Gonzales, Jeffery, MD, MA Pectoral Blocks

Total Page:16

File Type:pdf, Size:1020Kb

Gonzales, Jeffery, MD, MA Pectoral Blocks Gonzales, Jeffery, MD, MA Pectoral Blocks Jeff Gonzales MD, MA Discuss value and use of PECS I and II University of Colorado Hospital CRASH 2016 Overview of involved anatomy Briefly describe cytokine issues with general anesthesia Risks and benefits of adding a PEC block with ultrasound guidance First described in 2012 at the ESRA Spain Congress by Blanco et al. Also know as PECS I, PECS II (Serratus‐ intercostal plane block (SIP)) PECS I: median and lateral pectoral nerves PECS II: Long thoracic, Intercostal nn. (T2‐ T6) and thoracodorsal nerve Cephalad Caudad Pec. Major m. Gonzales, Jeffery, MD, MA Pectoral Blocks M. pectoralis n. L. pectoralis n. M. pectoralis n. Lateral Pectoral N.(C5‐C7) off lateral cord, innervates pec major Medial Pectoral N. (C8‐T1) off medial cord, innervates pec minor and major Long Thoracic N. (C5‐C7) off proximal brachial plexus, innervates Serratus Anter medial and lateral pectoral nerves (mid‐clavicle) pec minor Medial Pectoral nerve (C8, T1): immediately from Medial Cord (late anterior division). Innervates Pec minor and Pec major(lower 1/3) pec major Medial Pectoral Nerve Lateral Pectoral nerve (C5, C6, C7): immediately from Lateral Cord . Innervates Pec Major Pec Major L.PEC n. Lat. Pectoral N. Pec Major M.PEC n. Clavicular Gonzales, Jeffery, MD, MA Pectoral Blocks Infiltration technique under ultrasound guidance Head turned opposite side. Shoulder abducted and elbow flexed Similar probe position as Infraclavicular Linear probe Technique for muscle related pain c Pec Major e p h l pec minor a d SA anterior c c injection e e p p pectoralis maj. h h l l cephlad pectoralis minor. a a d d Ax. a. PECs I SCAN Gonzales, Jeffery, MD, MA Pectoral Blocks Target: fascial plane between Pec major and pec Additive technique for PECS I and breast Minor. (L. and M. pectoral nn. branches) surgery Vascular concern is branches from thoracoacromial Long thoracic, Intercostal nn. (T2‐T6) and artery and vein. thoracodorsal nerve analgesic benefit for WLE, mastecomies, and Analgesic technique. axillary dissection Lower Concentration and Higher volume (0.25% LA, 20cc Volume) Infiltration technique under ultrasound guidance Pec minor Head turned opposite side. subscapularis Thoracodorsal n. Shoulder abducted and elbow flexed Similar probe position as Infraclavicular along breast toward latissimus dorsi m. S.A. Linear probe Lat. dorsi Technique for muscle and dermatomal analgesia S.A. 1 2. Gonzales, Jeffery, MD, MA Pectoral Blocks anterior‐lateral injection SA rib3 rib4 Intercostal m. PEC’s3 cephald 5th rib 4th rib pec maj pec min Pleura Serr Ant PECs II SCAN 4th Rib Target: fascial plane between Pec minor and serratus ant. m. Inject PECs II, then or superficial to serratus anterior m. (T3‐T6) PECs I to preserve anatomy/view Long Thoracic nerve is immediately superior‐posterior along Latissimus dorsi and serratus Excellent alternative to paravertebral for Analgesic technique. breast surgery Lower Concentration and Higher volume Similar to TAP block, PECs are High Volume (0.25% LA, 20cc Volume) blocks!.
Recommended publications
  • Anatomical Variations of the Brachial Plexus Terminal Branches in Ethiopian Cadavers
    ORIGINAL COMMUNICATION Anatomy Journal of Africa. 2017. Vol 6 (1): 896 – 905. ANATOMICAL VARIATIONS OF THE BRACHIAL PLEXUS TERMINAL BRANCHES IN ETHIOPIAN CADAVERS Edengenet Guday Demis*, Asegedeche Bekele* Corresponding Author: Edengenet Guday Demis, 196, University of Gondar, Gondar, Ethiopia. Email: [email protected] ABSTRACT Anatomical variations are clinically significant, but many are inadequately described or quantified. Variations in anatomy of the brachial plexus are important to surgeons and anesthesiologists performing surgical procedures in the neck, axilla and upper limb regions. It is also important for radiologists who interpret plain and computerized imaging and anatomists to teach anatomy. This study aimed to describe the anatomical variations of the terminal branches of brachial plexus on 20 Ethiopian cadavers. The cadavers were examined bilaterally for the terminal branches of brachial plexus. From the 40 sides studied for the terminal branches of the brachial plexus; 28 sides were found without variation, 10 sides were found with median nerve variation, 2 sides were found with musculocutaneous nerve variation and 2 sides were found with axillary nerve variation. We conclude that variation in the median nerve was more common than variations in other terminal branches. Key words: INTRODUCTION The brachial plexus is usually formed by the may occur (Moore and Dalley, 1992, Standring fusion of the anterior primary rami of the C5-8 et al., 2005). and T1 spinal nerves. It supplies the muscles of the back and the upper limb. The C5 and C6 fuse Most nerves in the upper limb arise from the to form the upper trunk, the C7 continues as the brachial plexus; it begins in the neck and extends middle trunk and the C8 and T1 join to form the into the axilla.
    [Show full text]
  • Brachial-Plexopathy.Pdf
    Brachial Plexopathy, an overview Learning Objectives: The brachial plexus is the network of nerves that originate from cervical and upper thoracic nerve roots and eventually terminate as the named nerves that innervate the muscles and skin of the arm. Brachial plexopathies are not common in most practices, but a detailed knowledge of this plexus is important for distinguishing between brachial plexopathies, radiculopathies and mononeuropathies. It is impossible to write a paper on brachial plexopathies without addressing cervical radiculopathies and root avulsions as well. In this paper will review brachial plexus anatomy, clinical features of brachial plexopathies, differential diagnosis, specific nerve conduction techniques, appropriate protocols and case studies. The reader will gain insight to this uncommon nerve problem as well as the importance of the nerve conduction studies used to confirm the diagnosis of plexopathies. Anatomy of the Brachial Plexus: To assess the brachial plexus by localizing the lesion at the correct level, as well as the severity of the injury requires knowledge of the anatomy. An injury involves any condition that impairs the function of the brachial plexus. The plexus is derived of five roots, three trunks, two divisions, three cords, and five branches/nerves. Spinal roots join to form the spinal nerve. There are dorsal and ventral roots that emerge and carry motor and sensory fibers. Motor (efferent) carries messages from the brain and spinal cord to the peripheral nerves. This Dorsal Root Sensory (afferent) carries messages from the peripheral to the Ganglion is why spinal cord or both. A small ganglion containing cell bodies of sensory NCS’s sensory fibers lies on each posterior root.
    [Show full text]
  • Bilateral Anatomical Variation in the Formation of Trunks of the Brachial Plexus - a Case Report
    THIEME Case Report 9 Bilateral Anatomical Variation in the Formation of Trunks of the Brachial Plexus - A Case Report E.F. Lasch1 M.B. Nazer1 L.M. Bartholdy1 1 Laboratório de Anatomia Humana, Departamento de Biologia e Address for correspondence E. F. Lasch, Laboratório de Anatomia Farmácia, Universidade Santa Cruz do Sul – UNISC, Santa Cruz do Sul, Humana, Departamento de Biologia e Farmácia, Universidade Santa RioGrandedoSul,Brazil Cruz do Sul – UNISC, Av Independência, 2293, CEP 96815-900, Santa Cruz do Sul, RS, Brazil (e-mail: [email protected]). J Morphol Sci 2018;35:9–13. Abstract This study presents a bilateral variation in the formation of trunks of brachial plexus in a male cadaver. The right brachial plexus was composed of six roots (C4-T1) and the left brachial plexus of five roots (C5-T1). Both formed four trunks thus changing the contributions of the anterior divisions of the cervical nerves involved in the formation Keywords of the cords and the five main somatic motor nerves for the upper limb. There are very ► brachial plexus few case reports in the scientific literature on this topic; thus making the present study ► trunks very relevant. Introduction medial and lateral pectoral nerve, arise from the cords and innervate the shoulder muscles. The long infraclavicular Most of the upper limb nerves arise from by the brachial branches, which extend longitudinally to the upper limb, plexus (BP), which has a complex anatomical structure that are: the radial nerve, the ulnar nerve, and the median begins in the root of the neck and extends to the axilla nerve.4,5 (armpit region).
    [Show full text]
  • Muscle Attachment Sites in the Upper Limb
    This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. Muscle Attachment Sites in the Upper Limb The Clavicle Pectoralis major Smooth superior surface of the shaft, under the platysma muscle Deltoid tubercle: Right clavicle attachment of the deltoid Deltoid Axillary nerve Acromial facet Trapezius Sternocleidomastoid and Trapezius innervated by the Spinal Accessory nerve Sternocleidomastoid Conoid tubercle, attachment of the conoid ligament which is the medial part of the Sternal facet coracoclavicular ligament Conoid ligament Costoclavicular ligament Acromial facet Impression for the Trapezoid line, attachment of the costoclavicular ligament Subclavian groove: Subclavius trapezoid ligament which binds the clavicle to site of attachment of the Innervated by Nerve to Subclavius which is the lateral part of the the first rib subclavius muscle coracoclavicular ligament Trapezoid ligament This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. The Scapula Trapezius Right scapula: posterior Levator scapulae Supraspinatus Deltoid Deltoid and Teres Minor are innervated by the Axillary nerve Rhomboid minor Levator Scapulae, Rhomboid minor and Rhomboid Major are innervated by the Dorsal Scapular Nerve Supraspinatus and Infraspinatus innervated by the Suprascapular nerve Infraspinatus Long head of triceps Rhomboid major Teres Minor Teres Major Teres Major
    [Show full text]
  • Brachial Plexus Injury Investigation , Localization and Treatment
    BRACHIAL PLEXUS INJURY INVESTIGATION , LOCALIZATION AND TREATMENT EMBRYOLOGY § Brachial plexus (BP) is developed at 5 weeks of gestation § Afferent fibers develop from neuroblast located alongside neural tube § Efferent fibers originate from neuroblast in the basal plate of tube from where they grow outside § Afferent and efferent fibers join to form the nerve § Nerves divide into anterior and posterior divisions § There are connections between these nerves in the brachial plexus commons.wikimedia.org/wiki/File:Brachial_plexus.jpg ANATOMY lFormed by ventral primary rami of lower four cervical and first thoracic nerve root. l Frequently have contributions from C4(pre-fixed) or T2 (post-fixed). PREFIXED BRACHIAL PLEXUS http://www.msdlatinamerica.com/ebooks/HandSurgery/sid744608.html Post-fixed plexus http://www.msdlatinamerica.com/ebooks/HandSurgery/sid744608.html RELATIONS OF BRACHIAL PLEXUS Fig. 4. The reIationship of the axillary artery to the cords is an important anatomic relationship. The cords surround the axiIIary artery and are named for their position with respect to the axillary artery. L.C. lateral cord MC. Medial cord: PC . posterior Cord. Levels § Roots § Real § Trunks § Texans § Divisions § Drink § Cords § Cold § Branches § Beer § C5 and C6 roots form upper trunk § C8 and T1 roots the lower trunk § C7 forms the middle trunk § Joining point of C5-C6 roots is ERB”S POINT § Each trunk divides into an anterior and a posterior division and passes beneath the clavicle § All 3 posterior divisions merge to form the posterior cord § Anterior division of the upper and middle trunk merge to form the lateral cord § Anterior division of lower trunk forms the medial cord § Lateral cord splits into 2 terminal branches: a) Musculocutaneous nerve b) Lateral cord contribution to median nerve (sensory) § Posterior cord splits into a)axillary nerve and b)radial nerve § Medial cord gives off a) medial cord contribution to the median nerve(motor) and b)ulnar nerve § There are few terminal branches of the roots trunks and cords.
    [Show full text]
  • Examination of the Shoulder Bruce S
    Examination of the Shoulder Bruce S. Wolock, MD Towson Orthopaedic Associates 3 Joints, 1 Articulation 1. Sternoclavicular 2. Acromioclavicular 3. Glenohumeral 4. Scapulothoracic AC Separation Bony Landmarks 1. Suprasternal notch 2. Sternoclavicular joint 3. Coracoid 4. Acromioclavicular joint 5. Acromion 6. Greater tuberosity of the humerus 7. Bicipital groove 8. Scapular spine 9. Scapular borders-vertebral and lateral Sternoclavicular Dislocation Soft Tissues 1. Rotator Cuff 2. Subacromial bursa 3. Axilla 4. Muscles: a. Sternocleidomastoid b. Pectoralis major c. Biceps d. Deltoid Congenital Absence of Pectoralis Major Pectoralis Major Rupture Soft Tissues (con’t) e. Trapezius f. Rhomboid major and minor g. Latissimus dorsi h. Serratus anterior Range of Motion: Active and Passive 1. Abduction - 90 degrees 2. Adduction - 45 degrees 3. Extension - 45 degrees 4. Flexion - 180 degrees 5. Internal rotation – 90 degrees 6. External rotation – 45 degrees Muscle Testing 1. Flexion a. Primary - Anterior deltoid (axillary nerve, C5) - Coracobrachialis (musculocutaneous nerve, C5/6 b. Secondary - Pectoralis major - Biceps Biceps Rupture- Longhead Muscle Testing 2. Extension a. Primary - Latissimus dorsi (thoracodorsal nerve, C6/8) - Teres major (lower subscapular nerve, C5/6) - Posterior deltoid (axillary nerve, C5/6) b. Secondary - Teres minor - Triceps Abduction Primary a. Middle deltoid (axillary nerve, C5/6) b. Supraspinatus (suprascapular nerve, C5/6) Secondary a. Anterior and posterior deltoid b. Serratus anterior Deltoid Ruputure Axillary Nerve Palsy Adduction Primary a. Pectoralis major (medial and lateral pectoral nerves, C5-T1 b. Latissimus dorsi (thoracodorsal nerve, C6/8) Secondary a. Teres major b. Anterior deltoid External Rotation Primary a. Infraspinatus (suprascapular nerve, C5/6) b. Teres minor (axillary nerve, C5) Secondary a.
    [Show full text]
  • Chapter 30 When It Is Not Cervical Radiculopathy: Thoracic Outlet Syndrome—A Prospective Study on Diagnosis and Treatment
    Chapter 30 When it is Not Cervical Radiculopathy: Thoracic Outlet Syndrome—A Prospective Study on Diagnosis and Treatment J. Paul Muizelaar, M.D., Ph.D., and Marike Zwienenberg-Lee, M.D. Many neurosurgeons see a large number of patients with some type of discomfort in the head, neck, shoulder, arm, or hand, most of which are (presumably) cervical disc problems. When there is good agreement between the history, physical findings, and imaging (MRI in particular), the diagnosis of cervical disc disease is easily made. When this agreement is less than ideal, we usually get an electromyography (EMG), which in many cases is sufficient to confirm cervical radiculopathy or establish another diagnosis. However, when an EMG does not provide too many clues as to the cause of the discomfort, serious consideration must be given to other painful syndromes such as thoracic outlet syndrome (TOS) and some of its variants, occipital or C2 neuralgia, tumors of or affecting the brachial plexus, and orthopedic problems of the shoulder (Table 30.1). Of these, TOS is the most controversial and difficult to diagnose. Although the neurosurgeons Adson (1–3) and Naffziger (10,11) are well represented as pioneers in the literature on TOS, this condition has received only limited attention in neurosurgical circles. In fact, no original publication in NEUROSURGERY or the Journal of Neurosurgery has addressed the issue of TOS, except for an overview article in NEUROSURGERY (12). At the time of writing of this paper, two additional articles have appeared in Neurosurgery: one general review article and another strictly surgical series comprising 33 patients with a Gilliatt-Sumner hand (7).
    [Show full text]
  • The SPA Arrangement of the Branches of the Upper Trunk of the Brachial Plexus: a Correction of a Longstanding Misconception and a New Diagram of the Brachial Plexus
    LABORATORY INVESTIGATION J Neurosurg 125:350–354, 2016 The SPA arrangement of the branches of the upper trunk of the brachial plexus: a correction of a longstanding misconception and a new diagram of the brachial plexus Amgad Hanna, MD Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin OBJECTIVE Brachial plexus (BP) diagrams in most textbooks and papers represent the branches and divisions of the upper trunk (UT) in the following sequence from cranial to caudal: suprascapular nerve, anterior division, and then posterior division. This concept contradicts what is seen in the operating room and is noticed by most peripheral nerve surgeons. This cadaveric study was conducted to look specifically at the exact pattern of branching of the upper trunk of the BP. METHODS Ten cadavers (20 BPs) were dissected. Both supra- and infraclavicular exposures were performed. The clavicle was retracted or resected to identify the divisions of the BP. A posterior approach was used in 2 cases. RESULTS In all dissections the origin of the posterior division was in a more cranial and dorsal plane in relation to the anterior division. In most dissections the supra scapular nerve branched off distally from the UT, giving it the appearance of a trifurcation, taking off just cranial and dorsal to the posterior division. The branching pattern of the UT consistently had the following sequential arrangement from cranial and posterior to caudal and anterior: suprascapular nerve (S), posterior division (P), and anterior division (A), hence the acronym SPA. CONCLUSIONS Supraclavicular exposure of the BP exposes only the trunks and divisions. Recognizing the “SPA” arrangement of the branches helps in identifying the correct targets for neurotization, especially given that these 3 branches are the most common targets for BP repair.
    [Show full text]
  • Pectoral Nerves – a Third Nerve and Clinical Implications Kleehammer, A.C., Davidson, K.B., and Thompson, B.J
    Pectoral Nerves – A Third Nerve and Clinical Implications Kleehammer, A.C., Davidson, K.B., and Thompson, B.J. Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University Introduction Summary Table 1. Initial Dataset and Observations The textbook description of the pectoral nerves A describes a medial and lateral pectoral nerve arising A from the medial and lateral cords, respectively, to innervate the pectoralis major and minor muscles. Studies have described variations in the origins and branching of the pectoral nerves and even in the muscles they innervate (Porzionato et al., 2011, Larionov et al., 2020). There have also been reports of three pectoral nerves with distinct origins (Aszmann et Table 1: Initial Dataset and Observations Our initial dataset consisted of 31 anatomical donors, dissected bilaterally, Each side was considered an al., 2000) and variability of the spinal nerve fibers Independent observation. Of the 62 brachial plexuses, 50 met our inclusion criteria. contributing to these nerves (Lee, 2007). Given the Table 2. Branching Patterns of Pectoral Nerves frequency of reported variation from the textbook description, reexamining the origin, course and B branching of the pectoral nerves could prove useful for B students and clinicians alike. The pectoral nerves are implicated in a variety of cases including surgeries of the breast, pectoral, and axillary region (David et al., 2012). Additionally, the lateral pectoral nerve has recently gained attention for potential use as a nerve graft for other damaged nerves such as the spinal accessory nerve (Maldonado, et al., 2017). The objective of this study was to assess the frequency and patterns of pectoral nerve branching in order to more accurately describe their orientation and implications in clinical cases.
    [Show full text]
  • Brachial Plexus Posterior Cord Variability: a Case Report and Review
    CASE REPORT Brachial plexus posterior cord variability: a case report and review Edward O, Arachchi A, Christopher B Edward O, Arachchi A, Christopher B. Brachial plexus posterior cord anatomical variability. This case report details the anatomical variants discovered variability: a case report and review. Int J Anat Var. 2017;10(3):49-50. in the posterior cord of the brachial plexus in a routine cadaveric dissection at the University of Melbourne, Australia. Similar findings in the literature are reviewed ABSTRACT and the clinical significance of these findings is discussed. The formation and distribution of the brachial plexus is a source of great Key Words: Brachial plexus; Posterior cord; Axillary nerve; Anatomical variation INTRODUCTION he brachial plexus is the neural network that supplies motor and sensory Tinnervation to the upper limb. It is typically composed of anterior rami from C5 to T1 spinal segments, which subsequently unite to form superior, middle and inferior trunks. These trunks divide and reunite to form cords 1 surrounding the axillary artery, which terminate in branches of the plexus. The posterior cord is classically described as a union of the posterior divisions from the superior, middle and inferior trunks of the brachial plexus, with fibres from all five spinal segments. The upper subscapular, thoracodorsal and lower subscapular nerves propagate from the cord prior to the axillary and radial nerves forming terminal branches. Variability in the brachial plexus is frequently reported in the literature. It is C5 nerve root Suprascapular nerve important for clinicians to be aware of possible variations when considering Posterior division of C5-C6 injuries or disease of the upper limb.
    [Show full text]
  • Axilla & Brachial Plexus
    Anatomy Guy Dissection Sheet Axilla & Brachial Plexus Dr. Craig Goodmurphy Anatomy Guy Major Dissection Objectives 1. Review some of the superficial veins and nerves and extrapolate skin incisions down the arm while sparing the cephalic and basilic veins 2. Secure the upper limb in an abducted position and review the borders of the axilla while reflecting pec major and minor. 3. You may need to remove the middle third of the clavicle with bone cutters or oscillating saw 4. Identify and open the axillary sheath to find the axillary vein and separate it away from the arteries and nerves 5. Once it is mobilized remove smaller veins and reflect the axillary vein medially Major Dissection Objectives Arteries 6. Locate and clean the subclavian artery as it becomes the axillary a. at the first rib. 7. Identifying part 1, 2 and 3 of the axillary artery as they relate to pectoralis minor 8. Identify & clean the thoracoacromial trunk and its branches along with the lateral thoracic artery 9. Clean the subscapular artery and follow it to the circumflex scapular and thoracodorsal branches removing the fat of the region and noting variations and lymph nodes that may be present. 10. Locate the posterior and anterior humeral circumflex arteries and the brachial artery Eastern Virginia Medical School 1 Anatomy Guy Dissection Sheet Axilla & Brachial Plexus Major Dissection Objectives Nerves 11. Review the parts of the brachial plexus with roots in the scalene gap, trunks superior to the clavicle, divisions posterior to the clavicle, cords and branches inferior to the clavicle. 12. Locate the musculocutaneous nerve laterally as it pierces the coracobrachialis m.
    [Show full text]
  • Supply Distribution of the Brachial Plexus
    This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. SUPPLY DISTRIBUTION OF THE BRACHIAL PLEXUS Lateral pectoral nerve Pectoralis major Lateral cord Anterior compartment of the arm: MUSCULOCUTANEOUS NERVE Biceps, coracobrachialis, brachialis Skin over the lateral forearm, once it becomes cutaneous in the cubital fossa Anterior compartment of the forearm: EXCEPT for the ulnar part of flexor digitorum profundis MEDIAN NERVE Thenar muscles: EXCEPT adductor pollicis and the deep part of flexor pollicis brevis First and second lumbricals Skin on the medial surface of arm up to the elbow MedialLateral cutaneous cord: nerve of arm lateral pectoral nerve Medial cord Skin on the medial surface of forearm up to the elbow Medial cutaneous MUSCULOCUTANEOUS nerve of forearm NERVE lateral root of MEDIAN NERVE Medial pectoral nerve Pectoralis minor and sternocostal part of pectoralis major o Medial cord forms ULNAR NERVE Intrinsic muscles of the hand, EXCEPT 1st and 2nd lumbricals and three of the thenar muscles Flexor carpi ulnaris Ulnar half of the flexor digitorum profundis to the pinky and ring fingers Upper subscapular nerve Superior half of subscapularis medial root of MEDIAN NERVE Lower subscapular nerve Inferior half of subscapularis AND teres major medial pectoral nerve medial cutaneous nerveGlenohumeral of arm joint Teres minor medial cutaneous nerve of forearm Posterior cord AXILLARY NERVE Deltoid ULNAR NERVE Skin over the deltoid RADIAL NERVE ALL MUSCLES IN THE POSTERIOR COMPARTMENT OF THE ARM AND FOREARM Ski over posterior and inferolateral forearm Some of the dorsum of the hand o o Thoracodorsal nerve Latissimus Dorsi o o Posterior cord forms: Long Thoracic nerve Serratus anterior Dorsal scapular nerve Rhomboids; Supraclavicular branches levator scapulae Subclavius and Nerve to subclavius sternoclavicular joint Suprascapular nerve Supraspinatus Infraspinatus Glenohumeral joint.
    [Show full text]