A stop sign in the shape of a regular octagon is resting on a brick wall, as shown in the accompanying diagram. What is the measure of angle x? 1) 45° 2) 60° 3) 120° 4) 135° 1 Regents Exam Questions Name: ________________________ G.CO.C.11: Interior and Exterior Angles of Polygons 2a www.jmap.org 8 One piece of the birdhouse that Natalie is building 12 The measure of an interior angle of a regular is shaped like a regular pentagon, as shown in the polygon is 120°. How many sides does the polygon accompanying diagram. have? 1) 5 2) 6 3) 3 4) 4 13 Melissa is walking around the outside of a building that is in the shape of a regular polygon.
    [Show full text]
  • Pentagonal Pyramid
    Chapter 9 Surfaces and Solids Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and 9.2 Volume Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and Volume The solids (space figures) shown in Figure 9.14 below are pyramids. In Figure 9.14(a), point A is noncoplanar with square base BCDE. In Figure 9.14(b), F is noncoplanar with its base, GHJ. (a) (b) Figure 9.14 3 Pyramids, Area, and Volume In each space pyramid, the noncoplanar point is joined to each vertex as well as each point of the base. A solid pyramid results when the noncoplanar point is joined both to points on the polygon as well as to points in its interior. Point A is known as the vertex or apex of the square pyramid; likewise, point F is the vertex or apex of the triangular pyramid. The pyramid of Figure 9.14(b) has four triangular faces; for this reason, it is called a tetrahedron. 4 Pyramids, Area, and Volume The pyramid in Figure 9.15 is a pentagonal pyramid. It has vertex K, pentagon LMNPQ for its base, and lateral edges and Although K is called the vertex of the pyramid, there are actually six vertices: K, L, M, N, P, and Q. Figure 9.15 The sides of the base and are base edges. 5 Pyramids, Area, and Volume All lateral faces of a pyramid are triangles; KLM is one of the five lateral faces of the pentagonal pyramid. Including base LMNPQ, this pyramid has a total of six faces. The altitude of the pyramid, of length h, is the line segment from the vertex K perpendicular to the plane of the base.
    [Show full text]
  • Geometrygeometry
    Park Forest Math Team Meet #3 GeometryGeometry Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number Theory: Divisibility rules, factors, primes, composites 4. Arithmetic: Order of operations; mean, median, mode; rounding; statistics 5. Algebra: Simplifying and evaluating expressions; solving equations with 1 unknown including identities Important Information you need to know about GEOMETRY… Properties of Polygons, Pythagorean Theorem Formulas for Polygons where n means the number of sides: • Exterior Angle Measurement of a Regular Polygon: 360÷n • Sum of Interior Angles: 180(n – 2) • Interior Angle Measurement of a regular polygon: • An interior angle and an exterior angle of a regular polygon always add up to 180° Interior angle Exterior angle Diagonals of a Polygon where n stands for the number of vertices (which is equal to the number of sides): • • A diagonal is a segment that connects one vertex of a polygon to another vertex that is not directly next to it. The dashed lines represent some of the diagonals of this pentagon. Pythagorean Theorem • a2 + b2 = c2 • a and b are the legs of the triangle and c is the hypotenuse (the side opposite the right angle) c a b • Common Right triangles are ones with sides 3, 4, 5, with sides 5, 12, 13, with sides 7, 24, 25, and multiples thereof—Memorize these! Category 2 50th anniversary edition Geometry 26 Y Meet #3 - January, 2014 W 1) How many cm long is segment 6 XY ? All measurements are in centimeters (cm).
    [Show full text]